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Abstract. A k-collision for a compressing hash function H is a set of k
distinct inputs that all map to the same output. In this work, we show

that for any constant k, Θ

(
N

1
2 (1− 1

2k−1
)
)

quantum queries are both

necessary and sufficient to achieve a k-collision with constant probabil-
ity. This improves on both the best prior upper bound (Hosoyamada et
al., ASIACRYPT 2017) and provides the first non-trivial lower bound,
completely resolving the problem.

1 Introduction

Collision resistance is one of the central concepts in cryptography. A collision
for a hash function H : {0, 1}m → {0, 1}n is a pair of distinct inputs x1 �= x2

that map to the same output: H(x1) = H(x2).

Multi-collisions. Though receiving comparatively less attention in the literature,
multi-collision resistance is nonetheless an important problem. A k-collision for
H is a set of k distinct inputs {x1, . . . , xk} such that xi �= xj for i �= j where
H(xi) = H(xj) for all i, j.

Multi-collisions frequently surface in the analysis of hash functions
and other primitives. Examples include MicroMint [RS97], RMAC [JJV02],
chopMD [CN08], Leamnta-LW [HIK+11], PHOTON and Parazoa [NO14],
Keyed-Sponge [JLM14], all of which assume the multi-collision resistance of
a certain function. Multi-collisions algorithms have also been used in attacks,
such as MDC-2 [KMRT09], HMAC [NSWY13], Even-Mansour [DDKS14], and
LED [NWW14]. Multi-collision resistance for polynomial k has also recently
emerged as a theoretical way to avoid keyed hash functions [BKP18,BDRV18],
or as a useful cryptographic primitives, for example, to build statistically hiding
commitment schemes with succinct interaction [KNY18].

Quantum. Quantum computing stands to fundamentally change the field of cryp-
tography. Importantly for our work, Grover’s algorithm [Gro96] can speed up
brute force searching by a quadratic factor, greatly increasing the speed of pre-
image attacks on hash functions. In turn, Grover’s algorithm can be used to find
ordinary collisions (k = 2) in time O(2n/3), speeding up the classical “birthday”
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attack which requires O(2n/2) time. It is also known that, in some sense (dis-
cussed below), these speedups are optimal [AS04,Zha15a]. These attacks require
updated symmetric primitives with longer keys in order to make such attacks
intractable.

1.1 This Work: Quantum Query Complexity of Multi-collision
Resistance

In this work, we consider quantum multi-collision resistance. Unfortunately, little
is known of the difficulty of finding multi -collisions for k ≥ 3 in the quantum
setting. The only prior work on this topic is that of Hosoyamada et al. [HSX17],
who give a O(24n/9) algorithm for 3-collisions, as well as algorithms for general
constant k. On the lower bounds side, the Ω(2n/3) from the k = 2 case applies
as well for higher k, and this is all that is known.

We completely resolve this question, giving tight upper and lower bounds
for any constant k. In particular, we consider the quantum query complexity of
multi-collisions. We will model the hash function H as a random oracle. This
means, rather than getting concrete code for a hash function H, the adversary is
given black box access to a function H chosen uniformly at random from the set
of all functions from {0, 1}m into {0, 1}n. Since we are in the quantum setting,
black box access means the adversary can make quantum queries to H. Each
query will cost the adversary 1 time step. The adversary’s goal is to solve some
problem—in our case find a k-collision—with the minimal cost. Our results are
summarized in Table 1. Both our upper bounds and lower bounds improve upon
the prior work for k ≥ 3; for example, for k = 3, we show that the quantum
query complexity is Θ(23n/7).

Table 1. Quantum query complexity results for k-collisions. k is taken to be a constant,
and all Big O and Ω notations hide constants that depend on k. In parenthesis are
the main restrictions for the lower bounds provided. We note that in the case of 2-to-1
functions, m ≤ n + 1, so implicitly these bounds only apply in this regime. In these
cases, m characterizes the query complexity. On the other hand, for random or arbitrary
functions, n is the more appropriate way to measure query complexity. We also note
that for arbitrary functions, when m ≤ n + log(k − 1), it is possible that H contains
no k-collisions, so the problem becomes impossible. Hence, m ≥ n + log k is essentially
tight. For random functions, there will be no collisions w.h.p unless m � (1 − 1

k
)n, so

algorithms on random functions must always operate in this regime.

