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DuoModel: Leveraging Reduced Model for
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Huizhang LuoO, Qing LiuE>,Zhenbo QiaokE>,
Jinzhen WangE>,MengxiaoWangE==>,and HongJiang

Abstract-High-performance computing (HPC) appcations generate brge
amounts of floahg-pontdata that needto be stored and analyzed efficiently to
extractthensghts and advance knowledge dscovery. With the growng

dparities between compute and 1/0, opt miag the storage stack done may not
suffice to cure the 1/0 probem. There has been a strong pushinthe HPC
communities to perform data reduction before datas transmitted to storagen
order to lower the 1/0 cost. However, as of now,neitherlossless norlossy
compressors can achieve theade<iuatereductionratiothats desed by
appkations. This paper proposes DuoModéa new approach that leverages the
shiarity between the fulland reduced apgcation modés, and furthermprove the
data reduction ratio. DouModelfurtherimproves the compression ratio of state-of-
the-art compressors viacompresdg the dfferences (termed as delta) between
the data products of the two modés. For data analytics, the high fiddty data can
be re-computed bykbunchhg the reduced modeland applyng the compressed
delta. Ourevauafons confirm that DuoModelcan further push themit of data
reduction wHe the high fiddy of datas mantaned.

hdex Tenns-Hgh performance compuhg,data reductfon, re-computation

1 NTRODUCTION

ScrnNTIFIC applications produce vast amounts of floating-point
data that capture the microscopic physical phenomena in high
fidelity. For a single production run, such as that of a fusion simu-
lation, it can generate more than 1TB of data in one snapshot. Ina
time evolution that consists of thousands of steps,the total analysis
output can easily reach PBs for one run. Such enormous data vol-
ume poses unprecedented pressure on HPC storage systems, even
for the largest parallel file systems,such as Spider,'and this drives
computer system researchers, applied mathematicians, and appli-
cation scientists to co-design new software/hardware solutions
that can sustain data coming out of exascale applications. Very
recently, data reduction is recognized as a critical step in an exas-
cale application workflow, prior to data in motion and at rest. The
goal of data reduction is to reduce the volume and velocity of data
being moved, through either lossy or lossless compression. In par-
ticular, lossless compression can reconstruct the original data from
the compressed data with no bit-level changes. For HPC floating-
point data, it was shown that lossless compressors typically
achieve a reduction of less than 4X [1], and the general-purpose
deduplication [2]canachieve only 20 to30 percent reduction, thus
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being fairly ineffective in reducing HPC data volume. In contrast,
lossy compression, such as FPZIP [3],ISABELA [4],ZFP [5],and
SZ [6] leverages the general tolerance of reduced accuracy inappli-
cations, and uses approximations and partial data discarding to
compress the content,resulting in amuch higher compression ratio
with user-prescribed error bound. Despite the recent success in
lossy compression, the reduction ratio still has a long way to go to
meet the application requirements on next-generation systems.

This paper complements state-of-the-art lossy compressors and
explores strategies that can further push the limit of compression
ratio-we believe that data need to be pre-conditioned prior to com-
pression such that they match the design philosophies of a compres-
sor. This work builds upon two key observations: 1) on future HPC
systems, compute resources Will be increasingly cheaper, as com-
pared to storage [7]. Therefore, intermediate data products should
be computed as much as possible, instead of being stored and ana-
lyzed later; 2) modern lossy compressors, e.g.,ZFP,SZ rely on the
local smoothness within a dataset to compress data. The degree of
local smoothness is, however, governed by the underlying laws of
physics and the mathematical properties of a target problem. As
such, compression should be done in a way that is physics- and
math-aware so that potentially a more accurate prediction can be
done. Inthis work,this is achieved by co-running a shadow applica-
tion, termed as reduced model. A reduced model mimics the original
application, termed asfull model, but with reduced degrees of free-
dom, e.g.,reduced resolution, and quantities. There are two advan-
tages in this design: 1) a reduced model can be executed with
significantly low complexities, resulting in low CPU and memory
overhead, and 2) in principle, it does not require substantial code
changes for an application, meanwhile still capturing the physics
being studied. We reveal the high correlation between the data gen-
erated from a full model and a reduced model (Section 2), and
design DuoModel to further improves the compression ratio by
compressing the difference (termed as delta) between the data prod-
uctsof the two models. The delta can be stored on persistent storage
and retrieved later for data analytics. To reconstruct the original
data, an analytics pipeline can first run the reduced model, and
apply the delta. The proposed scheme works for most scientific
applications that have reduced model and full model versions,but
not works for the chaotic system, e.g.,turbulent systems. The major
contributions of this paper are as follows:

