CDAC: Content-Driven Deduplication-Aware Storage Cache

Yujuan Tan, Jing Xie, Congcong Xu Zhichao Yan Hong Jiang
Chongqing University HP University of Texas Arlington
Yajun Zhao, Min Fu Xianzhang Chen, Duo Liu Wen Xia
Sangfor Chongqging University Harbin Institute of Technology
niques [8, 17, 29] to effectively increase the cache logical
capacity by reducing data footprints.
Abstract Data deduplication focuses on identifying and remov-

Data deduplication, as a proven technology for effective
data reduction in backup and archive storage systems,
also demonstrates the promise in increasing the logical
space capacity of storage caches by removing redundan-
t data. However, our in-depth evaluation of the existing
deduplication-aware caching algorithms reveals that they
do improve the hit ratios compared to the caching algo-
rithms without deduplication, especially when the cache
block size is set to 4KB. But when the block size is larger
than 4KB, a clear trend for modern storage systems, their
hit ratios are signif cantly reduced. A slight increase in
hit ratios due to deduplication may not be able to improve
the overall storage performance because of the high over-
head created by deduplication.

To address this problem, in this paper we propose
CDAC, a Content-driven Deduplication-Aware Cache,
which focuses on exploiting the blocks’ content re-
dundancy and their intensity of content sharing among
source addresses in cache management strategies. We
have implemented CDAC based on LRU and ARC algo-
rithms, called CDAC-LRU and CDAC-ARC respective-
ly. Our extensive experimental results show that CDAC-
LRU and CDAC-ARC outperform the state-of-the-art
deduplication-aware caching algorithms, D-LRU and D-
ARC, by up to 19.49X in read cache hit ratio, with an
average of 1.95X under real-world traces when the cache
size ranges from 20% to 80% of the working set size and
the block size ranges from 4KB to 64 KB.

1 Introduction

Due to the exceptional performance relative to hard drive
disks (HDDs), solid state drives (SSDs) have been wide-
ly adopted as a storage cache to boost the storage per-
formance in large-scale HDD-based primary storage sys-
tems [1, 28, 7, 16, 25, 27, 2, 6, 20, 23, 26]. Howev-
er, with the increasing intensity of modern workloads,
the demand on the cache capacity is poised to quick-
ly outgrow the limited capacity of SSD devices. Thus,
some researchers have proposed to apply the data d-
eduplication [14, 12, 3, 10, 5] or compression tech-

ing redundant data to reduce data footprints. It uses
an appropriate hash algorithm [21] to generate a unique
content-based identif er, commonly referred to as a data
fngerprint, for each data unit (e.g., a fle or data chunk).
However, due to the high cost in generating f ngerprints
and their use for uniqueness identif cation [30, 15], dedu-
plication is less popular in performance-sensitive prima-
ry storage systems [24, 4, 9] than in backup and archival
storage systems [19, 22] where performance is less crit-
ical than the former. In many cases, to avoid the perfor-
mance degradation, deduplication is implemented away
from the critical data path, i.e., in an off-line mode. How-
ever, for many other cases where data must be dedupli-
cated along the critical data path, such as SSD-based s-
torage caches in primary storage systems, in-line dedu-
plication is a requirement and also the focus of this paper.

While implementing the in-line deduplication in SSD
caches, the duplicate data identif cation and elimination
operations lay on the data read/write critical path. That
is, the duplicate data are identif ed and removed before
writing to the SSD caches. The deduplication overhead,
in terms of the time spent on generating the data f nger-
prints and their use to identify duplicate data, would ex-
tend the data read/write access latency and degrade the
performance of the overall storage system. Thus, the
deduplication-based SSD caches need to be carefully de-
signed and managed to reap the benef ts of increased log-
ical capacity and cache hit ratios without paying a high
price for the deduplication-induced overhead, thus im-
proving the overall storage performance.

A recent study, CacheDedup [14], addressed this prob-
lem by proposing two deduplication-aware cache re-
placement algorithms, D-LRU and D-ARC, which de-
composed metadata from the data in the cache to enhance
the performance of deduplication-based SSD caches.
This is the only published work addressing the prob-
lem so far, to the best of our knowledge. Our in-depth
evaluation of D-LRU and D-ARC reveals that they do
improve the hit ratios compared to LRU and ARC algo-
rithms [18], especially when the block size is set to 4K-
B. However, as the block size increases, the hit ratios of
D-ARC and D-LRU are signif cantly reduced due to the

lower deduplication ratio and less expansion of the logi-
cal capacity. Compared to the OPT algorithm, they have
a growing gap in hit ratios when the cache size is fxed.
A slight increase in hit ratios of D-ARC and D-LRU rel-
ative to LRU and ARC may not be able to improve the
overall storage performance due to the high overhead in
the deduplication process.

The reason for the ineff cient cache design in CacheD-
edup [14] can be explained in part by the fact that data
deduplication changes how blocks are cached and evict-
ed signif cantly, thus their locality properties. In con-
ventional caches, each block is identif ed by a unique
source address; the source addresses of all blocks are
independent of one another. But with data deduplica-
tion, each block is identif ed by its data content that can
be common to and pointed to by multiple source ad-
dresses; As a result, this content sharing among multi-
ple source addresses whose block contents are identical
causes their accesses to be dependent of one another. The
more source addresses are associated with the same con-
tent, the more intense their content sharing will be. This
further renders effective in deduplication-based caches,
compared to any conventional cache replacement algo-
rithm that treats each source address independently and
replaces the cached blocks based on the access locali-
ty of each independent source address. However, exist-
ing deduplication-aware cache algorithms, like D-LRU
and D-ARC, using only the access time and frequency of
source addresses as a hint for block replacement, missed
the opportunity to effectively leverage the intensity of
content redundancy and sharing in caching replacement
algorithms.