Upper Bound (Algorithm) Lower Bound

[BHT98] O(2m/3) for k = 2 (2-to-1)

[AS04] Ω(2m/3) for k = 2 (2-to-1)

[Zha15a] O(2n/3) for k = 2 (Random, m ≥ n/2) Ω(2n/3) for k = 2 (Random)

[HSX17] O

(
2

1
2 (1− 1

3k−1 )n
)

(m ≥ n + log k)

This Work O

(
2

1
2
(1− 1

2k−1
)n

)
(m ≥ n + log k) Ω

(
2

1
2
(1− 1

2k−1
)n

)
(Random)
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1.2 Motivation

Typically, the parameters of a hash function are set to make finding collisions
intractable. One particularly important parameter is the output length of the
hash function, since the output length in turn affects storage requirements and
the efficiency of other parts of a cryptographic protocol.

Certain attacks, called generic attacks, apply regardless of the implementa-
tion details of the hash function H, and simply work by evaluating H on several
inputs. For example, the birthday attack shows that it is possible to find a col-
lision in time approximately 2n/2 by a classical computer. Generalizations show
that k-collisions can be found in time Θ(2(1−1/k)n)1.

These are also known to be optimal among classical generic attacks. This is
demonstrated by modeling H as an oracle, and counting the number of queries
needed to find (k-)collisions in an arbitrary hash function H. In cryptographic
settings, it is common to model H as a random function, giving stronger average
case lower bounds.

Understanding the effect of generic attacks is critical. First, they cannot be
avoided, since they apply no matter how H is designed. Second, other parameters
of the function, such as the number of iterations of an internal round function,
can often be tuned so that the best known attacks are in fact generic. Therefore,
for many hash functions, the complexity of generic attacks accurately represents
the actual cost of breaking them.

Therefore, for “good” hash functions where generic attacks are optimal, in
order to achieve security against classical adversaries n must be chosen so that
t = 2n/2 time steps are intractable. This often means setting t = 2128, so n = 256.
In contrast, generic classical attacks can find k-collisions in time Θ(2(1−1/k)n).
For example, this means that n must be set to 192 to avoid 3-collisions, or 171
to avoid 4-collisions.

Once quantum computers enter the picture, we need to consider quantum
queries to H in order to model actual attacks that evaluate H in superposition.
This changes the query complexity, and makes proving bounds much more diffi-
cult. Just as understanding query complexity in the classical setting was crucial
to guide parameter choices, it will be critical in the quantum world as well.

We also believe that quantum query complexity is an important study
in its own right, as it helps illuminate the effects quantum computing will
have on various areas of computer science. It is especially important to cryp-
tography, as many of the questions have direct implications to the post-
quantum security of cryptosystems. Even more, the techniques involved are
often closely related to proof techniques in post-quantum cryptography. For
example, bounds for the quantum query complexity of finding collisions in ran-
dom functions [Zha15a], as well as more general functions [EU17,BES17], were
developed from techniques for proving security in the quantum random oracle
model [BDF+11,Zha12,TU16]. Similarly, the lower bounds in this work build on
techniques for proving quantum indifferentiability [Zha18]. On the other hand,

1 Here, the Big Theta notation hides a constant that depends on k.
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proving the security of MACs against superposition queries [BZ13] resulted in
new lower bounds for the quantum oracle interrogation problem [van98] and
generalizations [Zha15b].

Lastly, multi-collision finding can be seen as a variant of k-distinctness, which
is essentially the problem of finding a k-collision in a function H : {0, 1}n →
{0, 1}n, where the k-collision may be unique and all other points are distinct. The
quantum query complexity of k-distinctness is currently one of the main open
problems in quantum query complexity. An upper bound of (2n)

3
4− 1

4(2k−1) was
shown by Belovs [Bel12]. The best known lower bound is Ω((2n)

3
4− 1

2k ) [BKT18].
Interestingly, the dependence of the exponent on k is exponential for the upper
bound, but polynomial for the lower bound, suggesting a fundamental gap our
understanding of the problem.