= We illustrate the high similarity between the full and
reduced models, and develop DuoModel to exploit this
characteristic for efficient compression;
= We evaluate the reduction ratio and overhead of DuoMo-
del,and study the cost of re-computing the original data.
The remainder of this paper is organized as follows. Section 2
provides the background and motivation. Section 3 presents the
designs and implementations of DuoModel, and Section 4 dis-
cusses the evaluation results, along with conclusions in Section 5.

Our experiments for evaluating the full and reduced models,
including scientific applications and scripts for evaluation, are
publicly available at

https: //github.com/ luohuizhang/ Recomputing.

2 BACKGROUND AND MOTNATION

2.1 FullModelversus Reduced Model

Compared to a reduced model [8],a full model has higher fidelity
calculation and data products, since a full model captures the
underlying physics with higher degrees of freedom, a higher spa-
tial resolution of grid, or a higher precision (e.g.,using double pre-
cision). hi addition, the stability of math solvers often requires a
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. 2. Compressng delta versus orignaldata. The number of cores usedh the
fulland reduced modéds are 64 and 16,respectively.

finer time evolution, due to the Courant-Friedrichs-Lewy (CFL)
condition [9]. A reduced model can be solved with lower computa-
tional cost and coarser granularity than a full model. And the prob-
lem size and the amount of output data will grow exponentially as
the granularity of areduced modelbecomesfiner.

To demonstrate the generality of similarity between the full and
reduced models, we use three classical partial differential equations
(PDEs), including Heat3d equation, 20 Laplace equation, and 10
Wave equation [IOL [11]. All these PDEsaresolved in parallelusing
Message Passing Interface (MPI) for inter-processor communication.

2.2 Motivation
The idea of this paper is motivated by three observations. First,
advanced floating-point compressors,such as ZFP and SZ assume
thelocal smoothnessto compressdata. This maynotbe valid for
allapplications, and will resultin sub-par performance. We believe
dataneed to be pronditioned prior to compression so that they
are more compressible. Second, there have been growing dispar-
itiesbetween compute and I/0. On future HPC systems, itiscom-
monly recognized that there will be an abundance of compute
resources, as compared to storage resources. This architectural
trend motivates us to trade compute for I/0,in order to mitigate
the slow storage bottleneck. Third, HPC simulations typically use a
high spatiotemporal resolution and high degrees of freedom to
improve fidelity. However, we notice that there exists a high corre-
lation between high and low fidelity. For example, Fig. 1shows the
probability density function (PDF) and cumulative distribution
function (CDF) of data generated by the three classical PDEs with
constant boundary conditions. Itis evident that data from the full
andreduced modelsarehighly similar.

The high correlations inspire us to compressthe delta, which are
more compressible due to the improved smoothness, between the
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data products of the full and reduced models. To this end, we run
the two models synchronously, then calculate and store the delta
(with details in Fig.3). For both ZFP and SZ,the compression ratios
are furtherimproved, as compared to compressing the original data
directly, shown in Fig. 2 If data need to be retrieved and analyzed
post-run, we can launch the reduced model as a part of the analytic
pipeline,applythedeltaandre-generate thehigh-fidelity data

3 DESIGN AND IMPLEMENTATION

3.1 Approach Overview
The goal of DuoModel is to prondition data and further push
the limit of compression ratio. We take advantage of the intrinsic
correlation between the data of full and reduced models,as well as
the increasing compute capability of modem HPC systems. We
output the compressed delta between the two models, and if
needed, rompute the high-fidelity data by applying the delta to
the reduced model.

