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Abstract—A subgraph query ¢ that finds as output all its
subgraph-isomorphic embeddings from a data graph g has
been core to modern declarative querying in large graphs. In
this paper, we address subgraph queries with the availability
of query workload information, W = {wi,...,w,}, where
w; € W is a previously issued query with all its subgraph-
isomorphic embeddings cached beforehand. We introduce a
workload-aware subgraph querying framework, WaSQ, that
leverages query workload for subgraph query rewriting, search
plan refinement, partial results reusing, and false positive filter-
ing towards facilitating the whole subgraph querying process.
Experimental studies in real-world graphs demonstrate that
WaSaQ achieves significant and consistent performance gains in
comparison with state-of-the-art, workload-oblivious solutions
for large-scale subgraph querying.
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I. INTRODUCTION

Fundamental to virtually any graph management tasks is
the querying functionality that locates user-specified graph
patterns in a data graph, which, without loss of generality,
is often modeled as the subgraph query problem. Despite
NP-hard in nature, subgraph queries have been intensively
studied in real-world big graphs. However, existing solutions
still suffer from performance and scalability issues, due in
particular to the intrinsic subgraph-isomorphism complexity
and the sheer sizes of real-world graphs [1, 2, 3]. Sur-
prisingly enough, existing methods are primarily workload-
oblivious: subgraph queries are naively considered memo-
ryless, irrespective of common and essential patterns that
have arisen repeatedly and been addressed, either partially
or completely, beforehand. As a consequence, every query
has to be handled anew and independently, thus resulting
in a huge amount of wasteful computation. As modern
graph management systems have been exposed to diverse
and dynamic query workload [4, 5, 6], we are motivated
to reexamine the subgraph query problem augmented with
valuable query workload information.

In this paper, we introduce a new subgraph querying
framework, WaSQ (Workload-aware Subgraph Querying),
for workload-aware subgraph query caching and process-
ing in large graphs. Given the query workload W =
{wy,...,w,}, where w; (1 <i<mn)is a previously issued
subgraph query, all w;’s subgraph-isomorphic embeddings
in a data graph g are cached in advance. When a new
query ¢ is posed, the objective of WaSQ is to reuse the
materialized query results of W to facilitate query execution
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of g. We design in WaSQ a suite of new query refinement
methods that identifies and explores the intrinsic structure
relationships between workload queries and the new query
q. Specifically, we rewrite ¢ w.rt. w; € W in a way that
answers to w; can be reused in the query plan of ¢ in
order to (1) filter false-positive embeddings and (2) expedite
the overall query evaluation, thus resulting in significant
performance gains for subgraph queries. To the best of
our knowledge, WaSQ is the first that creates a new
vision and complete solutions for workload-ware subgraph
querying and optimization in large graphs. Our experimental
studies in real-world large graphs validate the effectiveness
of WaSQ, which consistently outperforms the state-of-
the-art, workload-oblivious solutions, CFL-Match [1] and
TurbolSO [3], for subgraph querying.

II. RELATED WORK

Subgraph queries in large graphs. There have been a pro-
liferation of practical subgraph querying solutions, which,
by exploring a tree-structured search space (a.k.a. a query
plan), iteratively match each vertex of ¢ to one of the feasible
vertices in g. Here a feasible matching satisfies the vertex-
label equivalence condition and the connectivity-preserving
constraints enforced by subgraph isomorphism. The key
to high-performance subgraph querying is to minimize the
number of intermediate false-positive matchings from ¢ to g.
Existing solutions have thus focused primarily on selecting
different matching orders, and applying false-positive filter-
ing strategies to expedite subgraph querying. In particular,
Turbolso [3] and Boostlso [2] propose to merge together
vertices with the same labels and neighborhood information
in ¢ and g, respectively, to enhance filtering capabilities.
CFL-Match [1] provides a subgraph query framework in
which ¢ can be decomposed into (1) a cyclic subgraph,
called core, (2) a forest, and (3) leaves, such that the
matching order follows a core-forest-leaves pattern. Note
all existing solutions are workload-oblivious. In contrast,
our method, WaSQ, exploits another performance-critical
vertical, query workload, for subgraph querying.

Query caching for graphs. Caching has been a proven
technique to enhance query performance in numerous query
answering contexts. Existing RDF engines cache interme-
diate results of SPARQL queries to speedup forthcoming
queries sharing identical triple patterns [5]. Materialized-
view based approximation methods are also proposed for
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subgraph queries [7]. In GraphCache [8, 9], the authors
design a cache system for subgraph/supergraph queries in a
graph database. However, it cannot be generalized to search
all embeddings of ¢ in a single, large graph g. Thus far,
no existing research has used query workload for subgraph
query caching and processing in large graphs, which is the
prime goal of this work.