Based on these observations, in this paper we propose
CDAC, a Content-driven Deduplication-Aware Caching
management approach, which focuses on exploiting the
intensity of content sharing and hotness in the design of
its cache algorithms. CDAC consists of two complemen-
tary techniques: Reference-Count based Eviction (RCE)
and Bitmap based Hotness Identif cation (BHI). In par-
ticular, RCE focuses on evicting a cold block based on its
reference count [13], which is a measure of content shar-
ing intensity and hotness, in terms of the total number of
the source addresses pointing to that block. BHI help-
s identify a hot/cold block based on f ner-grained access
patterns to parts of the large block captured by an access
bitmap that records the access status of each individu-
al small part within the block. If most individual small
parts within a block are accessed recently, it would be
regarded as a hot block; otherwise, as a cold block. This
preserves more valid data in the cache to some extent,
improving cache space utilization by avoiding the false-
positive identif cation of hot blocks, in which one or a
few tiny parts of a block being “hot” render that entire
block “hot”. The combination of BHI and RCE enables

Metadata Cache

I I

| |

I

| | Source Addresses Fingerprints }

} Index Store |
I

I I

e

Data Cache

| |
I |
} Cache Blocks }
| |

Figure 1: Architecture of CacheDedup.

the cache replacement algorithm to fully and accurately
exploit the content sharing intensity and hotness.

The rest of this paper is organized as follows. Section
2 quantitatively analyzes CacheDedup, the only known
related work, to provide insight and motivation to the
CDAC design. Section 3 details the design of CDAC.
Section 4 evaluates CDAC and Section 5 concludes the

paper.

2 Background and Motivation

CacheDedup is the frst and only known work to ad-
dress the issue of deduplication-aware cache manage-
ment, to the best of our knowledge. It proposed an archi-
tecture using separate Data Cache and Metadata Cache
to integrate the data caching and deduplication metada-
ta caching, as illustrated in Figure 1. Data Cache stores
the cached data blocks, and Metadata Cache stores the
source addresses and data fngerprints of these block-
s. Based on this architecture, two deduplication-aware
caching replacement algorithms, D-LRU and D-ARC,
are designed based on the traditional LRU and ARC al-
gorithms. D-LRU and D-ARC respectively perform d-
eduplicatation on the cached blocks, and separately man-
age Data Cache and Metadata Cache according to the
corresponding LRU and ARC algorithms, respectively.
Moreover, since Data Cache and Metadata Cache are
separately managed and accessed, the blocks stored in
Data Cache and their corresponding deduplication meta-
data stored in Metadata Cache do not need to be fetched
in or evicted out synchronously.

D-LRU and D-ARC can increase the cache’s logical
capacity by removing redundant cacheblocks, thereby
improving the cache hit ratio to a certain extent. Howev-
er, such improvements are limited due to their inability to
explore the cache blocks’ intensity of content redundan-
cy and content sharing. In this section, we will investi-
gate D-LRU and D-ARC on empirical evidence from ex-
tensive experiments and uncover their limitations. In our
experiments, we created a practical CacheDedup proto-
type and replayed the WebVM trace. Its statistical char-
acteristics are detailed in Section 4. We implemented L-
RU, D-LRU, ARC, and D-ARC algorithms respectively.

LRU—®—D-LRU OPT

LRU—®—D-LRU oPT LRU—®—D-LRU oPT LRU—®—D-LRU oPT
—A— ARC D-ARC 50 —A— ARC D-ARC 50 —A— ARC D-ARC 50 —A— ARC D-ARC

&350 » 3 3 3
s S40 S40 S40

40 [[[
g 2 2 2
S 30 E30 E30 E30
&~ [~ [~ [~
=20 R 20 R 20 R 20
= == == ==
= 10 =10 =10 =10
g g g g
0 & 0 & 0 & 0

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
Cache Size(%) Cache Size(%) Cache Size(%) Cache Size(%)
(a) Block Size: 4KB (b) Block Size: 8KB (c) Block Size: 16KB (d) Block Size: 32KB
Figure 2: Read Hit Ratio from WebVM
LRU—®—D-LRU OPT LRU—®—D-LRU oPT LRU—®—D-LRU oPT LRU—®—D-LRU oPT
?90 —A— ARC D-ARC ,?90 —A— ARC D-ARC ,?90 —A— ARC D-ARC ,?90 —A— ARC D-ARC
< = S S
2 2 2 2
=80 =80 =80 =80
~ =4 =4 =4
= = x5 =75
= == == ==
=170 =70 =70 =70
£ g g g
= 5 565 565
> > > >
Q 60 Q60+ Q60+ O 60+
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80
Cache Size(%) Cache Size(%) Cache Size(%) Cache Size(%)

(a) Block Size: 4KB (b) Block Size: 8KB

(c) Block Size: 16KB (d) Block Size: 32KB

Figure 3: Overall Hit Ratio from WebVM

In addition, we also implemented the theoretically opti-
mal cache replacement (OPT) algorithm as a reference.

2.1 Hit Ratio

Figure 2 and Figure 3 show the read hit ratios and overall
hit ratios of ARC, D-ARC, LRU, D-LRU and OPT when
the cache size ranges from 20% to 80% of the working
set size. It can be seen from the results that both D-ARC
and D-LRU improve the read hit ratios and overall hit
ratios of ARC and LRU, respectively.

