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Abstract. We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching
in a 3-graph without isolated vertex. Suppose that H is a 3-uniform hypergraph whose order n is sufficiently

large and divisible by 3. If H contains no isolated vertex and deg(u) + deg(v) > 2
3
n2 − 8

3
n + 2 for any two

vertices u and v that are contained in some edge of H, then H contains a perfect matching. This bound is

tight and the (unique) extremal hyergraph is a different space barrier from the one for the corresponding

Dirac problem.

1. Introduction

A k-uniform hypergraph (in short, k-graph) H is a pair (V,E), where V := V (H) is a finite set of vertices
and E := E(H) is a family of k-element subsets of V . A matching of size s in H is a family of s pairwise
disjoint edges of H. If the matching covers all the vertices of H, then we call it a perfect matching. Given
a set S ⊆ V , the degree degH(S) of S is the number of the edges of H containing S. We omit the subscript
when the underlying hypergraph is obvious from the context, and simply write deg(v) when S = {v}. The
minimum `-degree of H, denoted by δ`(H), is the minimum deg(S) over all `-subsets S of V (H).

Given integers ` < k ≤ n such that k divides n, we define the minimum `-degree threshold m`(k, n)
as the smallest integer m such that every k-graph H on n vertices with δ`(H) ≥ m contains a perfect
matching. In recent years the problem of determining m`(k, n) has received much attention, see, e.g.,
[2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21]. For example, Rödl, Ruciński, and Szemerédi [17]
determined mk−1(k, n) for all k ≥ 3 and sufficiently large n. For more Dirac-type results on hypergraphs,
we refer readers to surveys [14, 25].

In this paper we focus on 3-graphs. Hàn, Person and Schacht [4] showed that

m1(3, n) =

(
5

9
+ o(1)

)(
n

2

)
. (1)

Kühn, Osthus and Treglown [10] and independently Khan [6] later proved that m1(3, n) =
(
n−1
2

)
−
(
2n/3
2

)
+1

for sufficiently large n.

Motivated by the relation between Dirac’s condition and Ore’s condition for Hamilton cycles, Tang and
Yan [18] studied the degree sum of two (k − 1)-sets that guarantees a tight Hamilton cycle in k-graphs.
Zhang and Lu [22] studied the degree sum of two (k − 1)-sets that guarantees a perfect matching in k-
uniform hypergraphs.

Our objective is to find an Ore’s condition that guarantees a perfect matching in 3-rgraphs. As Ore’s
theorem concerns the degree sum of two non-adjacent vertices in graphs, we consider the degree sum of two
vertices in 3-graphs. For two distinct vertices u, v in a hypergraph, we call u, v adjacent if there exists an
edge containing both of them. The following are three possible ways of defining the minimum degree sum of
3-graphs. Let σ2(H) = min{deg(u) + deg(v) : u and v are adjacent}, σ′2(H) = min{deg(u) + deg(v) : u, v ∈
V (H)} and σ′′2 (H) = min{deg(u) + deg(v) : u and v are not adjacent}.

The parameter σ′2 is closely related to the Dirac threshold m1(3, n). Indeed, we can prove that when n

is divisible by 3 and sufficiently large, every 3-graph H on n vertices with σ′2(H) ≥ 2(
(
n−1
2

)
−
(
2n/3
2

)
) + 1
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contains a perfect matching. Indeed, such H contains at most one vertex u with deg(u) ≤
(
n−1
2

)
−
(
2n/3
2

)
. If

deg(u) ≤ (5/9 − ε)
(
n
2

)
for some ε > 0, then we choose an edge containing u and find a perfect matching in

the remaining 3-graph by (1) immediately. Otherwise, δ1(H) ≥ (5/9− ε)
(
n
2

)
. We can prove that H contains

a perfect matching by following the same approach as in [10].1

On the other hand, no condition on σ′′
2 alone guarantees a perfect matching. In fact, let H be the 3-graph

whose edge set consists of all triples that contain a fixed vertex. This H contains no two disjoint edges even
though it satisfies all conditions on σ′′

2 (because any two vertices of H are adjacent).

Therefore we focus on σ2. More precisely, we determine the largest σ2(H) among all 3-graphs H of order n
without isolated vertex such that H contains no perfect matching. (Trivially H contains no perfect matching
if it contains an isolated vertex.) Let us define a 3-graph H∗

n, which is one of the so-called space barriers
for perfect matchings (see Section 5 for their definitions and a connection to a well-known conjecture of
Erdős [3]). The vertex set of H∗

n is partitioned into two vertex classes S and T of size n/3+ 1 and 2n/3− 1,

Figure 1. H∗
n: every edge intersects T in two or three vertices.

respectively, and whose edge set consists of all triples containing at least two vertices of T (see Figure 1).
For any two vertices u ∈ T and v ∈ S,

deg(u) =

(
2n/3− 2

2

)
+
(n
3
+ 1

)(
2n

3
− 2

)
>

(
2n/3− 1

2

)
= deg(v).

Hence σ2(H
∗
n) =

(
2n/3−2

2

)
+ (n/3 + 1)(2n/3− 2) +

(
2n/3−1

2

)
= 2n2/3− 8n/3 + 2. Obviously, H∗

n contains no
perfect matching. The following is our main result.