III. PRELIMINARIES

We consider in this paper the subgraph query problem
defined upon labeled, undirected graphs. Given a graph g =
(V,E,1,X), V is a set of vertices; E C V x V is a set of
edges; X is a set of vertex labels; [ : V' — ¥ is a labeling
function assigning for each vertex v € V' a label [(v) € X.
A graph ¢’ = (V/, E',1,Y) is a subgraph of g, denoted as
g Cg,if VCVand E' C EN(V’'xV"). Consider a query
graph ¢ and a large data graph g. If ¢ is subgraph isomorphic
to g w.r.t. an injective function f, denoted as ¢ Cy g, we call
f(q) € g a subgraph-isomorphic embedding (or embedding
for short) of ¢q. There may exist multiple embeddings of ¢
in g, and we use £(q) = {f1(q),-.., fn(q)} to denote all
the n embeddings of q. The subgraph query problem is to
find as output £(q) of ¢ from g, which is NP-hard [10].

In this paper, we reexamine the subgraph query problem
augmented with the query workload information, W =
{wi,...,w,}, where w;(1 < ¢ < n) is a query graph
that has been resolved beforehand, and all its embeddings
E(w;) = {fiy,---, fi,, } have been explicitly cached. To this
end, the workload-aware subgraph query problem can be
formalized as follows,

Definition 1 (Workload-aware Subgraph Query). Con-
sider a query graph q, a data graph g, and query workload
W. The workload-aware subgraph query problem is to find
as output £(q) of q in g, in the presence of W. O

IV. WASQ: WORKLOAD-AWARE SUBGRAPH QUERYING
A. Query Refinement and Execution

Given a new query ¢ and a workload query w; € W,
we aim to refine ¢ w.r:t. w; in a way that the answers to
w;, E(w;), can be effectively reused to speedup the query
execution of ¢. It is immediate that there exist five structure
relationships between ¢ and w;: (1) ¢ is graph-isomorphic to
w;, ¢ = wy; (2) g contains w; as a proper subgraph, w; C ¢;
(3) ¢ is contained in w;, ¢ C w;; (4) ¢ and w; overlap with
each other, gNw; # ); and (5) ¢ and w; are totally disjoint,
g Nw; = 0. For each structure relationship, we will design
graph refinement and execution methods for ¢ w.r.t. w;.

Case 1: q = wj. If ¢ = w;, ¢ has been issued and resolved
in the form of w;, and all its embeddings, &(w;) =
{firs---, fi,, }. have been cached in W. To address ¢, it
suffices to identify a graph-isomorphic mapping f’ from ¢
to w;, where f’ : V, — V,,,. For any embedding f;, € £(w;)
(1 <1< m), we derive a corresponding embedding of g¢:
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fi, o f', where o denotes function composition that applies
fi, to the output of f’. Therefore, the query answer, £(q),
of ¢ can be computed from W without accesses to g,

fim o [}

Case 2 : q D w;. In this case, there exists a workload query
w; € W that is a proper subgraph of ¢, and the following
theorem holds:

E@) ={fuof',--. ()]

Theorem 1. Given w; C ¢, for any embedding f; of g,
fr € E(q), there exists at least one embedding f;, of w;,
fi, € E(w;), such that f;, (w;) C fr(q). O

Based on Theorem 1, any embedding of ¢ can be extended
from an embedding of w;. We thus refine ¢ w.rt. w; as
follows. We first find one subgraph-isomorphic mapping,
1 Vi, = Vg, s.t., w; Cyr q. Considering queries, including
w; and g, are significantly smaller in size than g, such an
embedding of w;, f’'(w;), can be identified efficiently from
q. We then refine ¢ to a summarized graph, ', that subsumes
f'(w;) as a special super-node u* with all the embeddings
of &(w;) as u*’s matching candidates. The super-node u*
has now become a proxy of the workload query w; in
the summarized graph ¢’. While evaluating the subgraph-
isomorphic constraints relating to the super-node u*, we
unfold u* to crosscheck embeddings of £(w;) accordingly.

The advantage of refining ¢ w.r.t. w; into ¢’ for subgraph
querying is twofold: (1) After refinement, ¢’ is smaller than
q in size, resulting in a significant reduction of the number
of subgraph-isomorphic checkings to be examined from ¢
to g; (2) The workload query w;, once condensed into a
super-node u* in ¢', is exploited as an integral pattern in
subgraph querying, thus bringing better filtering capabilities
than existing workload-oblivious solutions, where all the
constituent vertices and edges of f’(w;) have to be matched
or crosschecked individually.