Note that our results do not immediately apply in this setting, as our algo-
rithm operates only in a regime where there are many (≤ k-)collisions, whereas
k-distinctness applies even if the k-collision is unique and all other points are
distinct (in particular, no (k−1)-collisions). On the other hand, our lower bound
is always lower than 2n/2, which is trivial for this problem. Nonetheless, both
problems are searching for the same thing—namely a k-collisions—just in dif-
ferent settings. We hope that future work may be able to extend our techniques
to solve the problem of k-distinctness.

1.3 The Reciprocal Plus 1 Rule

For many search problems over random functions, such as pre-image search,
collision finding, k-sum, quantum oracle interrogation, and more, a very simple
folklore rule of thumb translates the classical query complexity into quantum
query complexity.

In particular, let N = 2n, all of these problems have a classical query com-
plexity Θ(N1/α) for some rational number α. Curiously, the quantum query
complexity of all these problems is always Θ(N

1
α+1 ).

In slightly more detail, for all of these problems the best classical q-query
algorithm solves the problem with probability Θ(qc/Nd) for some constants c, d.
Then the classical query complexity is Θ(Nd/c). For this class of problems, the
success probability of the best q query quantum algorithm is obtained simply by
increasing the power of q by d. This results in a quantum query complexity of
Θ(Nd/(c+d)). Examples:

– Grover’s pre-image search [Gro96] improves success probability from q/N
to q2/N , which is known to be optimal [BBBV97]. The result is a query
complexity improvement from N = N1/1 to N1/2.
Similarly, finding, say, 2 pre-images has classical success probability q2/N2; it
is straightforward to adapt known techniques to prove that the best quantum
success probability is q4/N2. Again, the query complexity goes from N to
N1/2. Analogous statements hold for any constant number of pre-images.

– The BHT collision finding algorithm [BHT98] finds a collision with probabil-
ity q3/N , improving on the classical birthday attack q2/N . Both of these are
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known to be optimal [AS04,Zha15a]. Thus quantum algorithms improve the
query complexity from N1/2 to N1/3.
Similarly, finding, say, 2 distinct collisions has classical success probability
q4/N2, whereas we show that the quantum success probability is q6/N2.
More generally, any constant number of distinct collisions conforms to the
Reciprocal Plus 1 Rule.

– k-sum asks to find a set of k inputs such that the sum of the outputs is 0.
This is a different generalization of collision finding than what we study in this
work. Classically, the best algorithm succeeds with probability qk/N . Quan-
tumly, the best algorithm succeeds with probability qk+1/N [BS13,Zha18].
Hence the query complexity goes from N1/k to N1/(k+1).
Again, solving for any constant number of distinct k-sum solutions also con-
forms to the Reciprocal Plus 1 Rule.

– In the oracle interrogation problem, the goal is to compute q+1 input/output
pairs, using only q queries. Classically, the best success probability is clearly
1/N. Meanwhile, Boneh and Zhandry [BZ13] give a quantum algorithm with
success probability roughly q/N, which is optimal.

Some readers may have noticed that Reciprocal Plus 1 (RP1) rule does not
immediately appear to apply the Element Distinctness. The Element Distinct-
ness problem asks to find a collision in H : [M ] → [N ] where the collision is
unique. Classically, the best algorithm succeeds with probability Θ(q2/M2). On
the other hand, quantum algorithms can succeed with probability Θ(q3/M2),
which is optimal [Amb04,Zha15a]. This does not seem to follow the prediction
of the RP1 rule, which would have predicted q4/M2. However, we note that
unlike the settings above which make sense when N � M , and where the com-
plexity is characterized by N , the Element Distinctness problem requires M ≤ N
and the complexity is really characterized by the domain size M . Interestingly,
we note that for a random expanding function, when N ≈ M2, there will with
constant probability be exactly one collision in H. Thus, in this regime the colli-
sion problem matches the Element Distinctness problem, and the RP1 rule gives
the right query complexity!