Theorem 1. There exists n0 ∈ N such that the following holds for all integers n ≥ n0 that are divisible by
3. Let H be a 3-graph of order n ≥ n0 without isolated vertex. If σ2(H) > σ2(H

∗
n) =

2
3n

2 − 8
3n+ 2, then H

contains a perfect matching.

Theorem 1 actually follows from the following stability result. For two hypergraphs H1 and H2, we write
H1 ⊆ H2 if H1 is a subgraph of H2.

Theorem 2. There exist ε > 0 and n0 ∈ N such that the following holds for all integers n ≥ n0 that are
divisible by 3. Suppose that H is a 3-graph of order n ≥ n0 without isolated vertex and σ2(H) > 2n2/3−εn2,
then H ⊆ H∗

n or H contains a perfect matching.

Indeed, if σ2(H) > 2n2/3 − 8n/3 + 2, then H � H∗
n and by Theorem 2, H contains a perfect matching.

Furthermore, Theorem 2 implies that H∗
n is the unique extremal 3-graph for Theorem 1 because all proper

subgraphs H of H∗
n satisfy σ2(H) < σ2(H

∗
n).

This paper is organized as follows. In Section 2, we provide preliminary results and an outline of our
proof. We prove an important lemma in Section 3 and we complete the proof of Theorem 2 in Section 4.
Section 5 contains concluding remarks and open problems.

Notation: Given vertices v1, . . . , vt, we often write v1 · · · vt for {v1, . . . , vt}. The neighborhood N(u, v) is
the set of the vertices w such that uvw ∈ E(H). Let V1, V2, V3 be three vertex subsets of V (H), we say that
an edge e ∈ E(H) is of type V1V2V3 if e = {v1, v2, v3} such that v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3.

Given a vertex v ∈ V (H) and a set A ⊆ V (H), we define the link Lv(A) to be the set of all pairs uw such
that u,w ∈ A and uvw ∈ E(H). When A and B are two disjoint sets of V (H), we define Lv(A,B) as the
set of all pairs uw such that u ∈ A, w ∈ B and uvw ∈ E(H).

1In fact, due to the absorbing method, we only need to verify the extremal case.
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We write 0 < a1 � a2 � a3 if we can choose the constants a1, a2, a3 from right to left. More precisely there
are increasing functions f and g such that given a3, whenever we choose some a2 ≤ f(a3) and a1 ≤ g(a2),
all calculations needed in our proof are valid.

2. Preliminaries and proof outline

We will need small constants

0 < ε� η � γ � γ′ � ρ� τ � 1.

Suppose H is a 3-graph such that σ2(H) > 2n2/3 − εn2. Let W = {v ∈ V (H) : deg(v) ≤ n2/3 − εn2/2},
U = V \W . If W = ∅, then (1) implies that H contains a perfect matching. We thus assume that |W | ≥ 1.
Any two vertices of W are not adjacent – otherwise σ2(H) ≤ 2n2/3− εn2, a contradiction. If |W | ≥ n/3 + 1,
then H ⊆ H∗n and we are done. We thus assume |W | ≤ n/3 for the rest of the proof.

Our proof will use the following claim.

Claim 3. If |W | ≥ n/4, then every vertex of U is adjacent to some vertex of W .

Proof. To the contrary, assume that some vertex u0 ∈ U is not adjacent to any vertex in W . Then we have

deg(u0) ≤
(|U |−1

2

)
=
(
n−|W |−1

2

)
. Since |W | ≥ n/4 and n is sufficiently large,

deg(u0) ≤
(
n− n/4− 1

2

)
=

9

32
n2 − 9

8
n+ 1 <

n2

3
− ε

2
n2,

which contradicts the definition of U . �

By Claim 3, when |W | ≥ n
4 , we have deg(u) ≥ (2n2/3− εn2)−

(
n−|W |

2

)
for every u ∈ U . This is stronger

than the bound given by the definition of U because(
2

3
n2 − εn2

)
−
(
n− |W |

2

)
≥
(

2

3
n2 − εn2

)
−
(
n− n/4

2

)
=
(37

96
− ε
)
n2 +

3

8
n >

n2

3
− ε

2
n2.

Our proof consists of two steps.

Step 1. We prove that H contains a matching that covers all the vertices of W .

Lemma 4. There exist ε > 0 and n0 ∈ N such that the following holds. Suppose that H is a 3-graph of order
n ≥ n0 without isolated vertex and σ2(H) > 2n2/3− εn2. Let W = {v ∈ V (H) : deg(v) ≤ n2/3− εn2/2}. If
|W | ≤ n/3, then H contains a matching that covers every vertex of W .

We will prove Lemma 4 in Section 3. The following is an outline of the proof. Consider a largest matching
M in H such that every edge of M contains one vertex from W and assume |M | < |W |. If |W | ≤ (1/3−γ)n,
then we choose two adjacent vertices, one from W and the other from V \W to derive a contradiction with
σ2(H). If n/3 ≥ |W | > (1/3 − γ)n, we use three unmatched vertices, one from W and two from V \W to
derive a contradiction.

Step 2. We show that H contains a perfect matching.

Because of Lemma 4, we begin by considering a largest matching M such that M covers every vertex
of W and suppose that |M | < n/3. After choosing three vertices from V \ V (M), we distinguish the cases
when |M | ≤ n/3− ηn and when |M | > n/3− ηn and derive a contradiction by comparing upper and lower
bounds for the degree sum of these three vertices. When |M | > n/3− ηn, we need to apply (1).

