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Abstract—Reliable methods for tumor detection and brain
abnormalities are crucial to help find diseases at early stages.
Having accurate software that uses machine learning to identify
abnormalities of the brain may prevent a disease progression
if used on an MRI of the patient. In this paper, we develop a
neural network to detect and highlight brain tumors present in
MRI’s. Our model is designed to be more compact than typical
CNNs to minimize prediction times while still maintaining
prediction accuracy. The model uses a dice coefficient for the
loss function as well as accuracy metric. We adopt Adadelta
as the optimizer as it is more robust and eliminates the
requirement of manually tuned learning rates. Our model
reduces the prediction time with fewer layers and convolution
filters, while allowing rapid convergence to a stable solution.
In addition, the models hyper-parameters are being fine-tuned
in an iterative process to ideally achieves better segmentation
accuracy. Experimental results show that our model improves
the performance compared with the state-of-the-art methods.
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I. INTRODUCTION

Machine learning designs and builds algorithms that are guided
by data. Rather than depending on humans to explicitly define
instructions, machine learning algorithms use training sets of real-
world data to generate new data, known as predictions, that prove
to be more accurate than those from models designed by humans.
Within the field of machine learning, neural networks are a subset of
algorithms built around a model of artificial neurons spread across
many interconnected layers. Within neural networks, deep learning
describes complex and deeper networks than usual. The advantage
of these added layers is that the networks are able to develop much
great levels of abstraction. This is necessary for specific tasks, like
image recognition and automatic translation which are very complex
[8].

A Convolutional Neural Network is part of the category of Neural
Networks that are used with image data. These have been successful
in identifying faces, objects, traffic signs, as well as powering
machine vision in robots and self-driving cars [15]. CNN’s have
been applied successfully on a variety of biomedical segmentation
problems. Most existent approaches relied on using 2D CNN’s for
processing 3D volumes, due to difficulties being reported when
training with whole 3D volumes. There 2D architectures might be
successful in some cases but they are suboptimal in their use of
already existent 3D information.

When we began, a base code from an existent 3D UNET was
used for testing. It was suggested to use a deep network that learns to
generate dense volumetric segmentations, but only requires annotated
2D slices for training. This network could be used in two different
scenarios, the first application just aims on densification of a sparsely
annotated data set; the second one learns from multiple sparsely
annotated data sets to generalize to new data [13]. Like us, there
are different researchers working on the segmentation of images for
different applications. Brain disease research is among the highest
searched for studies to find better algorithms for the segmentation or

prediction of these diseases. CNNs are used to segment specific dis-
eases for example cancer, lesion, and alzheimer disease; building deep
neural networks to scan specific areas of the brain in both patch-wise
and scanning through a whole 3D volume are different ways these
researchers handled the predictions of these diseases with a CNN
[3, 9, 10, 11]. Among other studies to make disease segmentation
easier is the brain segmentation, extraction or skull stripping, which
cleans the MRI and leaves only the brain [7, 14]. CNNs are also used
for everyday use research like image classification and modelling
sentences, which actually makes classification tasks easier with a
computer [4, 12].

With our CNN, we use more than one of these useful applications
some researches have made such as skull stripping [7, 14]. This
reduces complexity for the analysis of the training data. If the
skull was not removed we could get misidentified tumors, slower
performance, longer training times, and worse results. We validate
the proposed model on two data sets: the first is the BRaTS data
set [6, 5] and clinical data collected from neurosurgery. Both sets
contain T1 weighted MRIs. The BRaTS data set of course was made
experts, while we made the best to make our manually masked set
be similarly masked to the BRaTs, on a different set of data. The use
of more than one set and data augmentation reduces the probability
of overfitting in our model. The 3D volumes are split into 2D slices
and the resulting images are resampled, standardized, and normalized
so that the model is fed consistent data input. The patient samples
are chosen at random at the start of the training in an 80/20 split for
training and validation.

