
CDAC: Content-Driven Deduplication-Aware Storage Cache
Yujuan Tan, Jing Xie, Congcong Xu

Chongqing University
Zhichao Yan

HP
Hong Jiang

University of Texas Arlington

Yajun Zhao, Min Fu
Sangfor

Xianzhang Chen, Duo Liu
Chongqing University

Wen Xia
Harbin Institute of Technology

Abstract
Data deduplication, as a proven technology for effective
data reduction in backup and archive storage systems,
also demonstrates the promise in increasing the logical
space capacity of storage caches by removing redundan-
t data. However, our in-depth evaluation of the existing
deduplication-aware caching algorithms reveals that they
do improve the hit ratios compared to the caching algo-
rithms without deduplication, especially when the cache
block size is set to 4KB. But when the block size is larger
than 4KB, a clear trend for modern storage systems, their
hit ratios are signif cantly reduced. A slight increase in
hit ratios due to deduplicationmay not be able to improve
the overall storage performance because of the high over-
head created by deduplication.
To address this problem, in this paper we propose

CDAC, a Content-driven Deduplication-Aware Cache,
which focuses on exploiting the blocks’ content re-
dundancy and their intensity of content sharing among
source addresses in cache management strategies. We
have implemented CDAC based on LRU and ARC algo-
rithms, called CDAC-LRU and CDAC-ARC respective-
ly. Our extensive experimental results show that CDAC-
LRU and CDAC-ARC outperform the state-of-the-art
deduplication-aware caching algorithms, D-LRU and D-
ARC, by up to 19.49X in read cache hit ratio, with an
average of 1.95X under real-world traces when the cache
size ranges from 20% to 80% of the working set size and
the block size ranges from 4KB to 64 KB.

1 Introduction

Due to the exceptional performance relative to hard drive
disks (HDDs), solid state drives (SSDs) have been wide-
ly adopted as a storage cache to boost the storage per-
formance in large-scale HDD-based primary storage sys-
tems [1, 28, 7, 16, 25, 27, 2, 6, 20, 23, 26]. Howev-
er, with the increasing intensity of modern workloads,
the demand on the cache capacity is poised to quick-
ly outgrow the limited capacity of SSD devices. Thus,
some researchers have proposed to apply the data d-
eduplication [14, 12, 3, 10, 5] or compression tech-

niques [8, 17, 29] to effectively increase the cache logical
capacity by reducing data footprints.
Data deduplication focuses on identifying and remov-

ing redundant data to reduce data footprints. It uses
an appropriate hash algorithm [21] to generate a unique
content-based identif er, commonly referred to as a data
f ngerprint, for each data unit (e.g., a f le or data chunk).
However, due to the high cost in generating f ngerprints
and their use for uniqueness identif cation [30, 15], dedu-
plication is less popular in performance-sensitive prima-
ry storage systems [24, 4, 9] than in backup and archival
storage systems [19, 22] where performance is less crit-
ical than the former. In many cases, to avoid the perfor-
mance degradation, deduplication is implemented away
from the critical data path, i.e., in an off-linemode. How-
ever, for many other cases where data must be dedupli-
cated along the critical data path, such as SSD-based s-
torage caches in primary storage systems, in-line dedu-
plication is a requirement and also the focus of this paper.
While implementing the in-line deduplication in SSD

caches, the duplicate data identif cation and elimination
operations lay on the data read/write critical path. That
is, the duplicate data are identif ed and removed before
writing to the SSD caches. The deduplication overhead,
in terms of the time spent on generating the data f nger-
prints and their use to identify duplicate data, would ex-
tend the data read/write access latency and degrade the
performance of the overall storage system. Thus, the
deduplication-based SSD caches need to be carefully de-
signed and managed to reap the benef ts of increased log-
ical capacity and cache hit ratios without paying a high
price for the deduplication-induced overhead, thus im-
proving the overall storage performance.
A recent study, CacheDedup [14], addressed this prob-

lem by proposing two deduplication-aware cache re-
placement algorithms, D-LRU and D-ARC, which de-
composedmetadata from the data in the cache to enhance
the performance of deduplication-based SSD caches.
This is the only published work addressing the prob-
lem so far, to the best of our knowledge. Our in-depth
evaluation of D-LRU and D-ARC reveals that they do
improve the hit ratios compared to LRU and ARC algo-
rithms [18], especially when the block size is set to 4K-
B. However, as the block size increases, the hit ratios of
D-ARC and D-LRU are signif cantly reduced due to the