In Step 2 we need three simple extremal results. The first lemma is Observation 1.8 of Aharoni and
Howard [1]. A k-graph H is called k-partite if V (H) can be partitioned into V1, · · · , Vk, such that each edge
of H meets every Vi in precisely one vertex. If all parts are of the same size n, we call H n-balanced.

Lemma 5. [1] Let F be the edge set of an n-balanced k-partite k-graph. If F does not contain s disjoint
edges, then |F | ≤ (s− 1)nk−1.

The bound in the following lemma is tight because we may let G1 be the empty graph and G2 = G3 = Kn.
3



Lemma 6. Let G1, G2, G3 be three graphs on the same set V of n ≥ 4 vertices such that every edge of G1

intersects every edge of Gi for both i = 2, 3. Then
∑3

i=1

∑
v∈A degGi

(v) ≤ 6(n − 1) for any set A ⊂ V of
size 3.

Proof. Assume A = {u1, u2, u3} and let b = n−3 ≥ 1. We need to show that
∑3

i=1

∑3
j=1 degGi

(uj) ≤ 6b+12.

Let `i denote the number of the vertices in A of degree at least 3 in Gi. We distinguish the following two
cases:

Case 1: `1 ≥ 1.

If `1 ≥ 2, say, degG1
(uj) ≥ 3 for j = 1, 2, then E(Gi) ⊆ {u1u2} for i = 2, 3 – otherwise we can find

two disjoint edges, one from G1 and the other from G2 or G3. Therefore,
∑3

j=1 degGi
(uj) ≤ 2 for i = 2, 3.

Moreover,
∑3

j=1 degG1
(uj) ≤ 3b+ 6. We have

∑3
i=1

∑3
j=1 degGi

(uj) ≤ 3b+ 10 < 6b+ 12.

If `1 = 1, say, degG1
(u1) ≥ 3, then Gi is a star centered at u1 for i = 2, 3 – otherwise one edge of

G1 must be disjoint from one edge of G2 or G3. In this case we have
∑3

j=1 degG1
(uj) ≤ b + 2 + 4 and∑3

j=1 degGi
(uj) ≤ b+ 4 for i = 2, 3. Therefore,

∑3
i=1

∑3
j=1 degGi

(uj) ≤ 3b+ 14 < 6b+ 12 as b ≥ 1.

Case 2: `1 = 0.

Let us consider the value of max{`2, `3}. First, if max{`2, `3} = 3, then E(G1) = ∅. Consequently,∑3
i=1

∑3
j=1 degGi

(uj) ≤ 2(3b+ 6) = 6b+ 12.

Second, assume max{`2, `3} = 2. Without loss of generality, we assume `2 = 2 and degG2
(uj) ≥ 3 for

j = 1, 2. Then E(G1) ⊆ {u1u2}. In this case
∑3

j=1 degG1
(uj) ≤ 2 and

∑3
j=1 degGi

(uj) ≤ 2b + 4 + 2 for

i = 2, 3. Hence
∑3

i=1

∑3
j=1 degGi

(uj) ≤ 4b+ 14 ≤ 6b+ 12 as b ≥ 1.

Third, assume max{`2, `3} = 1. Without loss of generality, assume `2 = 1 and degG2
(u1) ≥ 3. Then G1

is a star centered at u1. We have
∑3

j=1 degG1
(uj) ≤ 4 and

∑3
j=1 degGi

(uj) ≤ b + 2 + 4 for i = 2, 3. So∑3
i=1

∑3
j=1 degGi

(uj) ≤ 2b+ 16 ≤ 6b+ 12 as b ≥ 1.

At last, assume max{`2, `3} = 0. Then degGi
(uj) ≤ 2 for all i, j ∈ {1, 2, 3}. Hence

∑3
i=1

∑3
j=1 degGi

(uj) ≤
18 ≤ 6b+ 12 as b ≥ 1. �

The bound in the following lemma is tight because we may let G1 = G2 = G3 be a star of order n centered
at a vertex of A.

Lemma 7. Let G1, G2, G3 be three graphs on the same set V of n ≥ 5 vertices such that for any i 6= j, every
edge of Gi intersects every edge from Gj. Then

∑3
i=1

∑
v∈A degGi

(v) ≤ 3(n+ 1) for any set A ⊂ V of size
3.

Proof. Assume A = {u1, u2, u3} and let b = n−3 ≥ 2. We need to show that
∑3

i=1

∑3
j=1 degGi

(uj) ≤ 3b+12.

Let `i denote the number of the vertices in A of degree at least 3 in Gi. We distinguish the following two
cases:

Case 1: `i ≥ 1 for some i ∈ [3].

Without loss of generality, `1 ≥ 1 and degG1
(u1) ≥ 3. If degG1

(u2) ≥ 3 or degG1
(u3) ≥ 3, say, degG1

(u2) ≥
3, then E(Gi) ⊆ {u1u2} for i = 2, 3 – otherwise we can find two disjoint edges e1 and e2 from two distinct

graphs of G1, G2, G3. In this case
∑3

j=1 degG1
(uj) ≤ 3b + 6 and

∑3
j=1 degGi

(uj) ≤ 2 for i = 2, 3, which

implies that
∑3

i=1

∑3
j=1 degGi

(uj) ≤ 3b+ 10.