However, as the size of the cache block increases, the
hit ratios of both D-ARC and D-LRU are signif cantly
reduced. First, the increase in the hit ratios of D-ARC
and D-LRU relative to ARC and LRU becomes smaller.
For example, when the block size is 4KB, the read hit ra-
tios of D-ARC and D-LRU is 6.91% and 11.85% higher
than ARC and LRU on average, respectively; but when
the block size grows to 8KB, 16KB and 32KB, the read
hit ratios of D-ARC are only 5.38%, 3.00% and 2.65%
higher than ARC on average, and D-LRU’s read hit ratios
are 8.70%, 5.58% and 3.77% higher than LRU’s on av-
erage. Second, as the block size increases, the hit ratios
of D-ARC and D-LRU become lower than that of OPT
when the cache space is fxed. Taking the cache size as
40% of the working set size for example, when the block
size is 4KB, the read hit ratios of D-LRU and D-ARC are
76.5% and 89.2% of that of OPT; but when the block size
grows to 8KB, 16KB and 32KB, the read hit ratios of D-
LRU are only 31%, 12.3% and 6% of that of OPT, and

D-ARC’s read hit ratios are only 82.9%, 73.9% and 49%
of OPT’s. Moreover, when the block size increased, D-
ARC and D-LRU require more cache space to bring their
hit ratios close to that of OPT. When the block size is 4K-
B, D-ARC and D-LRU’s read hit ratios are close to that
of OPT when the cache size is 50% of the working set
size. However, when the block size is 8KB and 16KB,
to make the read hit ratio of D-ARC and D-LRU close to
that of OPT, the cache space size needs to reach 70% and
80% of the working set size respectively.

Based on these observations, it is found that D-ARC
and D-LRU can improve the hit ratios by removing du-
plicate data to increase the logical capacity of the cache.
They work well when the size of the cache blocks is 4K-
B. But when the block size increases, the benef'ts of d-
eduplication become limited and their hit ratios decreas-
es signif cantly, greatly reducing the overall storage per-
formance.

—&—Cache 20%

—o— Cache 40%
—&— Cache 60%

Cache 20%
Cache 40%
Cache 60%

%3
1=
w
S

S
=)
IS
=)

[N
1=
N W
S o

=)

Deduplication Ratio(%)
(=]
S

Deduplication Ratio(%)

<
o

4KB 8KB 16KB 32KB 64KB
Data Block Size

(a) D-LRU

4KB 8KB 16KB 32KB 64KB
Data Block Size

(b) D-ARC

Figure 4: Deduplication Ratio

2.2 Deduplication Ratio

To better understand the ineff ciency of D-ARC and D-
LRU, we measured their deduplication ratios. The d-
eduplication ratio here is def ned by the amount of data
blocks not written to SSD due to deduplication divided
by the total amount of processed data.

Figure 4 shows the deduplication ratios of D-ARC and
D-LRU. As shown in Figure 4, when the block size in-
creases from 4KB to 64KB, the deduplication ratios are
signif cantly reduced. When the block size is large, fewer
identical blocks can be found, so the deduplication ratios
are lower. Further, the redundant data to be eliminat-
ed becomes less, and the logical capacity of the cache
becomes small. As a result, the cache hit ratios will be-
come low. It also can be seen from the results shown in
Figure 2 and Figure 3, as the block size increases, the
increased cache hit ratios of D-ARC and D-LRU relative
to ARC and LRU becomes smaller. When the block is
large, a slight increase in hit ratio is not able to signif-
icantly improve the cache hit ratios and overall storage
performance.

As shown in Figure 4, we can conclude that when
the block size gets larger, the deduplication ratios de-
crease; which directly lead to a lower cache hit ra-
tio. Therefore, in order to improve the cache hit ra-
tios and storage system performance, we propose CDAC,
a content-driven deduplication-aware caching manage-
ment approach, which will be described in detail in the
next section.

3 CDAC Design

CDAC focuses on exploiting the intensity of content
sharing and hotness in cache management strategies. It
consists of two complementary techniques, Reference-
Count based Eviction (RCE) and Bitmap based Hotness
Identif cation (BHI). Both are designed based on the ar-
chitecture of CacheDedup shown in Figure 1.

According to the architecture, there are two caches,
Metadata Cache and Data Cache; Metadata Cache stores
the source addresses of the data blocks stored in Data
Cache; a free block in the Data Cache means that there
is no source address in the metadata cache pointing to it.
When Data Cache is full and no free blocks exist in Data
Cache, it needs to delete some of the source addresses in
Metadata Cache to generate free blocks. The selection
of source addresses to be deleted and free blocks to be
generated is closely related to the cache hit ratios. There-
fore, in CDAC, RCE and BHI focus on how to select the
source addresses to be deleted and free blocks to be gen-
erated to improve the cache hit ratios. In this section, we
will describe their design in detail.

Table 1: Variable Def nition

Symbol | Def nition

D Data Cache

M Metadata Cache

S; A source address in M

B; A data block in Data Cache

F(SH Function that maps a source address to a data
block

Cs, The number of the source addresses that point-
ing to the block B;

Cs, The number of the source addresses pointing to
the block f(S;) when S; is last located in the L-
RU position

Sy The source address in the LRU position in M

Flagg, A fag that is used to indicate block f(S;) that
has been accessed in the current cycle for BHI

P, The percentage of the small parts that have been
accessed for S;

3.1 Referenced-Count based Eviction

RCE selects the free blocks and the associated source
addresses to be deleted based on the reference count of
each data block. The reference count, in terms of the total
number of the source addresses pointing to that block, is
ameasure of the intensity of content sharing and hotness.
A block with a high reference count should stay in cache
longer than one with a lower reference count since being
pointed to by more source addresses implies that more
data read requests will likely be directed to this block to
make it a hotter target, which helps increase cache hit
ratios and improve the storage performance.