II. ARCHITECTURE

We developed a customized, highly iterative UNet that allow for
rapid prototyping and testing of designs. The models are generated
dynamically based on architecture settings such as depth of the
network, segmentation levels for encoders and decoders, activation
functions for each block, kernel initializers and constraints. All
settings are easily modified, and the changes are reflected in the model
summary Keras generates when run [2].

Many existing medical imaging segmentation neural networks,
including the leading 3D CNN UNet, rely on networks dozens of
layers deep with many millions of trainable parameters. These models
are very flexible in their ability to be used on a variety of different
images and segment different features while being able to produce
results with impressive accuracy. The goal of our paper is two-fold:
develop a neural network that could produce 3D volumes of tumors
from brain MRIs, but also to find an alternative design to these
vast, extremely deep networks. This goal is inspired by just how
long some of these models took to generate a prediction, let along
train. Medical image segmentation should be performed as quickly
as possible without sacrificing accuracy. Training times are not as
important as prediction times, but training should also be a relatively
quick process in case the network should need to be retrained with
new data.

A shallow neural network has clear disadvantages over deeper
networks of similar design due to an objectively fewer number
of training parameters. To overcome this obstacle and create a
network that can produce very quick and accurate results, we take
full advantage of every convolution filter. As seen in figure 1 we
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Fig. 1. The Architecture of our Model

strategically designed the encoding and decoding blocks of our UNet
model with the idea of eliminating co-adaptation.

Inspired by [13] our work employed 3D varieties of convolution,
max pooling, and deconvolution/upsampling layers. We believe
that this increase in dimensionality, while clearly effective, was
unnecessary if the network is crafted just so. Our model uses
conventional 2D layers and runs through axial slices of an MRI to
create a 3D volume instead. This reduction in dimensionality means
that instead of training on 1283 voxels per sample, the network
trains on 1282 pixels per slice. This results in reduced preprocessing,
training, and prediction times.

III. OPTIMIZATION

A. Loss function

In order for the optimizer to properly evaluate and back-propagate
error, we use the dice coefficient (similar to an intersection over
union) as a metric to measure the accuracy of the models predictions.
A typical accuracy metric quickly proved useless for this image
segmentation task as the vast majority of the image was marked as
background (zero on the ground truth data). A binary accuracy metric
counts the number of pixels, or in this case voxels, are correct, in-
cluding background data. Rewarding the model for correctly tagging
the background as well as nontumor areas as not being a tumor is
proved to lead to very suboptimal solutions.

The problem of too much rewarding was solved by using a slightly
modified dice coefficient as the loss function as shown in equation
below. The loss function does not reward the network for correctly
predicting background, it only is rewarded for correctly predicting
features. The network is then received negative reinforcement for
false positives and false negatives. This creates a much more conser-
vative measurement for accuracy of the network. For example, during
one training step the network reported an accuracy of 0.9847, but the
dice coefficient was only 0.6931. Having a metric that punishes for
false positives instead of rewarding for true negatives allows for the
optimizer to follow a much more reliable gradient.

T = vec(Truth) vectorize ground truth
P = vec(Pred) vectorize prediction

DSC =
2 ·

∑
(T · P ) + ε∑

Truth +
∑

Pred + ε
ε=0.00001

Loss = 1 - DSC

The loss function is computed by first taking the ground truth and
prediction tensors and vectorizing or flattening them. This operation
keeps each value paired up properly between the truth and prediction
tensors. Next, the dice coefficient is computed with a smoothing
factor as shown in the equation. Finally, to transform the dice
coefficient (ranging from 0 to 1) to a loss function (ranging from
1 to 0), the dice coefficient is subtracted from 1. This allows smaller
values to reflect better predictions, ideal for how a loss function
should behave.