Similarly, the quantum complexity for k-sum is usually written as Mk/(k+1),
not N1/(k+1). But again, this is because most of the literature considers H for
which there is a unique k-sum and H is non-compressing, in which case the
complexity is better measured in terms of M . Notice that a random function
will contain a unique k collision when N ≈ Mk, in which case the bound we
state (which follows the RP1 rule) exactly matches the statement usually given.

On the other hand, the RP1 rule does not give the right answer for k-
distinctness for k ≥ 3, since the RP1 rule would predict the exponent to approach
1/2 for large k, whereas prior work shows that it approaches 3/4 for large k. That
RP1 does not apply perhaps makes sense, since there is no setting of N,M where
a random function will become an instance of k-distinctness: for any setting of
parameters where a random function has a k-collision, it will also most likely
have many (k − 1)-collisions.
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The takeaway is that the RP1 Rule seems to apply for natural search prob-
lems that make sense on random functions when N � M . Even for problems
that do not immediately fit this setting such as Element Distinctness, the rule
often still gives the right query complexity by choosing M,N so that a random
function is likely to give an instance of the desired problem.

Enter k-collisions. In the case of k-collisions, the classical best success probability
is qk/N (k−1), giving a query complexity of N (k−1)/k = N1−1/k. Since the k-
collision problem is a generalization of collision finding, is similar in spirit to the
problems above, and applies to compressing random functions, one may expect
that the Reciprocal Plus 1 Rule applies. If true, this would give a quantum
success probability of q2k−1/Nk−1, and a query complexity of N (k−1)/(2k−1) =
N

1
2 (1− 1

2k−1 ).
Even more, for small enough q, it is straightforward to find a k-collision with

probability O(q2k−1/Nk−1) as desired. In particular, divide the q queries into
k − 1 blocks. Using the first q/(k − 1) queries, find a 2-collision with probability
(q/(k − 1))3/N = O(q3/N). Let y be the image of the collision. Then, for each
of the remaining (k − 2) blocks of queries, find a pre-image of y with probability
(q/(k − 1))2/N = O(q2/N) using Grover search. The result is k colliding inputs
with probability O(q3+2(k−2)/Nk−1) = O(q2k−1/Nk−1). It is also possible to
prove that this is a lower bound on the success probability (see lower bound
discussion below). Now, this algorithm works as long q ≤ N1/3, since beyond this
range the 2-collision success probability is bounded by 1 < q3/N . Nonetheless, it
is asymptotically tight in the regime for which it applies. This seems to suggest
that the limitation to small q might be an artifact of the algorithm, and that a
more clever algorithm could operate beyond the N1/3 barrier. In particular, this
strongly suggests k-collisions conforms to the Reciprocal Plus 1 Rule.

Note that the RP1 prediction gives an exponent that depends polynomially
on k, asymptotically approaching 1/2. In contrast, the prior work of [HSX17]
approaches 1/2 exponentially fast in k. Thus, prior to our work we see an expo-
nential vs polynomial gap for k-collisions, similar to the case of k-distinctness.

Perhaps surprisingly given the above discussion2, our work demonstrates that
the right answer is in fact exponential, refuting the RP1 rule for k-collisions.

As mentioned above, our results do not immediately give any indication for
the query complexity of k-distinctness. However, our results may hint that k-
distinctness also exhibits an exponential dependence on k. We hope that future
work, perhaps building on our techniques, will be able to resolve this question.

1.4 Technical Details

The Algorithm. At their heart, the algorithms for pre-image search, colli-
sion finding, k-sum, and the recent algorithm for k-collision, all rely on Grover’s
algorithm. Let f : {0, 1}n → {0, 1} be a function with a fraction δ of accept-
ing inputs. Grover’s algorithm finds the input with probability O(δq2) using q

2 At least, the authors found it surprising!.
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quantum queries to f . Grover’s algorithm finds a pre-image of a point y in H
by setting f(x) to be 1 if and only if H(x) = y.

The BHT algorithm [BHT98] uses Grover’s to find a collision in H. First, it
queries H on q/2 = O(q) random points, assembling a database D. As long as
q � N1/2, all the images in D will be distinct. Now, it lets f(x) be the function
that equals 1 if and only if H(x) is found amongst the images in D, and x is not
among the pre-images. By finding an accepting input to f , one immediately finds
a collision. Notice that the fraction of accepting inputs is approximately q/N.