As shown in Fig. 3, the proposed approach consists of four
steps:

Step 1The full and reduced models are allocated compute resour-
ces, and run synchronously. The amount of compute
resources allocated to the reduced model depends on the
resource availability and the goal of the reduction ratio.

Step 2. An MPI processor in the reduced model sends the interme-
diate data product to the associated processors, i.e., those
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TABLE 1
Configurations of the PDE Applications
Heat3ci Laplace Wave

Problem size Sub domain TimeStep Problemsize Sub_domain TimeStep Problem size Sub_domain Ti.me Step
Full (64) 64"128"64 4eded 34789E-07  192"192 8"8 6.64258E-06 40960 64 0.0000125
Reduced (32)  64"64"32 2044 3.18034E-06 %"192 4"8 6.64258E-06 20480 32 0.000025
Reduced (16)  32"64"32 2042 3.18034E-06 96"96 44 2.60308E-05 10240 16 0.00005
Reduced (8) 16"32"16 2"2"2 2.U335E-05 48"96 2"4 2.60308E-05 5120 8 0.0001
Reduced (4) 8"16"8 1"2"2 0.000125 4848 22 0.0001 2560 4 0.0002
Reduced (2) 8"8"8 1"2"1 0.000125 24"48 1"2 0.0001 1280 2 0.0004
Reduced (1) 4ede4 le1-1 0.0005787 24"24 11 0.0003698 640 1 0.0008

calculate the same physical sub-domain, in the full model.
The processors in the full model receive the data, and calcu-
late the delta.

Step 3. The delta are subsequently compressed using lossy com-
pressors, and then written to persistent storage.

Step 4. If the high fidelity data need to be retrieved by an analytics
pipeline, we run the reduced model, and decompress and
apply the delta to the reduced model output.

3.2 Implementation

In this section, we discuss the technical details of DuoModel. To
make DuoModel a realistic solution in a production HPC environ-
ment,the following questions need to be addressed:

= How to enable the communication between the two models
in an HPC environment?

= The reduced model may deviate significantly from the full
model after a number of iterations. How to synchroniz.e
the two models?

= How to establish a mapping between the sub-domains of
the two models,and how to calculate the delta?

3.2.1

We launch the two models and run them concurrently via the
option "' of the aprun command, a job execution command used
on Titan,2 to load the executables of the full and reduced models
into compute nodes. This allows the two models to be launched
concurrently, with the caveat that they share the same MPI com-
municator, MPI_ COMM_WORLD. We further use MPI_Comm__
split() to split the communicator into two new sulx:ommunicators,
based upon the processor coordinates, and feed them to the full
and reduce models, respectively, to keep the intra-model commu-
nications intact. The synchronization between the fulland reduced
modelsisachieved viathe MPI COMM_WORLD communicator.

DuoModel Launching and Communication

3.2.2  Synchronizing the Fulland Reduced Models

To achieve a meaningful correlation of data between the full and
reduced models, their executions should be synchronized with
regard to the simulated physical time. For both Heat3d and Wave,
the synchronization can be achieved by keeping the physical elapse
time identical between the two models. Note that to maintain the
stability of calculation as dictated by CFL, a time step of the
reduced model is longer than that in the full model. Therefore, we
keep the reduced model idle until the full model reaches the same
physical time. For the Laplace equation, since it aims to calculate
the final stable state of a system, we calculate the delta at the stable
state in the end.

To synchroniz.e the two models,we need to identify the mapping
between sub-domains of the two models,as illustrated in Fig.4. Rec-
ognizing that in general, the local mesh geometry that a processor
performs calculation on can be fairly irregular, we adopt the

2.https://www.olcf.ornl.gov/old-resources/compute-systems/titan/

following approach to establishing the mapping in order to have a
broad applicability: First, we record the local mesh geometry that an
MPI processor belongs to. For example, for auniform grid we record
the hyperslabs, and for a unstructured mesh we record the set of tri-
angles. Then, each processor in the reduced model broadcasts their
local mesh geometries to the full model. The processors in the full
model receive the mesh geometry and check for the overlap with its
own mesh geometry. Ifthere is an overlap, it sends an acknowledge-
ment back to the corresponding processors in the reduced model.
Fig. 4 shows an example of mapping of the sub-domains in the full
and reduced models in a uniform mesh.

