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Abstract-High-performance computing (HPC) applications generate large 
amounts of floating-point data that need to bestored and analyzed efficiently to 
extract theinsights and advance knowledge discovery. With the growing 
disparities between compute and 1/0, opt mizing the storage stack alone may not 
suffice to cure the 1/0 problem. There has been a strong pushin the HPC 
communities to perform data reduction before datais transmitted to storagein   
order to lower the 1/0 cost. However, as of now,neither lossless nor lossy 
compressors can achieve the ade<iuate reduction ratio thatis desired by  
applications. This paper proposes DuoModel,a new approach that leverages the 
similarity between the fulland reduced application models, and furtherimprove the  
data reduction ratio. DouModelfurtherimproves the compression ratio of state-of· 
the-art compressors via compressing the differences (termed as delta) between    
the data products of the two models. For data analytics, the high fidelity data can    
be re-computed bylaunching the reduced modeland applying the compressed 
delta. Our evaluations confirm that DuoModelcan further push the limit of data 
reduction while the high fidelity of datais maintained. 

 
 

Index Tenns-High performance computing,data reduction, re-computation 

• 
1 INTRODUCTION 
ScrnNTIFIC applications produce vast amounts of floating-point 
data that capture the microscopic physical phenomena in high 
fidelity. For a single production run, such as that of a fusion simu 
lation, it can generate more than 1TB of data in one snapshot. Ina 
time evolution that consists of thousands of steps,the total analysis 
output can easily reach PBs for one run. Such enormous data vol 
ume poses unprecedented pressure on HPC storage systems, even 
for the largest parallel file systems,such as Spider,1and this drives 
computer system researchers, applied mathematicians, and appli 
cation scientists to co-design new software/hardware solutions 
that can sustain data coming out of exascale applications. Very 
recently, data reduction is recognized as a critical step in an exas 
cale application workflow, prior to data in motion and at rest. The 
goal of data reduction is to reduce the volume and velocity of data 
being moved, through either lossy or lossless compression. In par 
ticular, lossless compression can reconstruct the original data from 
the compressed data with no bit-level changes. For HPC floating 
point data, it was shown that lossless compressors typically 
achieve a reduction of less than 4X [1], and the general-purpose 
deduplication [2] can achieve only 20 to 30 percent reduction, thus 

 
1.https://www.olcf.ornl.govIold-resources/    data-visualization-resources/ 
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being fairly ineffective in reducing HPC data volume. In contrast, 
lossy compression, such as FPZIP [3], ISABELA [4], ZFP [5], and 
SZ [6],leverages the general tolerance of reduced accuracy in appli 
cations, and uses approximations and partial data discarding to 
compress the content,resulting in a much higher compression ratio 
with user-prescribed error bound. Despite the recent success in 
lossy compression, the reduction ratio still has a long way to go to 
meet the application requirements on next-generation systems. 

This paper complements state-of-the-art lossy compressors and 
explores strategies that can further push the limit of compression 
ratio-we believe that data need to be pre-conditioned prior to com 
pression such that they match the design philosophies of a compres 
sor. This work builds upon two key observations: 1) on future HPC 
systems, compute resources will be increasingly cheaper, as com 
pared to storage [7]. Therefore, intermediate data products should 
be computed as much as possible, instead of being stored and ana 
lyzed later; 2) modern lossy compressors, e.g.,ZFP,SZ,rely on the 
local smoothness within a dataset to compress data. The degree of 
local smoothness is, however, governed by the underlying laws of 
physics and the mathematical properties of a target problem. As 
such, compression should be done in a way that is physics- and 
math-aware so that potentially a more accurate prediction can be 
done. Inthis work,this is achieved by co-running a shadow applica 
tion, termed as reduced model. A reduced model mimics the original 
application, termed as full model, but with reduced degrees of free 
dom, e.g.,reduced resolution, and quantities. There are two advan 
tages in this design: 1) a reduced model can be executed with 
significantly low complexities, resulting in low CPU and memory 
overhead, and 2) in principle, it does not require substantial code 
changes for an application, meanwhile still capturing the physics 
being studied. We reveal the high correlation between the data gen 
erated from a full model and a reduced model (Section 2), and 
design DuoModel to further improves the compression ratio by 
compressing the difference (termed as delta) between the data prod 
uctsof the two models. The delta can be stored on persistent storage 
and retrieved later for data analytics. To reconstruct the original 
data, an analytics pipeline can first run the reduced model, and 
apply the delta. The proposed scheme works for most scientific 
applications that have reduced model and full model versions,but 
not works for the chaotic system, e.g.,turbulent systems. The major 
contributions of this paper are as follows: 