Assume degG1
(uj) ≤ 2 for j = 2, 3. We know that Gi, i = 2, 3 is a star centered at u1 – otherwise one

edge of G1 must be disjoint from one edge of Gi, i ∈ {2, 3}. If degG2
(u1) ≥ 3 or degG3

(u1) ≥ 3, then G1 is

also a star centered at u1. In this case
∑3

j=1 degGi
(uj) ≤ b+4 for i ∈ [3], so

∑3
i=1

∑3
j=1 degGi

(uj) ≤ 3b+12.

Otherwise degGi
(u1) ≤ 2 for i = 2, 3, hence

∑3
j=1 degGi

(uj) ≤ 4 for i = 2, 3. Since
∑3

j=1 degG1
(uj) ≤ b+ 6,

we have
∑3

i=1

∑3
j=1 degGi

(uj) ≤ b+ 14 ≤ 3b+ 12.

Case 2: `i = 0 for i ∈ [3].

In this case
∑3

j=1 degGi
(uj) ≤ 6 for i = 1, 2, 3. Hence

∑3
i=1

∑3
j=1 degGi

(uj) ≤ 18 ≤ 3b+ 12 as b ≥ 2. �
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3. Proof of Lemma 4

Choose a largest matching of H, denoted by M , such that every edge of M is of type UUW . To the
contrary, assume that |M | ≤ |W |−1. Let U1 = V (M)∩U , U2 = U \U1, W1 = V (M)∩W , and W2 = W \W1.
Then |U1| = 2|M |, and |U2| = n− |W | − 2|M |. We distinguish the following two cases.

Case 1: 0 < |W | ≤ ( 1
3 − γ)n.

We further distinguish the following two sub-cases:

Case 1.1: A vertex v0 ∈W2 is adjacent to a vertex u0 ∈ U2.

Let M ′ = {e ∈ M : ∃u′ ∈ e, |N(v0, u
′) ∩ U2| ≥ 3}. Assume {u1, u2, v1} ∈ M ′ such that u1, u2 ∈ U1,

v1 ∈W1, and |N(v0, u1) ∩ U2| ≥ 3. We claim that

N(u0, v1) ∩ (U2 ∪ {u2}) = ∅. (2)

Indeed, if {u0, v1, u3} ∈ E(H) for some u3 ∈ U2, then we can find u4 ∈ U2 \ {u0, u3} such that {v0, u1, u4} ∈
E(H). Replacing {u1, u2, v1} by {u0, v1, u3} and {v0, u1, u4} gives a larger matching than M , a contradiction.
The case when {u0, v1, u2} ∈ E(H) is similar.

By the definition of M ′, there are at most 2(|U1|−2|M ′|) edges containing v0 with one vertex in U1\V (M ′)
and one vertex in U2. This implies that

deg(v0) ≤
(
|U1|

2

)
+ 2|M ′||U2|+ 2(|U1| − 2|M ′|) =

(
|U1|

2

)
+ 2|U1|+ |M ′|(2|U2| − 4).

By (2), there are at most |U1||W1| − |M ′| edges consisting of u0, one vertex in U1, and one vertex in W1,
and at most (|U2| − 1)(|W1| − |M ′|) edges consisting of u0, one additional vertex in U2, and one vertex in
W1. Therefore,

deg(u0) ≤
(
|U | − 1

2

)
+ |U1||W2|+ |U1||W1| − |M ′|+ (|U2| − 1)(|W1| − |M ′|)

=

(
|U | − 1

2

)
+ |U1||W |+ (|U2| − 1)|W1| − |U2||M ′|,

and consequently,

deg(v0) + deg(u0) ≤
(
|U1|

2

)
+ 2|U1|+

(
|U | − 1

2

)
+ |U1||W |+ (|U2| − 1)|W1|+ |M ′|(|U2| − 4).

Since |W | ≤ ( 1
3 − γ)n, we have |U2| > 3γn > 4. As |M ′| ≤ |M | = |W1| = |U1|

2 , it follows that

deg(v0) + deg(u0) ≤
(
|U1|

2

)
+ 2|U1|+

(
|U | − 1

2

)
+ |U1||W |+ (|U2| − 1)

|U1|
2

+
|U1|

2
(|U2| − 4)

=

((
|U |
2

)
−
(
|U2|

2

))
+

(
|U | − 1

2

)
+

(
|W | − 1

2

)
|U1|

= (|U | − 1)
2 −

(
|U2|

2

)
+ (2|W | − 1)|M |.

Since |M | ≤ |W | − 1 and |U2| ≥ n− 3|W |+ 2, we derive that

deg(v0) + deg(u0) ≤ (n− |W | − 1)2 −
(
n− 3|W |+ 2

2

)
+ (2|W | − 1)(|W | − 1)

=
2

3
n2 − 7

3
n+

73

24
− 3

2

(
n

3
+

7

6
− |W |

)2

.

Since |W | ≤ ( 1
3 − γ)n, 0 < ε� γ and n is sufficiently large, we have

deg(v0) + deg(u0) ≤ 2

3
n2 − 7

3
n+

73

24
− 3

2

(
γn+

7

6

)2

<
2

3
n2 − εn2.