B. Optimizer
Another attempt made to overcome the inherent drawbacks of a

shallow network was to use the ADADELTA optimizer, an alternative
to the standard preferred ADAM optimizer [1]. ADADELTA was
chosen because of its low computational costs over SGD and the dy-
namic adjustments it makes. In addition, ADADELTA does not have
the learning rate decay issue that ADAGRAD faces. ADADELTA
dynamically regulates its learning rate, and thus does not require
extensive guesswork of manual learning rate scheduling. ADADELTA
begins with an extremely aggressive learning rate default of 1.0 as
determined from the Keras source code. This allows the network
to quickly follow the gradient before the learning rate is adjusted
by the optimizer and the network fine tunes over time. Our model,
specifically, required only a few epochs of training on the BRaTS
dataset before it reached a stable solution that then required fine-
tuning over the following epochs.

IV. EXPERIMENTS

A. Data
The neural network was trained on the BRaTS dataset with preop-

erative TCGA BGM and TCGA LGG images and segmentations.
Due to time restraints in this project, only the post-contrast T1
weighted MRI was used for training. The neural network may very



well perform better with all modality data instead of just the post-
contrast images. Testing was performed with T1 weighted MRIs from
the Brigham and Womens Hospital clinical data of 15 patients with
brain tumors.

B. Preprocessing
Information contained in the MRIs contained in the BRaTS dataset

used and the clinical dataset provided by Brigham and Womens
Hospital are not consistent with each other in terms of data ranges
and even data types stored in the MRI files. A neural network
performs best when input data ranges are relatively similar, thus
causing neurons to activate in similar manners from one input sample
to the next.

To give the network the best chance at high performance, the MRIs
are all resampled to a cube with sides of 128 voxels in length. The
MRI data is then sliced along the axial view and portioned into
batches of 60 for the network to process. Each batch of 75 MRI
axial slices is normalized to have a mean of 0 and standardized
so that voxel values are standard deviations instead of their raw
data. The mean and standard deviation are obtained feature-wise
through the Keras ImageDataGenerator [2]. Since all of the BRaTS
data is within similar ranges of values, this method of normalizing
and standardizing allows the network to accept any self-consistent
MRI data to be used as input regardless of the absolute range of
values contained in the MRI. By removing the skull from the MRI
scan, leaving a clean brain, there is reduced complexity for analysis
of the training data. Failing to remove the skull and preprocess
input data results in worse performance, longer training times, and
misidentification of tumors in the brain.

Despite the BRaTS dataset having relatively consistent MRI data,
there is an issue of contrast varying from one patient to the next.
The normalization and standardization help alleviate brightness dif-
ferences, but they only exacerbate the difference in contrast. To
solve this, each slice is processed through an adaptive histogram
equalization algorithm that boosts contrast and highlights subtle
features in the image. We aim to maintain uniform contrast between
MRIs and expose details that the neural network may choose to pick
up on.

We use Keras for image augmentation to artificially generate more
data from the MRI slices used for training and validating. There
are configuration options for applying random rotations, horizontal
and vertical shifts, shearing, and other augmentations. The slices are
augmented in real-time on the CPU and then used in training on a
single or multiple GPUs. This augmentation process greatly increases
the diversity of images with which the network can use to train.
Care was taken not to distort the images too greatly such that the
brains become unrecognizable, as such augmentation could negatively
impact training.

C. Training
The UNet is trained in batches of 75 images that are 1282 in size

containing only a single grayscale channel. The images are chosen
in a shuffled order for each epoch and augmented randomly from
one epoch to the next by the preprocessing. The BRaTS dataset was
used as input to the network after an 80/20 split for training and
validation purposes. This split was chosen on a slice by slice basis
as opposed to splitting patients by this ratio. This method of splitting
gives the network portions of MRIs that can be distributed between
both training and validation subsets.