• We illustrate the high similarity between the full and 
reduced models, and develop DuoModel to exploit this 
characteristic for efficient compression; 

• We evaluate the reduction ratio and overhead of DuoMo 
del,and study the cost of re-computing the original data. 

The remainder of this paper is organized as follows. Section 2 
provides the background and motivation. Section 3 presents the 
designs and implementations of DuoModel, and Section 4 dis 
cusses the evaluation results, along with conclusions in Section 5. 

 

 

2 BACKGROUND A ND MOTIVATION 
2.1  Full Modelversus Reduced Model 
Compared to a reduced model [8], a full model has higher fidelity 
calculation and data products,  since a full model captures the 
underlying physics with higher degrees of freedom, a higher spa 
tial resolution of grid, or a higher precision (e.g.,using double pre 
cision). hi addition, the stability of math solvers often requires a 
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Fig. 1.Data features. The black bars and green curve show the PDF and CDF of 
data values,respectively . 

Fig. 3.The schematic of using DuoModel. 
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Fig. 2. Compressing delta versus originaldata. The number of cores usedin the 
fulland reduced models are 64 and 16,respectively. 

 
finer time evolution, due to the Courant-Friedrichs-Lewy (CFL) 
condition [9]. A reduced model can be solved with lower computa 
tional cost and coarser granularity than a full model. And the prob 
lem size and the amount of output data will grow exponentially as 
the granularity of a reduced model becomesfiner. 

To demonstrate the generality of similarity between the full and 
reduced models, we use three classical partial differential equations 
(PDEs), including Heat3d equation, 20 Laplace equation, and 10 
Wave equation [lOL [11].All these PDEsaresolved in parallel,using 
Message Passing Interface (MPI) for inter-processor communication. 

 

2.2   Motivation 
The idea of this paper is motivated by three observations. First, 
advanced floating-point compressors,such as ZFP and SZ,assume 
the local smoothness to compress data. This may not be valid for 
all applications, and will result in sub-par performance. We believe 
data need to be pronditioned prior to compression so that they 
are more compressible. Second, there have been growing dispar 
ities between compute and I/0. On future HPC systems, it is com 
monly recognized that there will be an abundance of compute 
resources, as compared to storage resources. This architectural 
trend motivates us to trade compute for I/0, in order to mitigate 
the slow storage bottleneck. Third, HPC simulations typically use a 
high spatiotemporal resolution and high degrees of freedom to 
improve fidelity. However, we notice that there exists a high corre 
lation between high and low fidelity. For example, Fig. 1shows the 
probability density function (PDF) and cumulative distribution 
function (CDF) of data generated by the three classical PDEs with 
constant boundary conditions. It is evident that data from the full 
and reduced models are highly similar. 

The high correlations inspire us to compressthe delta, which are 
more compressible due to the improved smoothness, between the 
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Fig. 5. Compressing delta versus  originaldata. The numbersin the bracketindi·  
cate the number of cores allocated to either the fullmodelor the reduced model. 

 
 

data products of the full and reduced models. To this end, we run 
the two models synchronously, then calculate and store the delta 
(with details in Fig. 3). For both ZFP and SZ,the compression ratios 
are further improved, as compared to compressing the original data 
directly, shown in Fig. 2 If data need to be retrieved and analyzed 
post-run, we can launch the reduced model as a part of the analytic 
pipeline, apply the delta and re-generate the high-fidelity data 

 
3    DESIGN AND IMPLEMENTATION 

3.1   Approach Overview 
The goal of DuoModel is to prondition data and further push 
the limit of compression ratio. We take advantage of the intrinsic 
correlation between the data of full and reduced models,as well as 
the increasing compute capability of modem HPC systems. We 
output the compressed delta between the two models, and if 
needed, rompute the high-fidelity data by applying the delta to 
the reduced model. 