Metadata cache
MRU‘ A ‘ By ‘ Az ‘ Cy | B, ‘ Bs ‘ LRU
|
Data cache IMRU:the position of most recently used
|
‘ o ‘ E ‘ c ‘ ILRU:the position of least recently used
Reference |
3 1 !
count !

Figure 5: The working process of RCE.

However, while reference-count based eviction can
help produce more cache hit ratios, using reference
counting as the only hint to fnd the block to be replaced
is not suff ciently effective, unless it is jointly considered
with access temporal locality of the associated source ad-
dresses. Taking Figure 5 for example, there are three
blocks in Data Cache, A, B and C; Block A is referenced
2 times; Block B is referenced 3 times; Block C is refer-
enced once. While using the referenced count to identify
the hot/cold blocks, Block B is the hottest and Block C is
the coldest; Block C and its associated source address C;
will be removed to make room for new blocks. However,

if block C is to be accessed in the near future and Block
B will not be accessed for a long time, replacing Block
C will reduce the cache hit ratios and storing Block B
wastes both the space of Data Cache(i.e., storing block
B) and Metadata Cache (storing three source addresses
of Block B, By, B, and B3).

To address this problem, RCE takes both reference
counts and access locality into consideration to fnd the
free blocks and associate source addresses to be deleted.
RCE has two basic assumptions: frst, the source address
of a highly referenced data block is likely to be accessed
again in the near future; second, the source address of the
LRU position located in Metadata Cache may no longer
be accessed recently. Based on these two assumption-
s, RCE only focuses on the source addresses in the L-
RU position and divides the data blocks pointed to by
these source addresses into two categories: one is the da-
ta block that is referenced only once, and the other is the
block that is referenced multiple times. For each source
address in the LRU position, if it points to the block of
the former category, RCE will delete it; otherwise RCE
moves it to the MRU position to keep it and further ob-
serve how the reference count of the data block pointed
to by this source address will change in the next cycle.
Here a cycle refers to the time required for the source ad-
dress to go from the MRU position to the LRU position.
If the blocks reference count is signif cantly reduced in
the next cycle, the source address will be deleted; other-
wise it will be retained and go to next cycle.

Algorithm 1: RCE pseudocode

Remarks: Each time a new source address S; enters into
M, Cg, is set to be 0;

Input: a list of source addresses in M, the data blocks in
D;

Initialization: Set S; =Sy, B; =f(SL);

if B; € D And Cp, > I then
if Cs, # 0 then
Value = (Cg, - Cp,)/Cs;;
if Value < A then

Cs, =Cp;;
L Move S; to the MRU location in M;

else
| Remove S to the delete queue;

else
Cs, =Cp;;
Cp,=Cpg, - 1;
Move S; to the MRU location in M;

else
| Move S; to the delete queue;

Algorithm 1 shows the pseudocode of RCE. Table 1
def'nes the corresponding symbols.It uses Cp, to repre-

sent the number of the source addresses pointing to block
B;, and Cg; to represent the number of the source address-
es pointing to block f(S;) when S; is last located at the
LRU position. Each time a new source address S; enters
M, Cs, is set to 0. When the source address S; reaches the
LRU position, Cs, will be set to Cp,. At this time, if S; is
the frst time to reach the LRU position, and Cp, is greater
than 1, meaning that more than one source address point-
ing to block B;, then S; will be retained and moved to the
MRU position. In the next cycle, when S; reaches the L-
RU position again, it will use the formula (Cs, - Cp,)/Cs,
to quantify how Cp, changes during this period. If (Cs, -
CB,)/Cs, is greater than the preset threshold A, it means
that Cp, is greatly reduced and block B; is no longer hot,
and S; will be removed to the delete queue to be deleted;
otherwise if (Cs, - Cp,)/Cs, is lower than or equal to the
preset threshold A or Cp,) increases beyond Cs,, it mean-
s that block B; is very hot, then S; will be retained and
moved to the MRU position.

3.2 Bitmap based Hotness Identif cation

In storage caches, the block size is f xed and all requests
need to be aligned to the cache’s block size. In conven-
tional cache replacement algorithms, a block is identif ed
as hot or cold completely determined by the access fre-
quency or the last access time of its source address, re-
gardless of the valid content for each access. For exam-
ple, there are two cached blocks, A and B, with a block
size of 4KB; if block A is accessed before block B, block
B will be identif ed as hotter than block A, even if block
B only accesses 1KB of data, and Block A accesses 4KB
of data. At this point, if the cache is full, Block A will be
deleted and Block B will be retained. However, Block B
contains only 1KB of valid data, while Block B requires
4KB of cache space, resulting in lower space utilization.
Furthermore, as the size of the cached block increases,
this space utilization will decrease, which will seriously
affect the cache hit ratio.

To solve this problem, CDAC identifes hot/cold
blocks based on fner-grained access patterns. It breaks
a block into multiple small parts and then uses bitmaps
to record the access status of each part. If most of the
parts in a block have been accessed recently, the block
will be recognized as a hot block; otherwise, it will be
considered as a cold block. The access status of multi-
ple individual parts of a block makes it possible to more
accurately identify the content hotness of the block, e-
specially for large blocks, minimizing false-positive hot
block identif cations.