3.2.3 CalculatingDelta

To calculate the delta, we perform coarse-to-fine prolongation
using piece-wise linear interpolation on the reduced model data,
similar to the prolongation transfer operation in multigrid. Intui-
tively, data in the reduced model can be regarded as a uniform
sampling of the full model data. We estimate the new grid points
using the linear interpolation. Lastly, the delta is calculated as
DELTA=D'-D. Note that during post-processing, if the high
fidelity data (D) are requested, the low fidelity data are re-com-
puted and similarly prolongated to /Y. Then the delta is decom-
pressed, and applied to 7Y, i.e.,D =1Y —DELTA.

4 PERFORMANCE EVALUATION

4.1 System Setup

We evaluate the effectiveness of the proposed DuoModel on Titan
at Oak Ridge National Laboratory. For the preliminary results in
this paper, we use eight compute nodes. On Titan, each compute
node has a IfK:ore 2 GHz AMO processor and 32 GB of RAM, and
the operating system is Cray Linux environment. The full models
are always allocated 64 cores, and we vary the number of cores
allocated to the reduce models as a proxy for the degree of fidelity.
The details of configurations for the applications are listed in
Table 1. For ZFP and SZ, the evaluations are done under the same
relative error bound of 10-*.

4.2 Compressing Delta versus Original Data

Fig. 5 illustrates the compression ratios of the original data versus
deltas under different scales of reduced models. As the compute
resources allocated to the reduced model increases, the compres-
sion ratio of delta increases for both ZFP and SZ. The reason is
that, as the fidelity of a reduced model increases, the delta is
expected to approach zero, which is in general more compressible.
Inparticular, for the Wave equation, the compression ratio of delta
using SZ is over 70X using additional 25 percent processors for the
reduced model-a 5X improvement over compressing the original
data directly. This clearly demonstrates the performance benefit of
pre-conditioning data prior to compression. We point out that run-
ning the reduced model is not free and does require additional
compute resources. However, with the abundance of compute
resources on future systems, those resources pre-allocated for


https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/

8 EEELETTERS OFTHECOMPUTERSOCIETY, VOL. 1, NO. 1, JANUARYJUNE2018

*Full (64)

*Reduced (32)+delta
*Reduced (16)+delta

*Reduced (8)+delta
*Reduced (4) +delta
*Reduced (2) +delta
*Reduced (1) +delta

|I |

Heat3d Laplace Wave

Fig. 6. Totaltimeto generate the originaldata.

resilience purposes, and those that are not used (e.g., those CPUs
unused for a GPU code) can be used for the reduced model, trad-
ing rompute for I/0 is possible.

4.3 Understanding Re-Computing Cost

The total rompute time consists of three parts, running the
reduced model, rerompute the high resolution data based on linear
interpolation, and applying the delta. Fig. 6 shows the total time of
romputing the original data, normaliz.ed against the time of run-
ning the full model directly. Note that the total time collected here is
the wall-clock time multiplied by the number of cores used.ltis clear
that DuoModel requires a very small fraction of time to rmpute
the original data. Inparticular, the reduced models of Heat3d, Lap-
lace,and Wave equation with 16 processors incur 0.8,29, andS.7per-
cent rompute cost, respectively . The main reason is that reduced
models takemuch lesstime and resources than the fullmodels.

5 CONCLUSION

This paper provides DuoModel,a new approach that leverages the
similarity between the full and reduced application models to fur-
ther reduce data on HPC storage. The proposed approaches are
based on three observations. First, state-of-the-art scientific data
compressors can not achieve further reduction routinely. Second,
as computing isgetting cheaper, we can re-compute the full data to
reduce storage cost. Third, and the most importantly, scientific sim-
ulations' output data have similarity between the full and reduced
models. Itis easy to characterize the delta data, defined as the dif-
ference between the two models. Compressing the delta can
achieve much higher compression ratios than the original data.
Thus we store the compressed delta rather than the original data
to reduce the amount of data. When the original data are needed,
they can be re-computed by launching the reduced model and
applying the compressed delta By this way, we reduced the stor-
age cost while the high fidelity of data is maintained.
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