1

lower deduplication ratio and less expansion of the logi-
cal capacity. Compared to the OPT algorithm, they have
a growing gap in hit ratios when the cache size is f xed.
A slight increase in hit ratios of D-ARC and D-LRU rel-
ative to LRU and ARC may not be able to improve the
overall storage performance due to the high overhead in
the deduplication process.
The reason for the ineff cient cache design in CacheD-

edup [14] can be explained in part by the fact that data
deduplication changes how blocks are cached and evict-
ed signif cantly, thus their locality properties. In con-
ventional caches, each block is identif ed by a unique
source address; the source addresses of all blocks are
independent of one another. But with data deduplica-
tion, each block is identif ed by its data content that can
be common to and pointed to by multiple source ad-
dresses; As a result, this content sharing among multi-
ple source addresses whose block contents are identical
causes their accesses to be dependent of one another. The
more source addresses are associated with the same con-
tent, the more intense their content sharing will be. This
further renders effective in deduplication-based caches,
compared to any conventional cache replacement algo-
rithm that treats each source address independently and
replaces the cached blocks based on the access locali-
ty of each independent source address. However, exist-
ing deduplication-aware cache algorithms, like D-LRU
and D-ARC, using only the access time and frequency of
source addresses as a hint for block replacement, missed
the opportunity to effectively leverage the intensity of
content redundancy and sharing in caching replacement
algorithms.
Based on these observations, in this paper we propose

CDAC, a Content-driven Deduplication-Aware Caching
management approach, which focuses on exploiting the
intensity of content sharing and hotness in the design of
its cache algorithms. CDAC consists of two complemen-
tary techniques: Reference-Count based Eviction (RCE)
and Bitmap based Hotness Identif cation (BHI). In par-
ticular, RCE focuses on evicting a cold block based on its
reference count [13], which is a measure of content shar-
ing intensity and hotness, in terms of the total number of
the source addresses pointing to that block. BHI help-
s identify a hot/cold block based on f ner-grained access
patterns to parts of the large block captured by an access
bitmap that records the access status of each individu-
al small part within the block. If most individual small
parts within a block are accessed recently, it would be
regarded as a hot block; otherwise, as a cold block. This
preserves more valid data in the cache to some extent,
improving cache space utilization by avoiding the false-
positive identif cation of hot blocks, in which one or a
few tiny parts of a block being ”hot” render that entire
block ”hot”. The combination of BHI and RCE enables

Source Addresses

Index

Fingerprints

Store

Cache Blocks

Metadata Cache

Data Cache

Figure 1: Architecture of CacheDedup.

the cache replacement algorithm to fully and accurately
exploit the content sharing intensity and hotness.
The rest of this paper is organized as follows. Section

2 quantitatively analyzes CacheDedup, the only known
related work, to provide insight and motivation to the
CDAC design. Section 3 details the design of CDAC.
Section 4 evaluates CDAC and Section 5 concludes the
paper.

2 Background and Motivation

CacheDedup is the f rst and only known work to ad-
dress the issue of deduplication-aware cache manage-
ment, to the best of our knowledge. It proposed an archi-
tecture using separate Data Cache and Metadata Cache
to integrate the data caching and deduplication metada-
ta caching, as illustrated in Figure 1. Data Cache stores
the cached data blocks, and Metadata Cache stores the
source addresses and data f ngerprints of these block-
s. Based on this architecture, two deduplication-aware
caching replacement algorithms, D-LRU and D-ARC,
are designed based on the traditional LRU and ARC al-
gorithms. D-LRU and D-ARC respectively perform d-
eduplicatation on the cached blocks, and separately man-
age Data Cache and Metadata Cache according to the
corresponding LRU and ARC algorithms, respectively.
Moreover, since Data Cache and Metadata Cache are
separately managed and accessed, the blocks stored in
Data Cache and their corresponding deduplication meta-
data stored in Metadata Cache do not need to be fetched
in or evicted out synchronously.
D-LRU and D-ARC can increase the cache’s logical