This contradicts our assumption on σ2(H) because v0 and u0 are adjacent.

Case 1.2: No vertex in W2 is adjacent to any vertex in U2.
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Fix v0 ∈W2. Since v0 is not adjacent to any vertex in U2, we have deg(v0) ≤
(|U1|

2

)
=
(
2|M |
2

)
. Since v0 is

not an isolated vertex, there exists a vertex u1 ∈ U1 that is adjacent to v0. By the assumption, H contains no

edge containing u1 with one vertex in U2, one vertex in W2. Thus deg(u1) ≤
(|U |−1

2

)
+(|U |−1)|W |−|U2||W2|.

Since |M | ≤ |W | − 1 and |U | = n− |W |, it follows that

deg(v0) + deg(u1) ≤
(

2(|W | − 1)

2

)
+

(
|U | − 1

2

)
+ (|U | − 1)|W | − (n− 3|W |+ 2)

=
3

2

(
|W | − 1

2

)2

+
1

2
n2 − 5

2
n+

13

8
.

Furthermore, since |W | ≤ ( 1
3 − γ)n and 0 < ε� γ, we derive that

deg(v0) + deg(u1) ≤ 3

2

(
n

3
− γn− 1

2

)2

+
1

2
n2 − 5

2
n+

13

8
=

(
2

3
− γ +

3

2
γ2
)
n2 −

(
3− 3

2
γ

)
n+ 2

<
2

3
n2 − εn2,

contradicting our assumption on σ2(H).

Case 2: |W | > ( 1
3 − γ)n.

Claim 8. |M | ≥ n/3− γ′n.

Proof. To the contrary, assume that |M | < n/3− γ′n. Fix v0 ∈ W2. Then deg(v0) ≤
(|U |

2

)
−
(|U2|

2

)
because

there is no edge of type U2U2W2. Suppose u ∈ U is adjacent to v0. Trivially deg(u) ≤
(|U |−1

2

)
+(|U |−1)|W |.

Thus

deg(v0) + deg(u) ≤
(
|U | − 1

2

)
+ (|U | − 1)|W |+

(
|U |
2

)
−
(
|U2|

2

)
= (n− 1)(|U | − 1)−

(
|U2|

2

)
.

Our assumptions imply that |U | ≤ 2n/3 + γn and |U2| ≥ 2γ′n. As a result,

deg(v0) + deg(u) ≤ (n− 1)

(
2

3
n+ γn− 1

)
−
(

2γ′n

2

)
<

2

3
n2 − εn2,

because ε� γ � γ′ and n is sufficiently large. This contradicts our assumption on σ2(H). �

Fix u1 6= u2 ∈ U2 and v0 ∈ W2. Trivially deg(w) ≤
(|U |

2

)
for any vertex w ∈ W and deg(u) ≤

(|U |−1
2

)
+

|W |(|U | − 1) for any vertex u ∈ U . Furthermore, for any two distinct edges e1, e2 ∈ M , we observe that at
least one triple of type UUW with one vertex from each of e1 and e2 and one vertex from {u1, u2, v0} is not
an edge – otherwise there is a matching M3 of size three on e1 ∪ e2 ∪ {u1, u2, v0} and M3 ∪M \ {e1, e2} is
thus a matching larger than M . By Claim 8, |M | ≥ n/3− γ′n. Thus,

deg(u1) + deg(u2) + deg(v0) ≤ 2

((
|U | − 1

2

)
+ |W |(U | − 1)

)
+

(
|U |
2

)
−
(
n/3− γ′n

2

)
.

On the other hand, since |W | > ( 1
3 − γ)n ≥ n/4, Claim 3 implies that ui is adjacent to some vertex in W

for i = 1, 2. We know that v0 is adjacent to some vertex in U . Therefore, deg(ui) >
(
2n2/3− εn2

)
−
(|U |

2

)
for i = 1, 2, and deg(v0) >

(
2n2/3− εn2

)
−
((|U |−1

2

)
+ |W |(|U | − 1)

)
. It follows that

deg(u1) + deg(u2) + deg(v0) > 3

(
2n2

3
− εn2

)
− 2

(
|U |
2

)
−
(
|U | − 1

2

)
− |W |(|U | − 1).

The upper and lower bounds for deg(u1) + deg(u2) + deg(v0) together imply that

3

((
|U | − 1

2

)
+ |W |(|U | − 1) +

(
|U |
2

))
−
(
n/3− γ′n

2

)
> 3

(
2n2

3
− εn2

)
,

or (|U | − 1)(n− 1)− 1

3

(
n/3− γ′n

2

)
>

2n2

3
− εn2,

6



which is impossible because |U | ≤ 2n/3+γn, 0 < ε� γ � γ′ � 1 and n is sufficiently large. This completes
the proof of Lemma 4.

4. Proof of Theorem 2

Choose a matching M such that (i) M covers all the vertices of W ; (ii) subject to (i), |M | is the largest.
Lemma 4 implies that such a matching exists. Let M1 = {e ∈ M : e ∩ W 6= ∅}, M2 = M \ M1, and
U3 = V (H) \ V (M). We have |M1| = |W |, |M2| = |M | − |W |, |U3| = n− 3|M |.

Suppose to the contrary, that |M | ≤ n/3 − 1. Fix three vertices u1, u2, u3 of U3. We distinguish the
following two cases.