As shown in Fig. 3, the proposed approach consists of four 
steps: 

Step 1.The full and reduced models are allocated compute resour 
ces, and run synchronously. The amount of compute 
resources allocated to the reduced model depends on the 
resource availability and the goal of the reduction ratio. 

Step 2. An MPI processor in the reduced model sends the interme 
diate data product to the associated processors, i.e., those 
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TABLE 1 
Configurations of the PDE Applications 

 
 

Heat3ci Laplace Wave 
 

 Problem size Sub domain Time Step Problem size Sub_domain Time Step Problem size Sub_domain Ti.me Step 
Full (64) 64"128"64 4•4•4 .34789E-07 192"192 8"8 6.64258E-06 40960 64 0.0000125 
Reduced (32) 64"64"32 2•4•4 3.18034E-06 %"192 4"8 6.64258E-06 20480 32 0.000025 
Reduced (16) 32"64"32 2•4•2 3.18034E-06 96"96 4•4 2.60308E-05 10240 16 0.00005 
Reduced (8) 16"32"16 2"2"2 2.14335E-05 48"96 2"4 2.60308E-05 5120 8 0.0001 
Reduced (4) 8"16"8 1"2"2 0.000125 48"48 2"2 0.0001 2560 4 0.0002 
Reduced (2) 8"8"8 1"2"1 0.000125 24"48 1"2 0.0001 1280 2 0.0004 
Reduced (1) 4•4•4 1•1•1 0.0005787 24"24 1•1 0.0003698 640 1 0.0008 

 
calculate the same physical sub-domain, in the full model. 
The processors in the full model receive the data, and calcu 
late the delta. 

Step 3. The delta are subsequently compressed using lossy com 
pressors, and then written to persistent storage. 

Step 4. If the high fidelity data need to be retrieved by an analytics 
pipeline, we run the reduced model, and decompress and 
apply the delta to the reduced model output. 

 
3.2 Implementation 
In this section, we discuss the technical details of DuoModel. To 
make DuoModel a realistic solution in a production HPC environ 
ment,the following questions need to be addressed: 

• How to enable the communication between the two models 
in an HPC environment? 

• The reduced model may deviate significantly from the full 
model after a number of iterations. How to synchroniz.e 
the two models? 

• How to establish a mapping between the sub-domains of 
the two models,and how to calculate the delta? 

 
3.2.1 DuoModel Launching and Communication 
We launch the two models and run them concurrently via the 
option ':' of the aprun command, a job execution command used 
on Titan,2 to load the executables of the full and reduced models 
into compute nodes. This allows the two models to be launched 
concurrently, with the caveat that they share the same MPI com 
municator, MPI_COMM_WORLD. We further use MPI_Comm_ 
split() to split the communicator into two new sulx:ommunicators, 
based upon the processor coordinates, and feed them to the full 
and reduce models, respectively, to keep the intra-model commu 
nications intact. The synchronization between the full and reduced 
models is achieved via the MPI_COMM_WORLD communicator. 

 
3.2.2 Synchronizing the Fulland Reduced Models 
To achieve a meaningful correlation of data between the full and 
reduced models, their executions should be synchronized with 
regard to the simulated physical time. For both Heat3d and Wave, 
the synchronization can be achieved by keeping the physical elapse 
time identical between the two models. Note that to maintain the 
stability of calculation as dictated by CFL, a time step of the 
reduced model is longer than that in the full model. Therefore, we 
keep the reduced model idle until the full model reaches the same 
physical time. For the Laplace equation, since it aims to calculate 
the final stable state of a system, we calculate the delta at the stable 
state in the end. 

To synchroniz.e the two models,we need to identify the mapping 
between sub-domains of the two models,as illustrated in Fig.4. Rec 
ognizing that in general, the local mesh geometry that a processor 
performs  calculation  on  can  be  fairly  irregular, we  adopt  the 

 
2. https://www.olcf.ornl.govIold-resources/ compute-systems /titan/ 

following approach to establishing the mapping in order to have a 
broad applicability: First, we record the local mesh geometry that an 
MPI processor belongs to. For example, for a unif orm grid we record 
the hyperslabs, and for a unstructured mesh we record the set of tri 
angles. Then, each processor in the reduced model broadcasts their 
local mesh geometries to the full model. The processors in the full 
model receive the mesh geometry and check for the overlap with its 
own mesh geometry. Ifthere is an overlap, it sends an acknowledge 
ment back to the corresponding processors in the reduced model. 
Fig. 4 shows an example of mapping of the sub-domains in the full 
and reduced models in a uniform mesh. 

