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Abstract—A subgraph query q that finds as output all its
subgraph-isomorphic embeddings from a data graph g has
been core to modern declarative querying in large graphs. In
this paper, we address subgraph queries with the availability
of query workload information, W = {w1, . . . , wn}, where
wi ∈ W is a previously issued query with all its subgraph-
isomorphic embeddings cached beforehand. We introduce a
workload-aware subgraph querying framework, WaSQ, that
leverages query workload for subgraph query rewriting, search
plan refinement, partial results reusing, and false positive filter-
ing towards facilitating the whole subgraph querying process.
Experimental studies in real-world graphs demonstrate that
WaSQ achieves significant and consistent performance gains in
comparison with state-of-the-art, workload-oblivious solutions
for large-scale subgraph querying.
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I. INTRODUCTION

Fundamental to virtually any graph management tasks is

the querying functionality that locates user-specified graph

patterns in a data graph, which, without loss of generality,

is often modeled as the subgraph query problem. Despite
NP-hard in nature, subgraph queries have been intensively

studied in real-world big graphs. However, existing solutions

still suffer from performance and scalability issues, due in

particular to the intrinsic subgraph-isomorphism complexity

and the sheer sizes of real-world graphs [1, 2, 3]. Sur-

prisingly enough, existing methods are primarily workload-
oblivious: subgraph queries are naively considered memo-
ryless, irrespective of common and essential patterns that

have arisen repeatedly and been addressed, either partially

or completely, beforehand. As a consequence, every query

has to be handled anew and independently, thus resulting

in a huge amount of wasteful computation. As modern

graph management systems have been exposed to diverse

and dynamic query workload [4, 5, 6], we are motivated

to reexamine the subgraph query problem augmented with

valuable query workload information.

In this paper, we introduce a new subgraph querying

framework, WaSQ (Workload-aware Subgraph Querying),
for workload-aware subgraph query caching and process-
ing in large graphs. Given the query workload W =
{w1, . . . , wn}, where wi (1 ≤ i ≤ n) is a previously issued
subgraph query, all wi’s subgraph-isomorphic embeddings

in a data graph g are cached in advance. When a new

query q is posed, the objective of WaSQ is to reuse the

materialized query results ofW to facilitate query execution

of q. We design in WaSQ a suite of new query refinement

methods that identifies and explores the intrinsic structure

relationships between workload queries and the new query

q. Specifically, we rewrite q w.r.t. wi ∈ W in a way that

answers to wi can be reused in the query plan of q in
order to (1) filter false-positive embeddings and (2) expedite
the overall query evaluation, thus resulting in significant

performance gains for subgraph queries. To the best of

our knowledge, WaSQ is the first that creates a new

vision and complete solutions for workload-ware subgraph

querying and optimization in large graphs. Our experimental

studies in real-world large graphs validate the effectiveness

of WaSQ, which consistently outperforms the state-of-

the-art, workload-oblivious solutions, CFL-Match [1] and
TurboISO [3], for subgraph querying.

II. RELATED WORK

Subgraph queries in large graphs. There have been a pro-
liferation of practical subgraph querying solutions, which,

by exploring a tree-structured search space (a.k.a. a query
plan), iteratively match each vertex of q to one of the feasible
vertices in g. Here a feasible matching satisfies the vertex-
label equivalence condition and the connectivity-preserving
constraints enforced by subgraph isomorphism. The key

to high-performance subgraph querying is to minimize the

number of intermediate false-positive matchings from q to g.
Existing solutions have thus focused primarily on selecting

different matching orders, and applying false-positive filter-

ing strategies to expedite subgraph querying. In particular,

TurboIso [3] and BoostIso [2] propose to merge together
vertices with the same labels and neighborhood information

in q and g, respectively, to enhance filtering capabilities.
CFL-Match [1] provides a subgraph query framework in
which q can be decomposed into (1) a cyclic subgraph,
called core, (2) a forest, and (3) leaves, such that the
matching order follows a core-forest-leaves pattern. Note
all existing solutions are workload-oblivious. In contrast,

our method, WaSQ, exploits another performance-critical
vertical, query workload, for subgraph querying.

Query caching for graphs. Caching has been a proven
technique to enhance query performance in numerous query

answering contexts. Existing RDF engines cache interme-

diate results of SPARQL queries to speedup forthcoming

queries sharing identical triple patterns [5]. Materialized-

view based approximation methods are also proposed for
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subgraph queries [7]. In GraphCache [8, 9], the authors
design a cache system for subgraph/supergraph queries in a

graph database. However, it cannot be generalized to search

all embeddings of q in a single, large graph g. Thus far,
no existing research has used query workload for subgraph

query caching and processing in large graphs, which is the

prime goal of this work.