capacity by removing redundant cacheblocks, thereby
improving the cache hit ratio to a certain extent. Howev-
er, such improvements are limited due to their inability to
explore the cache blocks’ intensity of content redundan-
cy and content sharing. In this section, we will investi-
gate D-LRU and D-ARC on empirical evidence from ex-
tensive experiments and uncover their limitations. In our
experiments, we created a practical CacheDedup proto-
type and replayed the WebVM trace. Its statistical char-
acteristics are detailed in Section 4. We implemented L-
RU, D-LRU, ARC, and D-ARC algorithms respectively.

2

20 40 60 80

0

10

20

30

40

50

 LRU D-LRU OPT
 ARC D-ARC

R
ea

d
H

it
R

at
io

(%
)

Cache Size(%)

(a) Block Size: 4KB

20 40 60 80

0

10

20

30

40

50
 LRU D-LRU OPT
 ARC D-ARC

R
ea

d
H

it
R

at
io

(%
)

Cache Size(%)

(b) Block Size: 8KB

20 40 60 80

0

10

20

30

40

50
 LRU D-LRU OPT
 ARC D-ARC

R
ea

d
H

it
R

at
io

(%
)

Cache Size(%)

(c) Block Size: 16KB

20 40 60 80

0

10

20

30

40

50
 LRU D-LRU OPT
 ARC D-ARC

R
ea

d
H

it
R

at
io

(%
)

Cache Size(%)

(d) Block Size: 32KB

Figure 2: Read Hit Ratio from WebVM

20 40 60 80
60

70

80

90
 LRU D-LRU OPT
 ARC D-ARC

O
ve

ra
ll

H
it

R
at

io
(%

)

Cache Size(%)

(a) Block Size: 4KB

20 40 60 80
60

70

80

90
 LRU D-LRU OPT
 ARC D-ARC

O
ve

ra
ll

H
it

R
at

io
(%

)

Cache Size(%)

(b) Block Size: 8KB

20 40 60 80
60

65

70

75

80

85

90
 LRU D-LRU OPT
 ARC D-ARC

O
ve

ra
ll

H
it

R
at

io
(%

)
Cache Size(%)

(c) Block Size: 16KB

20 40 60 80
60

65

70

75

80

85

90
 LRU D-LRU OPT
 ARC D-ARC

O
ve

ra
ll

H
it

R
at

io
(%

)

Cache Size(%)

(d) Block Size: 32KB

Figure 3: Overall Hit Ratio from WebVM

In addition, we also implemented the theoretically opti-
mal cache replacement (OPT) algorithm as a reference.

2.1 Hit Ratio
Figure 2 and Figure 3 show the read hit ratios and overall
hit ratios of ARC, D-ARC, LRU, D-LRU and OPT when
the cache size ranges from 20% to 80% of the working
set size. It can be seen from the results that both D-ARC
and D-LRU improve the read hit ratios and overall hit
ratios of ARC and LRU, respectively.
However, as the size of the cache block increases, the

hit ratios of both D-ARC and D-LRU are signif cantly
reduced. First, the increase in the hit ratios of D-ARC
and D-LRU relative to ARC and LRU becomes smaller.
For example, when the block size is 4KB, the read hit ra-
tios of D-ARC and D-LRU is 6.91% and 11.85% higher
than ARC and LRU on average, respectively; but when
the block size grows to 8KB, 16KB and 32KB, the read
hit ratios of D-ARC are only 5.38%, 3.00% and 2.65%
higher than ARC on average, and D-LRU’s read hit ratios
are 8.70%, 5.58% and 3.77% higher than LRU’s on av-
erage. Second, as the block size increases, the hit ratios
of D-ARC and D-LRU become lower than that of OPT
when the cache space is f xed. Taking the cache size as
40% of the working set size for example, when the block
size is 4KB, the read hit ratios of D-LRU and D-ARC are
76.5% and 89.2% of that of OPT; but when the block size
grows to 8KB, 16KB and 32KB, the read hit ratios of D-
LRU are only 31%, 12.3% and 6% of that of OPT, and