Based on the architecture shown in Figure 1, BHI di-
vides the address space of each source address into mul-
tiple small parts and uses bitmaps to record the access
status of each part. If one part is accessed, the corre-

Algorithm 2: BHI pseudocode

Remarks: Each time some part of the source address S; is
accessed, I'lagg, is set to be 1;

Input: a list of source addresses in M, the data blocks in
D;

Initialization: Set S; =S7, B; =f(S1);

if B; € D then
if Ps, > o And Flags, = I then
Flags, = 0;
Move S; to the MRU position in M;
else
identify S; as a candidate cold source address to
be deleted;
else

| remove S; to the delete queue;

sponding position in the bitmap is set to 1, otherwise it is
set to 0. In addition, BHI adds a fag to indicate whether
the source address was accessed in a cycle. Algorithm 2
shows the pseudocode of BHI. For each source address
S; in the LRU location in M, BHI frst checks the number
of the accessed parts. If the percentage of the accessed
parts Ps, is greater than or equal to the preset threshold
«, and the source address S; is accessed during this peri-
od (i.e., F'lags, is equal to 1), the source address S; will
be retained and moved the MRU position and Flags, will
be reset to 0. Otherwise S; will be identif ed as a candi-
date cold source address to be deleted. It is worth noting
that BHI processes each source address separately, even
though some of them share the same data block. This is
reasonable because the bitmap used by BHI mainly fo-
cuses on the effective access content for each access, and
RCE has resolved the content sharing among source ad-
dresses.

Tt Aed| AEEE) T
JT2oooee i sl [EJABEEE)
13 ce23a LR s [] AREEE
3 sep (O]] c I efx] T ol]
T4 | D) IsenalolNI] | AR
o sepsola]_T T T Aol | [/
5 1A | AT o [1 I A

represents for the accessed part

represents for the non-accessed part
E---. { 1: the block has been accessed in the current cycle
0: the block has not been accessed in the current cycle

Figure 6: The working process of BHI.
Figure 6 presents an example to illustrate how BHI

works. In this example, the cache can only hold 3 block-
s, and the percentage threshold for access portion is set
to 50%. For simplicity, we assume that each block has
only one source address, so we use blocks instead of the
source addresses to illustrate how BHI works. In this ex-
ample, attimes T1, T2 and T3, block A, B and C enter the
cache; their fags are set to 1. At time T4, Block D needs
to enter the cache but there is no free blocks. So BHI frst
checks the access status of block A at the LRU position.
Because the access portion of block A exceeds 50% and
its fag is 1, block A will not be deleted; it moves to the
MRU position and its fag is reset 0. Then BHI checks
block B. While for block B, since its access portion is
only 25%, it is deleted. So after time T4, block D enters
the MRU location in the cache, block B is deleted, and
block A’s fag is set to 0. At time T5, when accessing A
again, block A moves to the MRU position and its fag is
set to 1 again.

3.3 CDAC: combining RCE and BHI to-
gether

When the cache is full, CDAC combines RCE and BHI
together to fnd free blocks. It frst uses BHI to check if
the source address in the LRU position is recognized as a
cold source address. If it is a cold source address, CDAC
then uses RCE to identify if it needs to be deleted. The
source address in the LRU position needs to be constant-
ly checked and deleted until a free block is found. The
combination of BHI and RCE enables CDAC to more ac-
curately identify the cold blocks and associated address-
es to improve the cache hit ratios, as quantitatively evi-
denced in Section 4.

4 Experimental Evaluation

In this section, we will assess the benef'ts of CDAC with
extensive experimental evaluations.

4.1 Experimental Setup

(1)Baseline Approaches. The most relevant work to C-
DAC is CacheDedup with its two deduplication-aware
caching algorithms, D-LRU and D-ARC, as described
in Section 2. We have developed a CacheDedup pro-
totype and use D-LRU and D-ARC as the baseline
deduplication-aware caching algorithms. During experi-
ments, we replace D-LRU and D-ARC with CDAC-LRU
and CDAC-ARC in the CacheDedup prototype to mea-
sure CDAC’s performance. At the same time, we also
implemented LRU and ARC, which are used as baseline
non-deduplication-aware caching algorithms to highlight
the benef'ts of data deduplication brought about by C-
DAC.

(2)Experimental Workload. We replayed the public
FIU traces [11] in our experiments. These traces were
collected from a VM hosting the departmental websites
for webmail and online course management (WebVM),
a fle server used by a research group (Homes), and a
departmental mail server (Mail). Table 2 shows the sta-
tistical characteristics of all the datasets.

Name Total 1I/Os | Working Write- Unique
1/0s(GB) Set(GB) to-read Data(GB)
ratio
WebVM | 54.5 2.1 3.6 234
Homes 67.3 5.9 31.5 44.4
Mail 1741 57.1 8.1 171.3

Table 2: Trace statistics

4.2 Performance

We evaluate the cache performance for each dataset with
different cache sizes from 20% to 80% of the working set
size, and different block sizes from 4KB to 64KB. For
FIU traces, since the public dataset has only 4KB sized
request, we merged the requests with consecutive source
addresses into larger sized request and generate corre-
sponding new fngerprints. In CDAC-ARC and CDAC-
LRU, We set the threshold A in RCE to 50%, the thresh-
old & in BHI to 50%, and the size of the smallest part of
each block in BHI to 4KB. In this section, we will show
the performance results for these conf gurations.

Cache hit ratio is a key metric to measure the caching
eff ciency. Here we mainly show the overall hit ratio and
the read hit ratio to evaluate CDAC’s benef ts. We did not
show write hit ratios because the write requests in these
datasets are very intensive and all of the cache replace-
ment algorithms handle them well.