III. PRELIMINARIES

We consider in this paper the subgraph query problem

defined upon labeled, undirected graphs. Given a graph g =
(V,E, l,Σ), V is a set of vertices; E ⊆ V × V is a set of

edges; Σ is a set of vertex labels; l : V → Σ is a labeling

function assigning for each vertex v ∈ V a label l(v) ∈ Σ.
A graph g′ = (V ′, E′, l,Σ) is a subgraph of g, denoted as
g′ ⊆ g, if V ′ ⊆ V and E′ ⊆ E∩(V ′×V ′). Consider a query
graph q and a large data graph g. If q is subgraph isomorphic
to g w.r.t. an injective function f , denoted as q ⊆f g, we call
f(q) ⊆ g a subgraph-isomorphic embedding (or embedding
for short) of q. There may exist multiple embeddings of q
in g, and we use E(q) = {f1(q), . . . , fn(q)} to denote all
the n embeddings of q. The subgraph query problem is to

find as output E(q) of q from g, which is NP-hard [10].
In this paper, we reexamine the subgraph query problem

augmented with the query workload information, W =
{w1, . . . , wn}, where wi(1 ≤ i ≤ n) is a query graph
that has been resolved beforehand, and all its embeddings

E(wi) = {fi1 , . . . , fim} have been explicitly cached. To this
end, the workload-aware subgraph query problem can be

formalized as follows,

Definition 1 (Workload-aware Subgraph Query). Con-
sider a query graph q, a data graph g, and query workload
W . The workload-aware subgraph query problem is to find
as output E(q) of q in g, in the presence of W .

IV. WASQ: WORKLOAD-AWARE SUBGRAPH QUERYING

A. Query Refinement and Execution

Given a new query q and a workload query wi ∈ W ,

we aim to refine q w.r.t. wi in a way that the answers to

wi, E(wi), can be effectively reused to speedup the query
execution of q. It is immediate that there exist five structure
relationships between q and wi: (1) q is graph-isomorphic to
wi, q = wi; (2) q contains wi as a proper subgraph, wi ⊂ q;
(3) q is contained in wi, q ⊂ wi; (4) q and wi overlap with

each other, q∩wi �= ∅; and (5) q and wi are totally disjoint,

q ∩ wi = ∅. For each structure relationship, we will design
graph refinement and execution methods for q w.r.t. wi.

Case 1 : q = wi. If q = wi, q has been issued and resolved
in the form of wi, and all its embeddings, E(wi) =
{fi1 , . . . , fim}, have been cached in W . To address q, it
suffices to identify a graph-isomorphic mapping f ′ from q
to wi, where f

′ : Vq → Vwi
. For any embedding fil ∈ E(wi)

(1 ≤ l ≤ m), we derive a corresponding embedding of q:

fil ◦ f ′, where ◦ denotes function composition that applies
fil to the output of f

′. Therefore, the query answer, E(q),
of q can be computed from W without accesses to g,

E(q) = {fi1 ◦ f ′, . . . , fim ◦ f ′} (1)

Case 2 : q ⊃ wi. In this case, there exists a workload query
wi ∈ W that is a proper subgraph of q, and the following
theorem holds:

Theorem 1. Given wi ⊂ q, for any embedding fk of q,
fk ∈ E(q), there exists at least one embedding fil of wi,

fil ∈ E(wi), such that fil(wi) ⊂ fk(q).

Based on Theorem 1, any embedding of q can be extended
from an embedding of wi. We thus refine q w.r.t. wi as

follows. We first find one subgraph-isomorphic mapping,

f ′ : Vwi
→ Vq , s.t., wi ⊆f ′ q. Considering queries, including

wi and q, are significantly smaller in size than g, such an
embedding of wi, f

′(wi), can be identified efficiently from
q. We then refine q to a summarized graph, q′, that subsumes
f ′(wi) as a special super-node u∗ with all the embeddings
of E(wi) as u

∗’s matching candidates. The super-node u∗

has now become a proxy of the workload query wi in

the summarized graph q′. While evaluating the subgraph-
isomorphic constraints relating to the super-node u∗, we
unfold u∗ to crosscheck embeddings of E(wi) accordingly.

The advantage of refining q w.r.t. wi into q
′ for subgraph

querying is twofold: (1) After refinement, q′ is smaller than
q in size, resulting in a significant reduction of the number
of subgraph-isomorphic checkings to be examined from q′

to g; (2) The workload query wi, once condensed into a

super-node u∗ in q′, is exploited as an integral pattern in
subgraph querying, thus bringing better filtering capabilities

than existing workload-oblivious solutions, where all the

constituent vertices and edges of f ′(wi) have to be matched
or crosschecked individually.