Case 1: |M | ≤ n/3− ηn.

Trivially, for every i ∈ {1, 2, 3}, there are at most 3|M | edges in H containing ui and two vertices from
the same edge of M . For any distinct e1, e2 from M , we claim that

3∑
i=1

|Lui
(e1, e2)| ≤ 18. (3)

Indeed, let H1 be the 3-partite subgraph of H induced on three parts e1, e2, and {u1, u2, u3}. We observe that
H1 does not contain a perfect matching – otherwise, letting M1 be a perfect matching of H1, (M \ {e1, e2})∪
M1 is a larger matching than M , a contradiction. Apply Lemma 5 with n = k = s = 3, we obtain that
|E(H1)| ≤ 18. Therefore

∑3
i=1 |Lui

(e1, e2)| ≤ 18.

For any e ∈M1, we claim that
3∑

i=1

|Lui
(e, U3)| ≤ 6(|U3| − 1).

Indeed, assume e = {v1, v2, v3} ∈ M1 with v1 ∈ W . Apply Lemma 6 with A = {u1, u2, u3}, V = U3, and
Gi = (U3, Lvi(U3)) for i = 1, 2, 3. Since |M | ≤ n/3 − 4, we have |B| = |U3| − 3 ≥ 2. By the maximality of

M , no edge of G1 is disjoint from an edge of G2 or G3. By Lemma 6,
∑3

i=1

∑3
j=1 degGi

(uj) ≤ 6(|U3| − 1).

Hence
∑3

i=1 |Lui
(e, U3)| =

∑3
i=1

∑3
j=1 degGi

(uj) ≤ 6(|U3| − 1).

Similarly, for any e ∈M2, we can apply Lemma 7 to obtain that

3∑
i=1

|Lui
(e, U3)| ≤ 3(|U3|+ 1).

Putting these bounds together gives

3∑
i=1

deg(ui) ≤ 18

(
|M |

2

)
+ 9|M |+

3∑
i=1

|Lui(V (M1), U3)|+
3∑

i=1

|Lui(V (M2), U3)|

≤ 18

(
|M |

2

)
+ 9|M |+ 6|M1|(|U3| − 1) + 3|M2|(|U3|+ 1).

Since |M1| = |W |, |M2| = |M | − |W |, |U3| = n− 3|M |, we derive that

3∑
i=1

deg(ui) ≤ 18

(
|M |

2

)
+ 9|M |+ 6|W |(n− 3|M | − 1) + 3(|M | − |W |)(n− 3|M |+ 1)

= (3n− 9|W |+ 3)|M |+ 3|W |n− 9|W |.

Furthermore, 3n− 9|W |+ 3 > 0 and |M | ≤ n/3− ηn implies that

3∑
i=1

deg(ui) ≤ (3n− 9|W |+ 3)
(n

3
− ηn

)
+ 3|W |n− 9|W |

= (9ηn− 9) |W |+ (1− 3η)n2 + (1− 3η)n. (4)

7



If |W | ≤ n/4, from (4), we have

3∑
i=1

deg(ui) ≤ (9ηn− 9)
n

4
+ (1− 3η)n2 + (1− 3η)n =

(
1− 3

4
η

)
n2 −

(
3η +

5

4

)
n,

which contradicts the condition
∑3

i=1 deg(ui) ≥ 3
(

n2

3 −
εn2

2

)
because ui ∈ U3 for i ∈ [3] and ε� η.

If |W | > n/4, Claim 3 implies that ui is adjacent to one vertex of W , i = 1, 2, 3. Furthermore, deg(w) ≤(|U |
2

)
for w ∈W . So

3∑
i=1

deg(ui) > 3

(
2n2

3
− εn2 −

(
|U |
2

))
= 3

(
2n2

3
− εn2 −

(
n− |W |

2

))
.

The upper and lower bounds for
∑3

i=1 deg(ui) together imply that

(9ηn− 9) |W |+ (1− 3η)n2 + (1− 3η)n+ 3

(
n− |W |

2

)
> 3

(
2n2

3
− εn2

)
,

which is a contradiction because |W | > n/4, 0 < ε� η � 1 and n is sufficiently large.

Case 2: |M | > n/3− ηn.

If |M | = n/3−1, then |U3| = 3 and we can not apply Lemmas 6 and 7. In fact, whenever |M | > n/3−ηn,
Lemma 5 suffices for our proof.

Let W ′ = {v ∈W : deg(v) ≤ (5/18+τ)n2}. Let M ′ be the sub-matching of M covering every vertex of W ′.
If |W ′| ≤ ρn, we claim that degH′(u) ≥

(
5
9 + γ

) (
n
2

)
for every vertex u ∈ V (H ′), where H ′ := H[V \ V (M ′)].

Indeed, from the definition of W ′, degH(u) > (5/18 + τ)n2 for every vertex u ∈ V (H ′). Hence,

degH′(u) ≥ degH(u)− 3n|W ′| >
(

5

18
+ τ

)
n2 − 3n|W ′|.

Since |W ′| ≤ ρn, 0 < γ � ρ� τ � 1 and n is sufficiently large, we have

degH′(u) >

(
5

18
+ τ

)
n2 − 3ρn2 >

(
5

9
+ γ

)(
n

2

)
.