Figure 7 and Figure § show the cache hit ratio for We-
bVM and Homes traces with a block size of 4KB. It is
worth noting that when the block size is 4KB, BHI will
not work since the smallest part of each block is set to
4KB. Therefore, the results of CDAC shown in Figure
7 and Figure 8 contain only the performance results of
RCE. From these results, it can be seen that CDAC-LRU
and CDAC-ARC signif cantly improve the read hit ratios
for all the traces, which clearly show that using the ref-
erence counts that represent the intensity of the content
sharing among source addresses helps preserve a lot of
hot data blocks and associated source addresses. Fig-
ure 9 and Figure 10 show the read hit ratios and overall
hit ratios for WebVM and Mail traces when the block
size is from 8KB to 64KB. As can be seen from the re-
sults, both CDAC-LRU and CDAC-ARC obtain higher
read hit ratios and overall hit ratios, especially the read
hit ratios, than their corresponding baseline approaches.
By analyzing these results, we can conclude that these

—0— ARC—@—D-ARC —&— CDAC-ARC
—se— LRU —li— D-LRU —p— CDAC-LRU

—&— ARC —@— D-ARC —#— CDAC-ARC
—he— LRU —li— D-LRU —p— CDAC-LRU 1

S S

g0 =

&30 4

F0 =

g0 =

Q ()

~ o ~

20 40 60 80 20 40 60 80

Cache Size (%) Cache Size (%)
(a) WebVM (b) Homes

Figure 7: Read hit ratio with 4KB block size.

—@— ARC—@—D-ARC —— CDAC-ARC
—s— LRU —#— D-LRU —p—CDAC-LRU

—@— ARC —@— D-ARC —— CDAC-ARC
907 —#—LRU ——D-LRU—p— CDAC-LRU

S S

.2 2

IS I

~ ~

T T

= =

5] o)

> >

O 40l o |

20 40 60 80 20 40 60 80

Cache Size (%) Cache Size (%)
(a) WebVM (b) Homes

Figure 8: Overall hit ratio with 4KB block size.

improvements to the cache hit ratios have three charac-
teristics.

First, CDAC’s performance improvement in read hit
ratios is greater than overall hit ratios. There are two
reasons: at frst, in our experimental datasets, the write
requests are very intensive and all cache replacement
algorithms handle them well, so CDAC’s improvemen-
t in write hit ratio is very limited; secondly, for all the
datasets, the proportion of write requests is much high-
er than read requests (see Table 2), so the read hit ra-
tios contribute much less to the overall hit ratios than the
write hit ratios. Therefore, CDAC does not signif cantly
improve the overall hit ratios as it does for read hit ratios.

Second, as the block size increases, the amount of
cache space required for maximum improvement in C-
DAC increases. Taking the read hit ratio as an exam-
ple, for the WebVM trace, when the block size is 8KB,
CDAC-LRU has the greatest improvements to the base-
lines when the cache size is 40%; but when the block
size is increased to 32KB and 64KB, CDAC achieves the
greatest improvements on the baselines when the cache
size is 50%, 60%, respectively. This is because as the
block size increases, the percentage of valid content per
data block may decrease in each access, resulting in low-
er cache utilization; in addition, the larger the blocks,
the less the number of data blocks that can be stored in
the cache. Therefore, at the same cache size, the sum
of the effective block content in the cache becomes less.
If the cache is larger, CDAC can take advantage of the
more popular content to improve the cache hit ratios and

ARC —@— D-ARC —— CDAC-ARC

ARC —@— D-ARC —&— CDAC-ARC

ARC —@— D-ARC —&— CDAC-ARC

ARC —@— D-ARC —— CDAC-ARC

A50 —#— LRU ——D-LRU—p— CDAC-LRU A35 —— LRU —— D-LRU —p— CDAC-LRU AZS —— LRU —— D-LRU —p— CDAC-LRU A16 —— LRU —— D-LRU —p— CDAC-LRU
N X X X4
<40 3) S
£ g2 £ L1

=30 =20 z15 S
& [~ x x
=20 R 15 =10 = 6
= 10 == ==
= 10 = = 5 =,

5] s 5 < <

S) 3 ol 3 ol
& &0 [~ [~)

20 40 60 20 40 60 80 20 40 60 80 20 40 60 80
Cache Size (%) Cache Size (%) Cache Size (%) Cache Size (%)
(a) Block Size: 8KB (b) Block Size: 16KB (c) Block Size: 32KB (d) Block Size: 64KB
(A)WebVM
ARC —@—D-ARC—&— CDAC-ARC ARC —@— D-ARC —— CDAC-ARC ARC —@— D-ARC —— CDAC-ARC ARC —@— D-ARC —— CDAC-ARC

] —*—LRU—8-D-LRU—P—CDAC-LRU =607 —A—LRU—#-D-LRU—P— CDAC-LRU | —*—LRU—8-D-LRU—P—CDAC-LRU | —*—LRU—E-D-LRU—P—CDAC-LRU
X0 S U S
K e e e
< <50 ~ ~35
S50 = 240 2

S 40 = 40 < <
& -4 & 39 & 25
= =30 = =
= 30 = = 20 20
= < < s

S 20 <20 < <

<] 210]
2, =3 & & 10

20 40 60 20 40 60 80 20 40 60 80 20 40 60 80
Cache Size (%) Cache Size (%) Cache Size (%) Cache Size (%)

(e) Block Size: 8KB

ARC—®—D-ARC —&—CDAC-ARC
907 —k—LRU—#—D-LRU—p—CDAC-LRU

(f) Block Size: 16KB

(g) Block Size: 32KB

(B)Mail
Figure 9: Read hit ratio of WebVM and Mail

ARC —@— D-ARC —— CDAC-ARC
o857 ——LRU-#- D-LRU—p— CDAC-LRU

ARC —@— D-ARC —&— CDAC-ARC
—— LRU—#— D-LRU—p— CDAC-LRU

(h) Block Size: 64KB

ARC —@— D-ARC —&— CDAC-ARC
—— LRU—#— D-LRU—p— CDAC-LRU

Q 3 3

2 N S 76

< < < <

o S 80 = =

= = = =74

51 < < <

[~ &g -1 -1

= = = 72

= == == ==

= =170 = =170

xR < < <

b b b b

> > 65 > 268

c | o | Q65+ o |

20 40 60 20 40 60 80 20 40 60 80 20 40 60 80
Cache Size (%) Cache Size (%) Cache Size (%) Cache Size (%)