Case 3 : q C w;. In this case, there exists a workload query
w; € W that contains ¢ as a proper subgraph. According
to Theorem 1, all the embeddings of w;, &(w;), can be
computed from those of q. However, the reverse is not true:
not all the embedding of ¢ rest on those of w;. Since ¢ C w;,
we first find all the subgraph-isomorphic mappings from ¢
to w;, f': Vg = Vi, s.t., f'(¢) C w;. In order to find the
complete set of embeddings of ¢, we consider all the binary
partitionings P of the vertex set V, of g. Each partitioning
leads to two collectively exhaustive, mutually exclusive sets
of vertices, denoted as P(V,) = V*|V™, where:

1) V% € 2V is a subset of V,, comprising vertices whose
subgraph-isomorphic matchings can be derived from
E(w;). Here 2"« represents the power set of V,;

2) V¥ = V, \ V¥ consists of vertices of V, whose
matchings are not in £(w; ), and have to be searched
against g.



For the first set, V', its induced subgraph in ¢ is
q[V™], and all its embeddings, £(g[V™]), can be computed
directly from &£ (w;) by extracting the sub-embeddings (with
duplicates eliminated) of £(w;) confined by the vertex set,
f/(V*) (Note that V' C V, C V,,,). This sub-embedding
extraction operation upon & (w; ) is denoted as 7 ¢/ (yw) € (w;),
for which we abuse the notation of the projection operator,
m, in relational algebra. For each vertex w in the second set,
V', it cannot be mapped to any vertex in the embeddings
of w;. As a result, its candidate set C'(u) is refined to
C(u) \ mgr ()€ (w;); that is, we will search in other regions
of g, excluding &(w;), for feasible matchings of w.

The advantage of refining ¢ w.rt. w;, where ¢ C w;, is
that, for any partitioning of V| characterized by V* and
V™, the embeddings of the induced subgraph, ¢[V*], can
be computed directly from &(w;) without referring to g.
Although the embeddings of ¢[V*] have to be retrieved
from g, the candidate set C'(u) of each u € V¥ is refined
to exclude the matchings of u in &(w;), thus effectively
filtering false-positive embeddings relating to u.

Case 4 : qNwj # (. In this case, ¢ and w; share some
common substructures. To address ¢ w.r.t. w;, we first find
a maximal connected common subgraph, mcs, from ¢ and
w;. Note that finding maximal common subgraphs for two
given graphs is NP-hard [10]. However, we only need to
identify one such subgraph from ¢ and w;, both of which
are small-size graphs. Therefore, mcs can be computed
efficiently in practice. We then find all the embeddings
of mes, E(mes), w.rt. w;, because mes C w;. After all
the embeddings of mcs are computed from g, we further
compute the embeddings of ¢ w.r.t. mcs, because mes C g.

Case 5 : g N w; = (). It is still possible that the query graph
q is totally disjoint from the workload query w;; that is,
g Nw; = 0, or the maximal connected common subgraph
of ¢ and w;, mcs, is too small in size. In such cases, the
contribution of w; in answering ¢ becomes marginal. We
then turn to workload-oblivious algorithms without referring
to w; for help.

B. Workload-aware Query Processing

Given a query graph ¢, a large data graph g, and
query workload W = {wy,...,w,}, our workload-aware
subgraph querying framework, WaSQ, aims to select one
workload query w; € W(1 < i < n), if any, to help
address ¢ against g. When a new query ¢ is received,
it is first compared with each workload query w; € W.
According to different structure relationships between ¢ and
w; as discussed in Section IV-A, each w; is assigned to
different sets, 3;(i = 2, 3,4), representing different structure
relationship cases. In particular, if we find a workload query
w; € W, s.t. w; = q (Case 1), it will be immediately reused
to answer ¢, rather than being assigned to a set first, say B,
and then retrieved for query refinement and execution.
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After workload queries are allocated to different sets
B; (i = 2,3,4), we then select one workload query w*
following the order of examination from Bs, to B3, and then
to By; that is, if B; # (), we select w* from BB; while ignoring
workload queries in B;, where 2 < i < j < 4. If there
exist more than one workload queries in B;, we choose w*
that is potentially most beneficial for query refinement and
execution of g. In particular, we consider w* € B3; that is
closest to ¢ in structure, thus incurring a minimum number of
query refinements w.x.t. g. On the other hand, if no workload
queries can be exploited (Case 5), we turn to the workload-
oblivious approach for subgraph querying.

In support of workload-aware subgraph querying in a
large graph g, we need to store past queries and their
complete sets of embeddings in the cache. However, due
to the space limit, we cannot maintain all subgraph queries
that have been issued and resolved thus far. Instead, only
up to n queries are allowed in WaSQ, which constitute
the query workload W. Furthermore, when real-world graph
access patterns change over time, query workload need to be
updated as well. Specifically, when the cache space becomes
full, we evict some w; € W to open space for new queries.
In practice, we incorporate well-known cache-replacement
schemes, such as the least frequent used (LFU) and the least
recently used (LRU) policies, in WaSQ to adaptively update
W in the presence of dynamic and diverse query workload.