In addition, n is divisible by 3, so |V (H ′)| is divisible by 3. (1) implies that H ′ contains a perfect matching
M ′′. Now M ′ ∪M ′′ is a perfect matching of H.

Therefore, we assume that |W ′| ≥ ρn in the rest of the proof. If one vertex of u1, u2, u3, say, u1, is
adjacent to one vertex in W ′, the definition of W ′ implies that deg(u1) > 2n2/3− εn2 −

(
5
18 + τ

)
n2. Recall

that deg(ui) > n2/3− εn2/2 for i = 2, 3. Thus

3∑
i=1

deg(ui) >

(
4

3
n2 − 2εn2

)
−
(

5

18
+ τ

)
n2 =

(
19

18
− 2ε− τ

)
n2. (5)

On the other hand,

3∑
i=1

deg(ui) ≤ 18

(
|M |

2

)
+ 9|M |+ 9|M |(n− 3|M | − 1) = 9|M |(n− 2|M | − 1),

where, by (3), 18
(|M |

2

)
bounds the number of edges intersecting two members of M , 9|M | bounds the number

of edges with two vertices in the same member of M , and 9|M |(n−3|M |−1) bounds the number of edges with
one vertex in V (M) and an additional vertex in U3 (besides ui). Since the function f(x) := 9x(n− 2x− 1)
decreases when x ≥ n−1

4 , we have f(x) ≤ f(n
3 − ηn) for all x ≥ n

3 − ηn. It follows that

3∑
i=1

deg(ui) ≤ 9
(n

3
− ηn

)(
n− 2

(n
3
− ηn

)
− 1
)

= (1 + 3η − 18η2)n2 − (3− 9η)n.
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Note that (1 + 3η− 18η2)n2− (3− 9η)n <
(
19
18 − 2ε− τ

)
n2 because 0 < ε� η � τ � 1 and n is sufficiently

large. We thus obtain a contradiction with (5).

We thus assume that none of u1, u2, u3 is adjacent to any vertex in W ′. It follows that

3∑
i=1

deg(ui) ≤ 18

(
|M | − |M ′|

2

)
+ 9(|M | − |M ′|) + 9(|M | − |M ′|)(n− 3|M | − 1)

+ 3

(
2|M ′|

2

)
+ 3(2|M ′|)(n− 3|M ′| − 1)

= −3

(
|M ′|+ 1

2
n− 3

2
|M |

)2

− 45

4
|M |2 +

9

2
n|M | − 9|M |+ 3

4
n2.

As before, 18
(|M |−|M ′|

2

)
bounds the number of edges intersecting two members of M \M ′, 9(|M | − |M ′|) for

those with two vertices in the same member of M \M ′, and 9(|M | − |M ′|)(n− 3|M | − 1) for those with one

vertex in V (M \M ′) and an additional vertex in U3 (besides ui). In addition, 3
(
2|M ′|

2

)
bounds the number of

edges with two vertices in V (M ′) \W ′, and 3(2|M ′|)(n− 3|M ′| − 1) for those with one vertex in V (M ′) \W ′
and one vertex in V (H) \ V (M ′). Since −n/2 + 3|M |/2 < 0 and |M ′| = |W ′| ≥ ρn,

3∑
i=1

deg(ui) ≤ −3

(
ρn+

1

2
n− 3

2
|M |

)2

− 45

4
|M |2 +

9

2
n|M | − 9|M |+ 3

4
n2

= −18

(
|M | − 1

4
n− 1

4
ρn+

1

4

)2

+

(
9

8
− 15

8
ρ2 − 3

4
ρ

)
n2 − 9

4
ρn− 9

4
n+

9

8
.

Recall that 0 < ρ� 1, so 1
4n+ 1

4ρn−
1
4 <

n
3 − ηn. Furthermore, |M | > n

3 − ηn, hence we have

3∑
i=1

deg(ui) ≤ −18

(
n

3
− ηn− 1

4
n− 1

4
ρn+

1

4

)2

+

(
9

8
− 15

8
ρ2 − 3

4
ρ

)
n2 − 9

4
ρn− 9

4
n+

9

8

=
(
1− 3ρ2 − 9ηρ+ 3η − 18η2

)
n2 + (9η − 3)n,

which contradicts the condition
∑3

i=1 deg(ui) ≥ 3
(
n2/3− εn2/2

)
because 0 < ε � η � ρ � 1 and n is

sufficiently large. This completes the proof of Theorem 2.

5. Concluding remarks

In this paper we consider the minimum degree sum of two adjacent vertices that guarantees a perfect
matching in 3-graphs. Given 3 ≤ k < n and 2 ≤ s ≤ n/k, can we generalize this problem to k-graphs not
containing a matching of size s? For 1 ≤ ` ≤ k, let H`

n,k,s denote the k-graph whose vertex set is partitioned
into two sets S and T of size n− s`+ 1 and s`− 1, respectively, and whose edge set consists of all the k-sets
with at least ` vertices in T . It is clear that H`

n,k,s contains no matching of size s. A well-known conjecture

of Erdős [3] says that H1
n,k,s or Hk

n,k,s is the densest k-graph on n vertices not containing a matching of size

s. It is reasonable to speculate that the largest σ2(H) among all k-graphs H on n vertices not containing
a matching of size s is also attained by H`

n,k,s. Note that Hk
n,k,s is a complete k-graph of order sk − 1

together with n − sk + 1 isolated vertices and thus σ2(Hk
n,k,s) = 2

(
sk−2
k−1

)
. When 1 ≤ ` ≤ k − 2, any two

vertices of H`
n,k,s are adjacent and thus σ2(H`

n,k,s) = 2δ1(H`
n,k,s). When ` = k − 1, it is easy to see that

σ2(Hk−1
n,k,s) = 2

(
s(k−1)−2

k−1
)

+ (n− s(k − 1) + 2)
(
s(k−1)−2

k−2
)
.