(a) Block Size: 8KB

ARC—®—D-ARC —&—CDAC-ARC

(b) Block Size: 16KB

(c) Block Size: 32KB

(A)WebVM

ARC —@— D-ARC —&— CDAC-ARC

ARC —@— D-ARC —&— CDAC-ARC

(d) Block Size: 64KB

ARC —@— D-ARC —&— CDAC-ARC

@88 —s— LRU —#— D-LRU—p— CDAC-LRU @88 —#— LRU —8— D-LRU —p— CDAC-LRU @ —— LRU —— D-LRU —p— CDAC-LRU @ —— LRU —— D-LRU —p— CDAC-LRU

< 88
(=] (=]
g g
I~ I~ 87
= =
= ==F%
= =
g g
4 285

| } o o |

20 40 60 20 40 60 80 20 40 60 80 20 40 60 80

Cache Size (%) Cache Size (%) Cache Size (%) Cache Size (%)

(e) Block Size: 8KB

(f) Block Size: 16KB

(g) Block Size: 32KB

(B)Mail
Figure 10: Overall hit ratio of WebVM and Mail

(h) Block Size: 64KB

achieve better performance improvements. But if the
cache size exceeds a certain amount, the cache replace-
ment algorithm is less eff cient and the contribution of
CDAC will be smaller.

Third, CDAC’s overall performance advantages over
the baselines become more pronounced as the block size
increases. This achievement can be contributed to BHI

technique. Recall that, BHI divides a large block into
multiple small parts. The combination of the access sta-
tus of multiple small parts within a block is able to more
accurately identify the hotness/coldness of each block.
This benef't is further magnif ed by larger blocks. But
for D-LRU, D-ARC, LRU and ARC, when the block
size increases, it becomes more diff cult for them to fnd

the redundant blocks and accurately identify the hot/cold
blocks, leading to lowered overall cache hit ratios.

5 Conclusion

Motivated by the fact that the existing deduplication-
aware cache algorithms, D-ARC and D-LRU, are not
able to improve the cache hit ratios adequately, we
propose CDAC, a Content-driven Deduplication-Aware
Caching management approach to signif cantly increase
the performance of deduplication-based SSD caches. C-
DAC focuses on mining data blocks’ content redun-
dancy and exploiting their intensity of content sharing
among source addresses in cache management strate-
gies. It consists of two complementary optimization
techniques, Reference-Count based Eviction (RCE) and
Bitmap based Hotness Identif cation (BHI), which are
combined to leverage the intensity of content sharing and
hotness in the cache replacement algorithm. Our ex-
tensive experimental results showed that CDAC signif-
icantly improves cache hit ratios of the state-of-the-art
deduplication-aware cache algorithms, D-ARC and D-
LRU, driven by real-world datasets.

Acknowledgment

We are very grateful to Professor Ming Zhao for pro-
viding us with CacheDedup Prototype and many instruc-
tive comments. This work is partially supported by
grants from Fundamental Research Funds for the Cen-
tral Universities (2018CDXYJSJ0026), National Natu-
ral Science Foundation of China (61402061, 61672116
and 61802038), Chongqing High-Tech Research Pro-
gram (cstc2016jcyjA0274 and cstc2016jcyjA0332), Chi-
na Postdoctoral Science Foundation (2017M620412),
and Chonggqing Postdoctoral Special Science Foundation
(XmT2018003).

References

[1] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,
J. D., MANASSE, M., AND PANIGRAHY, R. Design tradeoffs
for ssd performance. In USENLX 2008 Annual Technical Confer-
ence (Berkeley, CA, USA, 2008), ATC’08, USENIX Association,
pp. 57-70.

[2] BYAN, S., LENTINI, J., MADAN, A., AND PABN, L. Mercury:
Host-side fash caching for the data center. In 0/2 [EEE 28th
Symposium on Mass Storage Systems and Technologies (MSST)
(April 2012), pp. 1-12.

[3] CHEN, F., Luo, T., AND ZHANG, X. Caftl: A content-aware
fash translation layer enhancing the lifespan of fash memory
based solid state drives. In Proceedings of the 9th USENLX Con-
ference on File and Stroage Technologies (Berkeley, CA, USA,
2011), FAST’11, USENIX Association, pp. 6-6.

[4] CLEMENTS, A. T., AHMAD, I., VILAYANNUR, M., AND LI,
J. Decentralized deduplication in SAN cluster fle systems. In
USENIX’09 (Jan. 2009).

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

GUPTA, A., PISOLKAR, R., URGAONKAR, B., AND SIVASUB-
RAMANIAM, A. Leveraging value locality in optimizing nand
fash-based ssds. In Proceedings of the 9th USENLX Conference
on File and Stroage Technologies (Berkeley, CA, USA, 2011),
FAST’11, USENIX Association, pp. 7-7.

HOLLAND, D. A., ANGELINO, E., WALD, G., AND SELTZER,
M. I. Flash caching on the storage client. In Proceedings of
the 2013 USENILX Conference on Annual Technical Conference
(Berkeley, CA, USA, 2013), USENIX ATC’13, USENIX Asso-
ciation, pp. 127-138.

HUANG, S., WEI, Q., FENG, D., CHEN, J., AND CHEN, C.
Improving f ash-based disk cache with lazy adaptive replacement.
Trans. Storage 12,2 (Feb. 2016), 8:1-8:24.

HUANG, W.-T., CHEN, C.-T., CHEN, Y.-S., AND CHEN, C.-
H. A compression layer for nand type fash memory systems. In
Third International Conference on Information Technology and
Applications (ICITA’05) (July 2005), vol. 1, pp. 599-604 vol.1.