By running Grover’s for q/2 = O(q) steps, one obtains a such a pre-image,
and hence a collision, with probability O((q/N)q2) = O(q3/N).

Hosoyamada et al. show how this idea can be recursively applied to find
multi-collisions. For k = 3, the first step is to find a database D2 consisting of r
distinct 2-collisions. By recursively applying the BHT algorithm, each 2-collision
takes time N1/3. Then, to find a 3 collision, set up f as before: f(x) = 1 if and
only if H(x) is amongst the images in D and x is not among the pre-images.
The fraction of accepting inputs is approximately r/N, so Grover’s algorithm
will find a 3-collision in time (N/r)1/2. Setting r to be N1/9 optimizes the total
query count as N4/9. For k = 4, recursively build a table D3 of 3-collisions, and
set up f to find a collision with the database.

The result is an algorithm for k-collisions for any constant k, using
O(N

1
2 (1− 1

3k−1 )) queries.

Our algorithm improves on Hosoyamada et al.’s, yielding a query complexity
of O(N

1
2 (1− 1

2k−1
)). Note that for Hosoyamada et al.’s algorithm, when construct-

ing Dk−1, many different Dk−2 databases are being constructed, one for each
entry in Dk−1. Our key observation is that a single database can be re-used
for the different entries of Dk−1. This allows us to save on some of the queries
being made. These extra queries can then be used in other parts of the algorithm
to speed up the computation. By balancing the effort correctly, we obtain our
algorithm. Put another way, the cost of finding many (k-)collisions can be amor-
tized over many instances, and then recursively used for finding collisions with
higher k. Since the recursive steps involve solving many instances, this leads to
an improved computational cost.

In more detail, we iteratively construct databases D1,D2, . . . , Dk. Each Di

will have ri i-collisions. We set rk = 1, indicating that we only need a single
k-collision. To construct database D1, simply query on r1 arbitrary points. To
construct database Di, i ≥ 2, define the function fi that accepts inputs that col-
lide with Di−1 but are not contained in Di−1. The fraction of points accepted by
fi is approximately ri−1/N . Therefore, Grover’s algorithm returns an accepting
input in time (N/ri−1)1/2. We simply run Grover’s algorithm ri times using the
same database Di−1 to construct Di in time ri(N/ri−1)1/2.

Now we just optimize r1, . . . , rk−1 by setting the number of queries to con-
struct each database to be identical. Notice that r1 = O(q), so solving for ri

gives us
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rk = O

(
q2− 1

2k−1

N1− 1
2k−1

)

Setting rk = 1 and solving for q gives the desired result. In particular, in the
case k = 3, our algorithm finds a collision in time O(N3/7).

The Lower Bound. Notice that our algorithm fails to match the result one
would get by applying the “Reciprocal Plus 1 Rule”. Given the discussion above,
one may expect that our iterative algorithm could potentially be improved on
even more. To the contrary we prove that, in fact, our algorithm is asymptotically
optimal for any constant k.

Toward that end, we employ a recent technique developed by Zhandry [Zha18]
for analyzing quantum queries to random functions. We use this technique to
show that our algorithm is tight for random functions, giving an average-case
lower bound.

Zhandry’s “Compressed Oracles.” Zhandry demonstrates that the information
an adversary knows about a random oracle H can be summarized by a database
D∗ of input/output pairs, which is updated according to some special rules. In
Zhandry’s terminology, D∗ is the “compressed standard/phase oracle”.

This D∗ is not a classical database, but technically a superposition of all
databases, meaning certain amplitudes are assigned to each possible database.
D∗ can be measured, obtaining an actual classical database D with probability
equal to its amplitude squared. In the following discussion, we will sometimes
pretend that D∗ is actually a classical database. While inaccurate, this will give
the intuition for the lower bound techniques we employ. In the Sect. 4 we take
care to correctly analyze D∗ as a superposition of databases.