D-ARC’s read hit ratios are only 82.9%, 73.9% and 49%
of OPT’s. Moreover, when the block size increased, D-
ARC and D-LRU require more cache space to bring their
hit ratios close to that of OPT. When the block size is 4K-
B, D-ARC and D-LRU’s read hit ratios are close to that
of OPT when the cache size is 50% of the working set
size. However, when the block size is 8KB and 16KB,
to make the read hit ratio of D-ARC and D-LRU close to
that of OPT, the cache space size needs to reach 70% and
80% of the working set size respectively.
Based on these observations, it is found that D-ARC

and D-LRU can improve the hit ratios by removing du-
plicate data to increase the logical capacity of the cache.
They work well when the size of the cache blocks is 4K-
B. But when the block size increases, the benef ts of d-
eduplication become limited and their hit ratios decreas-
es signif cantly, greatly reducing the overall storage per-
formance.

4KB 8KB 16KB 32KB 64KB
0

10

20

30

40

50
 Cache 20%
 Cache 40%
 Cache 60%

D
ed

up
lic

at
io

n
Ra

tio
(%

)

Data Block Size

(a) D-LRU

4KB 8KB 16KB 32KB 64KB
0

10

20

30

40

50
 Cache 20%
 Cache 40%
 Cache 60%

D
ed

up
lic

at
io

n
Ra

tio
(%

)

Data Block Size

(b) D-ARC

Figure 4: Deduplication Ratio

3

∈ >

�=

≤ λ

λ

λ

∈

≥ α

α

λ
α

�� �� �� ��

�

��

��

��

��

��

	
��	 	
�
��	 	�

��
��

	���	 	
����	 	�

�����

�
��
�
��

��
��
��
�	
�

�
�

�����	����	���
�� �� �� ��

�

�

�

�

��
��	
� ����	
� �
��
��	

�
	�� ���
	�� �
��
�
	�

�
��
�
��

��
��
��
�	
�

�
�

�������������

�� �� �� ��
��

��

��

��
�	
�� ��
	
�� ���	�
	
�

��
�� ��
�
�� ���	�
�
�

�
�
��
��
��
�
	

��
�

	�
�

�
�

��������������
�� �� �� ��

��

��

��

��	
� ����	
� �
��
��	

�
	�� ���
	�� �
��
�
	�

�
�
��
��
��
�
	

��
�

	�
�

�
�

�������������

20 40 60 80

0

10

20

30

40

50
 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

R
ea

d
H

it
R

at
io

 (%
)

Cache Size (%)

(a) Block Size: 8KB

20 40 60 80
0
5

10
15
20
25
30
35

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

R
ea

d
H

it
R

at
io

 (%
)

Cache Size (%)

(b) Block Size: 16KB

20 40 60 80

0

5

10

15

20

25
 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

R
ea

d
H

it
R

at
io

 (%
)

Cache Size (%)

(c) Block Size: 32KB

20 40 60 80
-2
0
2
4
6
8

10
12
14
16

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

R
ea

d
H

it
R

at
io

 (%
)

Cache Size (%)

(d) Block Size: 64KB

(A)WebVM

20 40 60 80
10

20

30

40

50

60

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

R
ea

d
H

it
R

at
io

 (%
)

Cache Size (%)

(e) Block Size: 8KB

20 40 60 80
10

20

30

40

50

60
 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

R
ea

d
H

it
R

at
io

 (%
)

Cache Size (%)

(f) Block Size: 16KB

20 40 60 80

10

20

30

40

50

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

R
ea

d
H

it
R

at
io

 (%
)