JIN, K., AND MILLER, E. L. The effectiveness of deduplication
on virtual machine disk images. In Proceedings of SYSTOR 2009:
The Israeli Experimental Systems Conference (New York, NY,
USA, 2009), SYSTOR ’09, ACM, pp. 7:1-7:12.

Kim, J., LEE, C., LEE, S., SoN, 1., CHoOI, J., YOON, S.,
U. LEE, H., KANG, S., WON, Y., AND CHA, J. Deduplica-
tion in ssds: Model and quantitative analysis. In 0/2 IEEE 28th
Symposium on Mass Storage Systems and Technologies (MSST)
(April 2012), pp. 1-12.

KOLLER, R., AND RANGASWAMI, R. T/o deduplication: Uti-
lizing content similarity to improve i/o performance. In Usenix
Conference on File & Storage Technologies (2010).

L1, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMALDONE, S.,
AND WALLACE, G. Nitro: A Capacity-Optimized SSD Cache
for Primary Storage. In USENIX FAST 14 (Feb. 2014).

L1, C., SHILANE, P., DOUGLIS, F., AND WALLACE, G. Pan-
nier: A container-based fash cache for compound objects. In
Proceedings of the 16th Annual Middleware Conference (2015),
Middleware ’15, ACM, pp. 50-62.

L1, W., JEAN-BAPTISE, G., RIVEROS, J., NARASIMHAN, G.,
ZHANG, T., AND ZHAO, M. CacheDedup: In-line Deduplication
for Flash Caching. In USENIX FAST 16 (Feb. 2016).

LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZISE, G., AND CAMPBELL, P. Sparse Indexing: Large
scale, inline deduplication using sampling and locality. In
FAST’09 (Feb. 2009).

Luo, T., MA, S., LEE, R., ZHANG, X., L1U, D., AND ZHOU,
L. S-cave: Effective ssd caching to improve virtual machine
storage performance. In Proceedings of the 22Nd Internation-
al Conference on Parallel Architectures and Compilation Tech-
niques (Piscataway, NJ, USA, 2013), PACT 13, IEEE Press, p-
p. 103-112.

MAKATOS, T., KLONATOS, Y., MARAZAKIS, M., FLOURIS,
M. D., AND BILAS, A. Using transparent compression to im-
prove ssd-based i/o caches. In Proceedings of the 5th European
Conference on Computer Systems (New York, NY, USA, 2010),
EuroSys *10, ACM, pp. 1-14.

MEGIDDO, N., AND MODHA, D. S. Arc: A self-tuning, low
overhead replacement cache. In Proceedings of the 2Nd USENLX
Conference on File and Storage Technologies (Berkeley, CA, US-
A, 2003), FAST 03, USENIX Association, pp. 115-130.

MEISTER, D., AND BRINKMANN, A. Multi-Level Compari-
son of Data Deduplication in a Backup Scenario. In SYSTOR 09
(2009).

[20]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

MENG, F., ZHoU, L., MA, X., UTTAMCHANDANI, S., AND
Liu, D. vcacheshare: Automated server fash cache space man-
agement in a virtualization environment. In Proceedings of the
2014 USENLX Conference on USENIX Annual Technical Confer-
ence (Berkeley, CA, USA, 2014), USENIX ATC’14, USENIX
Association, pp. 133—-144.

NIST. Secure Hash Standard. In FIPS PUB 180-1 (May 1993).

QUINLAN, S., AND DORWARD, S. Venti: A new approach to
archival storage. In FAST 02 (Jan. 2002).

SAXENA, M., SWIFT, M. M., AND ZHANG, Y. Flashtier: A
lightweight, consistent and durable storage cache. In Proceedings
of the 7th ACM European Conference on Computer Systems (New
York, NY, USA, 2012), EuroSys ’12, ACM, pp. 267-280.

SRINIVASAN, K., BISSON, T., GOODSON, G., AND VORUGAN-
T1, Y. iDedup: Latency-aware, inline data deduplication for pri-
mary storage. In USENIX FAST 12 (Feb. 2012).

SUEIL, P. L., YEH, M. Y., AND Kuo, T. W. Endurance-aware
fash-cache management for storage servers. IEEE Transactions
on Computers 63, 10 (Oct 2014), 2416-2430.

TANG, L., HUANG, Q., LLoYD, W., KUMAR, S., AND LI, K.
Ripq: Advanced photo caching on fash for facebook. In Pro-
ceedings of the 13th USENIX Conference on File and Storage
Technologies (Berkeley, CA, USA, 2015), FAST’15, USENIX
Association, pp. 373-386.

YANG, J., PLASSON, N., GILLIS, G., TALAGALA, N., SUN-
DARARAMAN, S., AND WO0OD, R. Hec: Improving endurance
of high performance fash-based cache devices. In Proceedings
of the 6th International Systems and Storage Conference (New
York, NY, USA, 2013), SYSTOR 13, ACM, pp. 10:1-10:11.

YANG, Q., AND REN, J. I-cash: Intelligently coupled array of
ssd and hdd. In Proceedings of the 2011 IEEE 17th International
Symposium on High Performance Computer Architecture (Wash-
ington, DC, USA, 2011), HPCA ’11, IEEE Computer Society,
pp. 278-289.

YiMm, K. S., BAHN, H., AND KOH, K. A fash compression layer
for smartmedia card systems. /[EEE Trans. on Consum. Electron.
50, 1 (Feb. 2004), 192-197.

ZHu, B., L1, K., AND PATTERSON, H. Avoiding the disk bottle-
neck in the Data Domain deduplication fle system. In FAST 08
(Feb. 2008).

10