Zhandry shows roughly the following:

– Consider any “pre-image problem”, whose goal is to find a set of pre-images
such that the images satisfy some property. For example, k-collision is the
problem of finding k pre-images such that the corresponding images are all
the same.
Then after q queries, consider measuring D∗. The adversary can only solve
the pre-image problem after q queries if the measured D∗ has a solution to
the pre-image problem.
Thus, we can always upper bound the adversary’s success probability by
upper bounding the probability D∗ contains a solution.

– D∗ starts off empty, and each query can only add one point to the database.
– For any image point y, consider the amplitude on databases containing y as

a function of q (remember that amplitude is the square root of the proba-
bility). Zhandry shows that this amplitude can only increase by O(

√
1/N)

from one query to the next. More generally, for a set S of r different images,
the amplitude on databases containing any point in S can only increase by
O(
√|S|/N).
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The two results above immediately imply the optimality of Grover’s search.
In particular, the amplitude on databases containing y is at most O(q

√
1/N)

after q queries, so the probability of obtaining a solution is the square of this
amplitude, or O(q2/N). This also readily gives a lower bound for the collision
problem. Namely, in order to introduce a collision to D∗, the adversary must add
a point that collides with one of the existing points in D∗. Since there are at most
q such points, the amplitude on such D∗ can only increase by O(

√
q/N). This

means the overall amplitude after q queries is at most O(q3/2/N1/2). Squaring
to get a probability gives the correct lower bound.

A First Attempt. Our core idea is to attempt a lower bound for k-collision by
applying these ideas recursively. The idea is that, in order to add, say, a 3-
collision to D∗, there must be an existing 2-collision in the database. We can
then use the 2-collision lower bound to bound the increase in amplitude that
results from each query.

More precisely, for very small q, we can bound the amplitude on databases
containing � distinct 2-collisions as O( (q3/2/N1/2)�). If q � N1/3, � must be a
constant else this term is negligible. So we can assume for q < N1/3 that � is a
constant.

Then, we note that in order to introduce a 3-collision, the adversary’s new
point must collide with one of the existing 2-collisions. Since there are at most
�, we know that the amplitude increases by at most O(

√
�/N1/2) = O(1/N1/2)

since � is a constant. This shows that the amplitude on databases with 3-collisions
is at most q/N1/2.

We can bound the amplitude increase even smaller by using not only the
fact that the database contains at most � 2-collisions, but the fact that the
amplitude on databases containing even a single 2-collision is much less than 1.
In particular, it is O(q3/2/N1/2) as demonstrated above. Intuitively, it turns out
we can actually just multiply the 1/N1/2 amplitude increase in the case where
the database contains a 2-collision by the q3/2/N1/2 amplitude on databases
containing any 2-collision to get an overall amplitude increase of q3/2/N .

Overall then, we upper bound the amplitude after q < N1/3 queries by
O(q5/2/N), given an upper bound of O(q5/N2) on the probability of finding
a 3-collision. This lower bound can be extended recursively to any constant
k-collisions, resulting in a bound that exactly matches the Reciprocal Plus 1
Rule, as well as the algorithm for small q! This again seems to suggest that our
algorithm is not optimal.

Our Full Proof. There are two problems with the argument above that, when
resolved, actually do show our algorithm is optimal. First, when q ≥ N1/3, the
O(q3/2/N1/2) part of the amplitude bound becomes vacuous, as amplitudes can
never be more than 1. Second, the argument fails to consider algorithms that find
many 2-collisions, which is possible when q > N1/3. Finding many 2-collisions
of course takes more queries, but then it makes extending to 3-collisions easier,
as there are more collisions in the database to match in each iteration.
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In our full proof, we examine the amplitude on the databases containing a
3-collision as well as r 2-collisions, after q queries. We call this amplitude gq,r.
We show a careful recursive formula for bounding g using Zhandry’s techniques,
which we then solve.

More generally, for any constant k, we let g
(k)
q,r,s be the amplitude on databases

containing exactly r distinct (k − 1)-collisions and at least s distinct k-collisions
after q queries. We develop a multiply-recursive formula for the g(k) in terms of
the g(k) and g(k−1). We then recursively plug in our solution to g(k−1) so that the
recursion is just in terms of g(k), which we then solve using delicate arguments.