Cache Size (%)

(g) Block Size: 32KB

20 40 60 80
10
15
20
25
30
35
40

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

R
ea

d
H

it
R

at
io

 (%
)

Cache Size (%)

(h) Block Size: 64KB

(B)Mail

Figure 9: Read hit ratio of WebVM and Mail

20 40 60 80

70

80

90
 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

O
ve

ra
ll

H
it

R
at

io
 (%

)

Cache Size (%)

(a) Block Size: 8KB

20 40 60 80

65

70

75

80

85
 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

O
ve

ra
ll

H
it

R
at

io
 (%

)

Cache Size (%)

(b) Block Size: 16KB

20 40 60 80
65

70

75

80

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

O
ve

ra
ll

H
it

R
at

io
 (%

)

Cache Size (%)

(c) Block Size: 32KB

20 40 60 80

68

70

72

74

76

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

O
ve

ra
ll

H
it

R
at

io
 (%

)

Cache Size (%)

(d) Block Size: 64KB

(A)WebVM

20 40 60 80
81
82
83
84
85
86
87
88

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

O
ve

ra
ll

H
it

R
at

io
 (%

)

Cache Size (%)

(e) Block Size: 8KB

20 40 60 80
81
82
83
84
85
86
87
88

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

O
ve

ra
ll

H
it

R
at

io
 (%

)

Cache Size (%)

(f) Block Size: 16KB

20 40 60 80

84

86

88

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

O
ve

ra
ll

H
it

R
at

io
 (%

)

Cache Size (%)

(g) Block Size: 32KB

20 40 60 80

85

86

87

88

 ARC D-ARC CDAC-ARC
 LRU D-LRU CDAC-LRU

O
ve

ra
ll

H
it

R
at

io
 (%

)

Cache Size (%)

(h) Block Size: 64KB

(B)Mail

Figure 10: Overall hit ratio of WebVM and Mail

achieve better performance improvements. But if the
cache size exceeds a certain amount, the cache replace-
ment algorithm is less eff cient and the contribution of
CDAC will be smaller.

Third, CDAC’s overall performance advantages over
the baselines become more pronounced as the block size
increases. This achievement can be contributed to BHI

technique. Recall that, BHI divides a large block into
multiple small parts. The combination of the access sta-
tus of multiple small parts within a block is able to more
accurately identify the hotness/coldness of each block.
This benef t is further magnif ed by larger blocks. But
for D-LRU, D-ARC, LRU and ARC, when the block
size increases, it becomes more diff cult for them to f nd

8

the redundant blocks and accurately identify the hot/cold
blocks, leading to lowered overall cache hit ratios.

5 Conclusion

Motivated by the fact that the existing deduplication-
aware cache algorithms, D-ARC and D-LRU, are not
able to improve the cache hit ratios adequately, we
propose CDAC, a Content-driven Deduplication-Aware
Caching management approach to signif cantly increase
the performance of deduplication-based SSD caches. C-
DAC focuses on mining data blocks’ content redun-
dancy and exploiting their intensity of content sharing
among source addresses in cache management strate-
gies. It consists of two complementary optimization
techniques, Reference-Count based Eviction (RCE) and
Bitmap based Hotness Identif cation (BHI), which are
combined to leverage the intensity of content sharing and
hotness in the cache replacement algorithm. Our ex-
tensive experimental results showed that CDAC signif-
icantly improves cache hit ratios of the state-of-the-art
deduplication-aware cache algorithms, D-ARC and D-
LRU, driven by real-world datasets.

Acknowledgment

We are very grateful to Professor Ming Zhao for pro-
viding us with CacheDedup Prototype and many instruc-
tive comments. This work is partially supported by
grants from Fundamental Research Funds for the Cen-
tral Universities (2018CDXYJSJ0026), National Natu-
ral Science Foundation of China (61402061, 61672116
and 61802038), Chongqing High-Tech Research Pro-
gram (cstc2016jcyjA0274 and cstc2016jcyjA0332), Chi-
na Postdoctoral Science Foundation (2017M620412),
and Chongqing Postdoctoral Special Science Foundation
(XmT2018003).