 
3.2.3 Calculating Delta 
To calculate the delta, we perform coarse-to-fine prolongation 
using piece-wise linear interpolation on the reduced model data, 
similar to the prolongation transfer operation in multigrid. Intui 
tively, data in the reduced model can be regarded as a uniform 
sampling of the full model data. We estimate the new grid points 
using the linear interpolation. Lastly, the delta is calculated as 
DELTA = D' - D. Note that during post-processing, if the high 
fidelity data (D) are requested, the low fidelity data are re-com 
puted and similarly prolongated to lY . Then the delta is decom 
pressed, and applied to IY, i.e.,D = lY - DELTA. 

 
4 PERFORMANCE EVA LUATION 

4.1 System Setup 
We evaluate the effectiveness of the proposed DuoModel on Titan 
at Oak Ridge National Laboratory. For the preliminary results in 
this paper, we use eight compute nodes. On Titan, each compute 
node has a lfK:ore 2 GHz AMO processor and 32 GB of RAM, and 
the operating system is Cray Linux environment. The full models 
are always allocated 64 cores, and we vary the number of cores 
allocated to the reduce models as a proxy for the degree of fidelity. 
The details of configurations for the applications are  listed  in 
Table 1. For ZFP and SZ, the evaluations are done under the same 
relative error bound of 10-4 • 

 
4.2 Compressing Delta versus Original Data 
Fig. 5 illustrates the compression ratios of the original data versus 
deltas under different scales of reduced models. As the compute 
resources allocated to the reduced model increases, the compres 
sion ratio of delta increases for both ZFP and SZ. The reason is 
that, as the fidelity of a reduced model increases, the delta is 
expected to approach zero, which is in general more compressible. 
Inparticular, for the Wave equation, the compression ratio of delta 
using SZ is over 70X using additional 25 percent processors for the 
reduced model-a 5X improvement over compressing the original 
data directly. This clearly demonstrates the performance benefit of 
pre-conditioning data prior to compression. We point out that run 
ning the reduced model is not free and does require additional 
compute resources. However, with the abundance of compute 
resources  on future systems, those  resources pre-allocated  for 

https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
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resilience purposes, and those that are not used (e.g., those CPUs 
unused for a GPU code) can be used for the reduced model, trad 
ing rompute for I/0 is possible. 

 
4.3 Understanding Re-Computing Cost 
The total rompute time consists of three parts, running the 
reduced model, rerompute the high resolution data based on linear 
interpolation, and applying the delta. Fig. 6 shows the total time of 
romputing the original data, normaliz.ed against the time of run 
ning the full model directly. Note that the total time collected here is 
the wall-clock time multiplied by the number of cores used.Itis clear 
that DuoModel requires a very small fraction of time to rmpute 
the original data. Inparticular, the reduced models of Heat3d, Lap 
lace,and Wave equation with 16 processors incur 0.8,29, and5.7per 
cent rompute cost, respectively . The main reason is that reduced 
models takemuch lesstime and resources than the full models. 

 
5   CONCLUSION 

This paper provides DuoModel,a new approach that leverages the 
similarity between the full and reduced application models to fur 
ther reduce data on HPC storage. The proposed approaches are 
based on three observations . First, state-of-the-art scientific data 
compressors can not achieve further reduction routinely. Second, 
as computing isgetting cheaper, we can re-compute the full data to 
reduce storage cost. Third, and the most importantly, scientific sim 
ulations' output data have similarity between the full and reduced 
models. It is easy to characterize the delta data, defined as the dif 
ference between the two models. Compressing the delta can 
achieve much higher compression ratios than the original data. 
Thus, we store the compressed delta rather than the original data 
to reduce the amount of data. When the original data are needed, 
they can be re-computed by launching the reduced model and 
applying the compressed delta By this way, we reduced the stor 
age cost while the high fidelity of data is maintained. 
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