Case 3 : q ⊂ wi. In this case, there exists a workload query
wi ∈ W that contains q as a proper subgraph. According
to Theorem 1, all the embeddings of wi, E(wi), can be
computed from those of q. However, the reverse is not true:
not all the embedding of q rest on those of wi. Since q ⊂ wi,

we first find all the subgraph-isomorphic mappings from q
to wi, f

′ : Vq → Vwi , s.t., f
′(q) ⊆ wi. In order to find the

complete set of embeddings of q, we consider all the binary
partitionings P of the vertex set Vq of q. Each partitioning
leads to two collectively exhaustive, mutually exclusive sets

of vertices, denoted as P(Vq) = V w|V w̄, where:

1) V w ∈ 2Vq is a subset of Vq comprising vertices whose

subgraph-isomorphic matchings can be derived from

E(wi). Here 2
Vq represents the power set of Vq;

2) V w̄ = Vq \ V w consists of vertices of Vq whose
matchings are not in E(wi), and have to be searched
against g.
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For the first set, V w, its induced subgraph in q is

q[V w], and all its embeddings, E(q[V w]), can be computed
directly from E(wi) by extracting the sub-embeddings (with
duplicates eliminated) of E(wi) confined by the vertex set,
f ′(V w) (Note that V w ⊆ Vq ⊂ Vwi

). This sub-embedding

extraction operation upon E(wi) is denoted as πf ′(V w)E(wi),
for which we abuse the notation of the projection operator,
π, in relational algebra. For each vertex u in the second set,
V w̄, it cannot be mapped to any vertex in the embeddings

of wi. As a result, its candidate set C(u) is refined to
C(u) \ πf ′(u)E(wi); that is, we will search in other regions
of g, excluding E(wi), for feasible matchings of u.
The advantage of refining q w.r.t. wi, where q ⊂ wi, is

that, for any partitioning of Vq characterized by V w and

V w̄, the embeddings of the induced subgraph, q[V w], can
be computed directly from E(wi) without referring to g.
Although the embeddings of q[V w̄] have to be retrieved
from g, the candidate set C(u) of each u ∈ V w̄ is refined

to exclude the matchings of u in E(wi), thus effectively
filtering false-positive embeddings relating to u.

Case 4 : q ∩wi �= ∅. In this case, q and wi share some

common substructures. To address q w.r.t. wi, we first find

a maximal connected common subgraph, mcs, from q and
wi. Note that finding maximal common subgraphs for two

given graphs is NP-hard [10]. However, we only need to

identify one such subgraph from q and wi, both of which

are small-size graphs. Therefore, mcs can be computed
efficiently in practice. We then find all the embeddings

of mcs, E(mcs), w.r.t. wi, because mcs ⊆ wi. After all

the embeddings of mcs are computed from g, we further
compute the embeddings of q w.r.t. mcs, because mcs ⊆ q.

Case 5 : q ∩wi = ∅. It is still possible that the query graph
q is totally disjoint from the workload query wi; that is,

q ∩ wi = ∅, or the maximal connected common subgraph
of q and wi, mcs, is too small in size. In such cases, the
contribution of wi in answering q becomes marginal. We
then turn to workload-oblivious algorithms without referring

to wi for help.

B. Workload-aware Query Processing

Given a query graph q, a large data graph g, and
query workload W = {w1, . . . , wn}, our workload-aware
subgraph querying framework, WaSQ, aims to select one
workload query wi ∈ W (1 ≤ i ≤ n), if any, to help
address q against g. When a new query q is received,

it is first compared with each workload query wi ∈ W .

According to different structure relationships between q and
wi as discussed in Section IV-A, each wi is assigned to

different sets, Bi(i = 2, 3, 4), representing different structure
relationship cases. In particular, if we find a workload query

wi ∈ W , s.t. wi = q (Case 1), it will be immediately reused
to answer q, rather than being assigned to a set first, say B1,

and then retrieved for query refinement and execution.

After workload queries are allocated to different sets

Bi (i = 2, 3, 4), we then select one workload query w∗

following the order of examination from B2, to B3, and then

to B4; that is, if Bi �= ∅, we select w∗ from Bi while ignoring

workload queries in Bj , where 2 ≤ i < j ≤ 4. If there
exist more than one workload queries in Bi, we choose w

∗

that is potentially most beneficial for query refinement and

execution of q. In particular, we consider w∗ ∈ Bi that is

closest to q in structure, thus incurring a minimum number of
query refinements w.r.t. q. On the other hand, if no workload
queries can be exploited (Case 5), we turn to the workload-
oblivious approach for subgraph querying.

In support of workload-aware subgraph querying in a

large graph g, we need to store past queries and their
complete sets of embeddings in the cache. However, due

to the space limit, we cannot maintain all subgraph queries

that have been issued and resolved thus far. Instead, only

up to n queries are allowed in WaSQ, which constitute
the query workloadW . Furthermore, when real-world graph

access patterns change over time, query workload need to be

updated as well. Specifically, when the cache space becomes

full, we evict some wi ∈ W to open space for new queries.