References
[1] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,

J. D., MANASSE, M., AND PANIGRAHY, R. Design tradeoffs
for ssd performance. In USENIX 2008 Annual Technical Confer-
ence (Berkeley, CA, USA, 2008), ATC’08, USENIXAssociation,
pp. 57–70.

[2] BYAN, S., LENTINI, J., MADAN, A., AND PABN, L. Mercury:
Host-side f ash caching for the data center. In 012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST)
(April 2012), pp. 1–12.

[3] CHEN, F., LUO, T., AND ZHANG, X. Caftl: A content-aware
f ash translation layer enhancing the lifespan of f ash memory
based solid state drives. In Proceedings of the 9th USENIX Con-
ference on File and Stroage Technologies (Berkeley, CA, USA,
2011), FAST’11, USENIX Association, pp. 6–6.

[4] CLEMENTS, A. T., AHMAD, I., VILAYANNUR, M., AND LI,
J. Decentralized deduplication in SAN cluster f le systems. In
USENIX’09 (Jan. 2009).

[5] GUPTA, A., PISOLKAR, R., URGAONKAR, B., AND SIVASUB-
RAMANIAM, A. Leveraging value locality in optimizing nand
f ash-based ssds. In Proceedings of the 9th USENIX Conference
on File and Stroage Technologies (Berkeley, CA, USA, 2011),
FAST’11, USENIX Association, pp. 7–7.

[6] HOLLAND, D. A., ANGELINO, E., WALD, G., AND SELTZER,
M. I. Flash caching on the storage client. In Proceedings of
the 2013 USENIX Conference on Annual Technical Conference
(Berkeley, CA, USA, 2013), USENIX ATC’13, USENIX Asso-
ciation, pp. 127–138.

[7] HUANG, S., WEI, Q., FENG, D., CHEN, J., AND CHEN, C.
Improving f ash-based disk cache with lazy adaptive replacement.
Trans. Storage 12, 2 (Feb. 2016), 8:1–8:24.

[8] HUANG, W.-T., CHEN, C.-T., CHEN, Y.-S., AND CHEN, C.-
H. A compression layer for nand type f ash memory systems. In
Third International Conference on Information Technology and
Applications (ICITA’05) (July 2005), vol. 1, pp. 599–604 vol.1.

[9] JIN, K., AND MILLER, E. L. The effectiveness of deduplication
on virtual machine disk images. In Proceedings of SYSTOR 2009:
The Israeli Experimental Systems Conference (New York, NY,
USA, 2009), SYSTOR ’09, ACM, pp. 7:1–7:12.

[10] KIM, J., LEE, C., LEE, S., SON, I., CHOI, J., YOON, S.,
U. LEE, H., KANG, S., WON, Y., AND CHA, J. Deduplica-
tion in ssds: Model and quantitative analysis. In 012 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST)
(April 2012), pp. 1–12.

[11] KOLLER, R., AND RANGASWAMI, R. I/o deduplication: Uti-
lizing content similarity to improve i/o performance. In Usenix
Conference on File & Storage Technologies (2010).

[12] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMALDONE, S.,
AND WALLACE, G. Nitro: A Capacity-Optimized SSD Cache
for Primary Storage. In USENIX FAST’14 (Feb. 2014).

[13] LI, C., SHILANE, P., DOUGLIS, F., AND WALLACE, G. Pan-
nier: A container-based f ash cache for compound objects. In
Proceedings of the 16th Annual Middleware Conference (2015),
Middleware ’15, ACM, pp. 50–62.

[14] LI, W., JEAN-BAPTISE, G., RIVEROS, J., NARASIMHAN, G.,
ZHANG, T., AND ZHAO, M. CacheDedup: In-line Deduplication
for Flash Caching. In USENIX FAST’16 (Feb. 2016).

[15] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZISE, G., AND CAMPBELL, P. Sparse Indexing: Large
scale, inline deduplication using sampling and locality. In
FAST’09 (Feb. 2009).