Assume s = n/k. Since Hk
n,k,n/k contains isolated vertices and δ1(H`

n,k,n/k) ≤ δ1(H1
n,k,n/k) for 1 ≤ ` ≤

k− 2, we only need to compare σ2(H1
n,k,n/k) and σ2(Hk−1

n,k,n/k). For sufficiently large n, it is easy to see that

σ2(H1
n,k,n/k) < σ2(Hk−1

n,k,n/k) when k ≤ 6 and σ2(H1
n,k,n/k) > σ2(Hk−1

n,k,n/k) when k ≥ 7.

Problem 9. Does the following hold for any sufficiently large n that is divisible by k? Let H be a k-graph
of order n without isolated vertex. If k ≤ 6 and σ2(H) > σ2(Hk−1

n,k,n/k) or k ≥ 7 and σ2(H) > σ2(H1
n,k,n/k),

then H contains a perfect matching.
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Now assume k = 3 and 2 ≤ s ≤ n/3. Note that

σ2(H3
n,3,s) = 2

(
3s− 2

2

)
, σ2(H1

n,3,s) = 2

((
n− 1

2

)
−
(
n− s

2

))
, and

σ2(H2
n,3,s) =

(
2s− 2

2

)
+ (n− 2s+ 1)

(
2s− 2

1

)
+

(
2s− 1

2

)
= (2s− 2)(n− 1).

It is easy to see that σ2(H2
n,3,s) > σ2(H1

n,3,s). Zhang and Lu [23] made the following conjecture.

Conjecture 10. [23] There exists n0 ∈ N such that the following holds. Suppose that H is a 3-graph of order
n ≥ n0 without isolated vertex. If σ2(H) > 2

((
n−1
2

)
−
(
n−s
2

))
and n ≥ 3s, then H contains no matching of

size s if and only if H is a subgraph of H2
n,3,s.

Zhang and Lu [23] showed that the conjecture holds when n ≥ 9s2. Later the same authors [24] proved
the conjecture for n ≥ 13s. If Conjecture 10 is true, then it implies the following theorem of Kühn, Osthus
and Treglown [10].

Theorem 11. [10] There exists n0 ∈ N such that if H is a 3-graph of order n ≥ n0 with δ1(H) ≥
(
n−1
2

)
−(

n−s
2

)
+ 1 and n ≥ 3s, then H contains a matching of size s.

Our Theorem 1 suggests a weaker conjecture than Conjecture 10.

Conjecture 12. There exists n1 ∈ N such that the following holds. Suppose that H is a 3-graph of order
n ≥ n1 without isolated vertex. If σ2(H) > σ2(H2

n,3,s) and n ≥ 3s, then H contains a matching of size s.

On the other hand, we may allow a 3-graph to contain isolated vertices. Note that σ2(H2
n,3,s) ≥ σ2(H3

n,3,s)
if and only if s ≤ (2n+ 4)/9. We make the following conjecture.

Conjecture 13. There exists n2 ∈ N such that the following holds. Suppose that H is a 3-graph of order
n ≥ n2 and 2 ≤ s ≤ n/3. If σ2(H) > σ2(H2

n,3,s) and s ≤ (2n+4)/9 or σ2(H) > σ2(H3
n,3,s) and s > (2n+4)/9,

then H contains a matching of size s.

In fact, we can derive Conjecture 13 from Conjecture 12 as follows. Let n2 = max{
(
n1

2

)
, 32n1} and H be a

3-graph of order n ≥ n2 satisfying the assumption of Conjecture 13. If H contains no isolated vertex, then
H contains a matching of size s by Conjecture 12. Otherwise, let W be the set of isolated vertices in H. Let
H ′ = H[V (H) \W ′] and n′ = n− |W |. Then H ′ is a 3-graph without isolated vertex and σ2(H ′) = σ2(H).
When 2 ≤ s ≤ (2n+ 4)/9, we have σ2(H ′) > σ2(H2

n,3,s) > σ2(H2
n′,3,s). In addition, since n ≥

(
n1

2

)
and

2

(
n′ − 1

2

)
≥ σ2(H ′) > (2s− 2)(n− 1) ≥ 2(n− 1),

we have n′ ≥ n1. When s > (2n + 4)/9, we have σ2(H ′) > σ2(H3
n,3,s) > σ2(H2

n,3,s) > σ2(H2
n′,3,s). In

addition, since n ≥ 3n1/2 and

2

(
n′ − 1

2

)
≥ σ2(H ′) > 2

(
3s− 2

2

)
> 2

(
2(n− 1)/3

2

)
,

we have n′ ≥ n1. In both cases, Conjecture 12 implies that H ′ contains a matching of size s.
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