In practice, we incorporate well-known cache-replacement

schemes, such as the least frequent used (LFU) and the least

recently used (LRU) policies, inWaSQ to adaptively update
W in the presence of dynamic and diverse query workload.

V. EXPERIMENTS

We report our experimental studies in four real-world

graphs: Yeast, Human, HPRD, and WordNet, and compare

WaSQ with two state-of-the-art, workload-oblivious meth-

ods, CFL-Match [1] and TurboISO [3]. Both query graphs

and query workload are generated from data graphs. All

algorithms were implemented in C++, and compiled by

GNU g++ 4.8.4 with the -O3 flag. All experiments were
carried out on a Linux server running Ubuntu 14.04 with
two Intel 2.3GHz ten-core CPUs and 256GB memory.

1. The Static Hit-Rate Setting. In the first experiment,W
is saturated with 50 workload queries without replacement.
We require every 10 workload queries satisfy the condition
that there exists a query q ∈ Q to account for each of the

five structure relationship cases for query refinement and

execution. The rationale to compose W with static hit-rates
is to illustrate in which case, W will contribute most for

subgraph querying. The query time results are presented

in Figure 1(a). Note that WaSQ consistently outperforms

CFL-Match and TurboISO in all different graphs, indicating
that, once empowered with query workload, WaSQ can

significantly boost subgraph query performance.

For WaSQ, we further evaluate the runtime cost for
query refinement and execution (named WaSQ-Search in
Figure 1(a) in gray colors). Note if there exists no such

w∗ ∈ W that can be used for query refinement (namely, in
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(a) Static Workload
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(b) Runtime for Different Cases
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(c) Random workload
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(d) Cold-start

Figure 1: Subgraph Query performance in Different Experimental Settings.

Case 5), this cost can be regarded as the cache-miss penalty.
It is shown that WaSQ-Search only takes less than 10%
of the overall runtime for WaSQ, indicating that finding w∗

fromW can be done efficiently, and even when a cache-miss

arises, the cache-miss penalty is marginal.

We further illustrate the breakdown time of WaSQ con-

sumed in different cases, as illustrated in Figure 1(b). Note

that in Case 1 (wi = q), q can be answered most efficiently,
as embeddings of wi can be directly employed to answer

q without accesses to g. In Case 2 (wi ⊂ q), q can be
directly extended from wi, so the query performance is still

significantly better than the workload-oblivious method, rep-

resented by Case 5. Even in Case 3 and Case 4, our proposed
query refinement and execution methods still outperforms

the workload-oblivious method.

2. The Random Workload Setting. In the second exper-
iment, the query workload W is saturated with 50 randomly
selected workload queries. This setting represents the real-

world scenario where workload-aware subgraph querying is

typically performed without prior knowledge of the distribu-
tion of workload queries that can be exploited in difference

cases. The query time results are illustrated in Figure 1(c).

Again, WaSQ consistently outperforms CFL-Match and

TurboISO in all four graphs. Specifically, the performance

gains of WaSQ versus TurboISO can be as large as one

order-of-magnitude. In addition, the time consumed for

WaSQ-Search, the upper bound of which turns out to
be the cache-miss penalty, is rather marginal (within 0.1
second) in all different graphs.

3. The Cold-start Setting. In the third experiment, we
assume the cache of WaSQ is initially empty (|W | = 0).
When the first query q is posed, we rely on the workload-
oblivious method to address it. After q is resolved, the query,
together with all its embeddings, E(q), is added to W as

the first workload query. Subsequent queries can henceforth

exploit the growing W for workload-aware subgraph query-

ing. When W is full (|W | = 50), the workload replacement
policy is enabled to keep W up-to-date. Note this experi-

mental setting resembles the cold-start and evolution process

for query workload W during subgraph querying in graphs.

The query time results are illustrated in Figure 1(d). Again,

WaSQ achieves consistent performance gains compared

with CFL-Match and TurboISO in all different graphs. As a
result, by exploiting the query workload information,WaSQ

can always help expedite subgraph querying in real-world

large graphs.

VI. CONCLUSION

Subgraph querying has been a fundamental problem in

graph data management. State-of-the-art solutions, however,

are workload-oblivious, leaving the dynamic and diverse

query workload information unexplored. In this paper, we

presented a workload-aware subgraph querying framework,

WaSQ, to consider the missing yet performance-critical
query workload for subgraph querying. WaSQ is the first

workload-aware subgraph querying framework comprising a

suites of query refinement and execution methods and work-

load caching, organization, and maintenance techniques.

Our theoretical and experimental studies have validated the

necessity, applicability, and effectiveness of WaSQ, which
has achieved significant and consistent performance gains

for subgraph querying in real-world, large graphs.
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