During the development phase of the project, the neural network
was trained with a version of TensorFlow that supported SSE4.1,
SSE4.2, FMA, and AVX instructions. Iterative training was performed
on an Intel i7-7700HQ CPU using either 6 of the 8 logical cores, or
all 8 logical cores when the computer was not in use. Fully-fledged
training was performed 2 nodes of a cluster, each with 2 Nvidia GTX
1080 cards and 2 12-core Xeon E5-2670 CPUs. The cluster nodes
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Fig. 2. Training and Validation Graph

were only used for training once we saw the model training follow
a favorable direction on a personal computer.

Due to the black box nature of neural networks, custom mini
prediction code was written to provide rapid prediction previews both
after each training step and epoch. A mini prediction is one or more
slices of an MRI that are chosen manually as being representative of
the one of the test brains. Predictions were performed on these slices
only and shown to the user. These previews aided in visualizing
what the network was doing and gave a sense of directionality that
allowed further iterative changes to be made to the model. Metrics
were also saved to a file after each training step to provide insight in
to network performance quickly without having to wait for several
epochs to discover a trend. Rough estimations of a potential trend
could be made based on training step metrics and they were used to
quickly change the model if unexpected behavior occurred.

D. Evaluation
Quick predictions, as mentioned, are generated optionally after

each training step as well as after each epoch. These predictions
were used as the first level of testing for our network model. Instead
of splitting the valuable BRaTS data between training, validation,
and testing, we opted to use an entirely different dataset for testing.
In theory, the robustness of our model would be determined by how
well it handles a different dataset.

A downside of testing with our clinical data is the lack of an expert
provided ground truth for brain tumor segmentation. Our results data
metrics are therefore limited to using validation data from the BRaTS
dataset.

V. RESULTS

Two distinct datasets were used for training: our data set and
the BRaTS dataset. Both datasets contain T1 weighted MRIs. The
BRaTS dataset contains image masks created by experts, while we
manually masked our set. The use of two datasets as well as image
augmentation reduces the chances of over-fitting the model. The 3D
volumes are split into 2D slices along the axial orientation and the
resulting images are resampled, standardized, and normalized so that
the model is fed consistent input data. Patient MRIs are randomly



chosen at an 80/20 split for training and validation and only image
slices that contain tumors are used by the network.

Due to the lack of ground truth data in the clinical dataset, the
results shown rely on validation data from the BRaTS dataset. Twenty
percent of the axial slices were used from validation only and the
scores were calculated using the dice coefficient formula show before.
After a short training session of only 18 epochs, and then another
session of 6 epochs, the network scored 0.8029 on the validation
subset (with a raw binary accuracy of 0.9915), details are show
in table [1]. Upon further inspection, it would appear most of the
error in the predictions come from false negatives near the bottom
of the brain. We believe this is because the network has virtually no
knowledge of cerebellum, which has a different texture and gradations
of gray in it that the cerebral cortex. Most of the tumors marked in
the BRaTS dataset are within the cerebral cortex, causing a lack of
knowledge and throwing of the network with completely new data
that the convolutional layers are likely unsure of what to do with.

This training session only spanned a few hours, but the
ADADELTA optimizer converged quickly on a solution in only 8-10
epochs. The validation score remained greater than the training score
for nearly the entire time, which leads us to believe there is some
improvement to be made to the model or preprocessing.

Shown in figure 3 are four examples of predictions outputted by
the neural network. The red outline shows the region the network
selected as containing a tumor. Despite these images being just two-
dimensional slices, the network does save the volumetric segmenta-
tion alongside the original input MRI data, both resampled to the
same cubic size. Most of the time, the networks segmentation is spot
on. There are only a few cases of false negatives by the network,
but they occur on the very edge slices (top and bottom) of the tumor
in some situations. The network also struggles to properly segment
tumors that are both dark and near the edge of the brain.

Fig. 3. Sample Predictions
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Validation Subset Dice
Method Whole Tumor

DeepMedic 0.89
Kamnitsas et. al. 0.85
Two Path CNN 0.85
Narrow UNet 0.83
Pereira et. al. 0.78

Table 1: Comparison with other successful neural networks
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