[16] LUO, T., MA, S., LEE, R., ZHANG, X., LIU, D., AND ZHOU,
L. S-cave: Effective ssd caching to improve virtual machine
storage performance. In Proceedings of the 22Nd Internation-
al Conference on Parallel Architectures and Compilation Tech-
niques (Piscataway, NJ, USA, 2013), PACT ’13, IEEE Press, p-
p. 103–112.

[17] MAKATOS, T., KLONATOS, Y., MARAZAKIS, M., FLOURIS,
M. D., AND BILAS, A. Using transparent compression to im-
prove ssd-based i/o caches. In Proceedings of the 5th European
Conference on Computer Systems (New York, NY, USA, 2010),
EuroSys ’10, ACM, pp. 1–14.

[18] MEGIDDO, N., AND MODHA, D. S. Arc: A self-tuning, low
overhead replacement cache. In Proceedings of the 2Nd USENIX
Conference on File and Storage Technologies (Berkeley, CA, US-
A, 2003), FAST ’03, USENIX Association, pp. 115–130.

[19] MEISTER, D., AND BRINKMANN, A. Multi-Level Compari-
son of Data Deduplication in a Backup Scenario. In SYSTOR’09
(2009).

9

[20] MENG, F., ZHOU, L., MA, X., UTTAMCHANDANI, S., AND
LIU, D. vcacheshare: Automated server f ash cache space man-
agement in a virtualization environment. In Proceedings of the
2014 USENIX Conference on USENIX Annual Technical Confer-
ence (Berkeley, CA, USA, 2014), USENIX ATC’14, USENIX
Association, pp. 133–144.

[21] NIST. Secure Hash Standard. In FIPS PUB 180-1 (May 1993).

[22] QUINLAN, S., AND DORWARD, S. Venti: A new approach to
archival storage. In FAST’02 (Jan. 2002).

[23] SAXENA, M., SWIFT, M. M., AND ZHANG, Y. Flashtier: A
lightweight, consistent and durable storage cache. In Proceedings
of the 7th ACMEuropean Conference on Computer Systems (New
York, NY, USA, 2012), EuroSys ’12, ACM, pp. 267–280.

[24] SRINIVASAN, K., BISSON, T., GOODSON, G., AND VORUGAN-
TI, Y. iDedup: Latency-aware, inline data deduplication for pri-
mary storage. In USENIX FAST’12 (Feb. 2012).

[25] SUEI, P. L., YEH, M. Y., AND KUO, T. W. Endurance-aware
f ash-cache management for storage servers. IEEE Transactions
on Computers 63, 10 (Oct 2014), 2416–2430.

[26] TANG, L., HUANG, Q., LLOYD, W., KUMAR, S., AND LI, K.
Ripq: Advanced photo caching on f ash for facebook. In Pro-
ceedings of the 13th USENIX Conference on File and Storage
Technologies (Berkeley, CA, USA, 2015), FAST’15, USENIX
Association, pp. 373–386.

[27] YANG, J., PLASSON, N., GILLIS, G., TALAGALA, N., SUN-
DARARAMAN, S., AND WOOD, R. Hec: Improving endurance
of high performance f ash-based cache devices. In Proceedings
of the 6th International Systems and Storage Conference (New
York, NY, USA, 2013), SYSTOR ’13, ACM, pp. 10:1–10:11.

[28] YANG, Q., AND REN, J. I-cash: Intelligently coupled array of
ssd and hdd. In Proceedings of the 2011 IEEE 17th International
Symposium on High Performance Computer Architecture (Wash-
ington, DC, USA, 2011), HPCA ’11, IEEE Computer Society,
pp. 278–289.

[29] YIM, K. S., BAHN, H., AND KOH, K. A f ash compression layer
for smartmedia card systems. IEEE Trans. on Consum. Electron.
50, 1 (Feb. 2004), 192–197.

[30] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk bottle-
neck in the Data Domain deduplication f le system. In FAST’08
(Feb. 2008).

10