V. EXPERIMENTS

We report our experimental studies in four real-world
graphs: Yeast, Human, HPRD, and WordNet, and compare
WaSQ with two state-of-the-art, workload-oblivious meth-
ods, CFL-Match [1] and TurbolSO [3]. Both query graphs
and query workload are generated from data graphs. All
algorithms were implemented in C++, and compiled by
GNU g++ 4.8.4 with the -O3 flag. All experiments were
carried out on a Linux server running Ubuntu 14.04 with
two Intel 2.3GHz ten-core CPUs and 256GB memory.

1. The Static Hit-Rate Setting. In the first experiment, W
is saturated with 50 workload queries without replacement.
We require every 10 workload queries satisfy the condition
that there exists a query ¢ € @ to account for each of the
five structure relationship cases for query refinement and
execution. The rationale to compose W with static hit-rates
is to illustrate in which case, W will contribute most for
subgraph querying. The query time results are presented
in Figure 1(a). Note that WaSQ consistently outperforms
CFL-Match and TurbolSO in all different graphs, indicating
that, once empowered with query workload, WaSQ can
significantly boost subgraph query performance.

For WaSQ, we further evaluate the runtime cost for
query refinement and execution (named WaSQ-Search in
Figure 1(a) in gray colors). Note if there exists no such
w* € W that can be used for query refinement (namely, in
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Figure 1: Subgraph Query performance in Different Experimental Settings.

Case 5), this cost can be regarded as the cache-miss penalty.
It is shown that WaSQ-Search only takes less than 10%
of the overall runtime for WaSQ, indicating that finding w*
from W can be done efficiently, and even when a cache-miss
arises, the cache-miss penalty is marginal.

We further illustrate the breakdown time of WaSQ con-
sumed in different cases, as illustrated in Figure 1(b). Note
that in Case 1 (w; = ¢), g can be answered most efficiently,
as embeddings of w; can be directly employed to answer
g without accesses to g. In Case 2 (w; C ¢), g can be
directly extended from w;, so the query performance is still
significantly better than the workload-oblivious method, rep-
resented by Case 5. Even in Case 3 and Case 4, our proposed
query refinement and execution methods still outperforms
the workload-oblivious method.

2. The Random Workload Setting. In the second exper-
iment, the query workload W is saturated with 50 randomly
selected workload queries. This setting represents the real-
world scenario where workload-aware subgraph querying is
typically performed without prior knowledge of the distribu-
tion of workload queries that can be exploited in difference
cases. The query time results are illustrated in Figure 1(c).
Again, WaSQ consistently outperforms CFL-Match and
TurbolSO in all four graphs. Specifically, the performance
gains of WaSQ versus TurbolSO can be as large as one
order-of-magnitude. In addition, the time consumed for
WaSQ-Search, the upper bound of which turns out to
be the cache-miss penalty, is rather marginal (within 0.1
second) in all different graphs.

3. The Cold-start Setting. In the third experiment, we
assume the cache of WaSQ is initially empty (|W| = 0).
When the first query ¢ is posed, we rely on the workload-
oblivious method to address it. After ¢ is resolved, the query,
together with all its embeddings, £(g), is added to W as
the first workload query. Subsequent queries can henceforth
exploit the growing W for workload-aware subgraph query-
ing. When W is full (JIW| = 50), the workload replacement
policy is enabled to keep W up-to-date. Note this experi-
mental setting resembles the cold-start and evolution process
for query workload W during subgraph querying in graphs.
The query time results are illustrated in Figure 1(d). Again,
WaSQ achieves consistent performance gains compared
with CFL-Match and TurbolSO in all different graphs. As a
result, by exploiting the query workload information, WaSQ
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can always help expedite subgraph querying in real-world
large graphs.

VI. CONCLUSION

Subgraph querying has been a fundamental problem in
graph data management. State-of-the-art solutions, however,
are workload-oblivious, leaving the dynamic and diverse
query workload information unexplored. In this paper, we
presented a workload-aware subgraph querying framework,
WaSQ, to consider the missing yet performance-critical
query workload for subgraph querying. WaSQ is the first
workload-aware subgraph querying framework comprising a
suites of query refinement and execution methods and work-
load caching, organization, and maintenance techniques.
Our theoretical and experimental studies have validated the
necessity, applicability, and effectiveness of WaSQ, which
has achieved significant and consistent performance gains
for subgraph querying in real-world, large graphs.
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