Interestingly, this recursive structure for our lower bound actually closely
matches our algorithm. Namely, our proof lower bounds the difficulty of adding
an i-collision to a database D∗ containing many i − 1 collisions, exactly the
problem our algorithm needs to solve. Our techniques essentially show that every
step of our algorithm is tight, resulting in a lower bound of Ω

(
N

1
2 (1− 1

2k−1
)
)
,

exactly matching our algorithm. Thus, we solve the quantum query complexity
of k-collisions.

1.5 Other Related Work

Most of the related work has been mentioned earlier. Recently, in [HSTX18],
Hosoyamada, Sasaki, Tani and Xagawa gave the same improvement. And they
also showed that, their algorithm can also find a multi-collision for a more general
setting where |X| ≥ l

cN
· |Y | for any positive value cN ≥ 1 which is in o(N

1
2l−1 )

and find a multiclaw for random functions with the same query complexity. They
also noted that our improved collision finding algorithm for the case |X| ≥ l · |Y |
was reported in the Rump Session of AsiaCrypt 2017. They did not give an
accompanying lower bound.

2 Preliminaries

Here, we recall some basic facts about quantum computation, and review the
relevant literature on quantum search problems.

2.1 Quantum Computation

A quantum system Q is defined over a finite set B of classical states. In this
work we will consider B = {0, 1}n. A pure state over Q is a unit vector in C

|B|,
which assigns a complex number to each element in B. In other words, let |φ〉
be a pure state in Q, we can write |φ〉 as:

|φ〉 =
∑
x∈B

αx|x〉

where
∑

x∈B |αx|2 = 1 and {|x〉}x∈B is called the “computational basis” of
C

|B|. The computational basis forms an orthonormal basis of C|B|.
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Given two quantum systems Q1 over B1 and Q2 over B2, we can define a
product quantum system Q1 ⊗ Q2 over the set B1 × B2. Given |φ1〉 ∈ Q1 and
|φ2〉 ∈ Q2, we can define the product state |φ1〉 ⊗ |φ2〉 ∈ Q1 ⊗ Q2.

We say |φ〉 ∈ Q1 ⊗ Q2 is entangled if there does not exist |φ1〉 ∈ Q1 and
|φ2〉 ∈ Q2 such that |φ〉 = |φ1〉 ⊗ |φ2〉. For example, consider B1 = B2 = {0, 1}
and Q1 = Q2 = C

2, |φ〉 = |00〉+|11〉√
2

is entangled. Otherwise, we say |φ〉 is un-
entangled.

A pure state |φ〉 ∈ Q can be manipulated by a unitary transformation U .
The resulting state |φ′〉 = U |φ〉.

We can extract information from a state |φ〉 by performing a measure-
ment. A measurement specifies an orthonormal basis, typically the computa-
tional basis, and the probability of getting result x is |〈x|φ〉|2. After the mea-
surement, |φ〉 “collapses” to the state |x〉 if the result is x.

For example, given the pure state |φ〉 = 3
5 |0〉+ 4

5 |1〉 measured under {|0〉, |1〉},
with probability 9/25 the result is 0 and |φ〉 collapses to |0〉; with probability
16/25 the result is 1 and |φ〉 collapses to |1〉.

We finally assume a quantum computer can implement any unitary trans-
formation (by using these basic gates, Hadamard, phase, CNOT and π

8 gates),
especially the following two unitary transformations:

– Classical Computation: Given a function f : X → Y , one can imple-
ment a unitary Uf over C

|X|·|Y | → C
|X|·|Y | such that for any |φ〉 =∑

x∈X,y∈Y αx,y|x, y〉,

Uf |φ〉 =
∑

x∈X,y∈Y

αx,y|x, y ⊕ f(x)〉

Here, ⊕ is a commutative group operation defined over Y .
– Quantum Fourier Transform: Let N = 2n. Given a quantum state |φ〉 =∑2n−1

i=0 xi|i〉, by applying only O(n2) basic gates, one can compute |ψ〉 =∑2n−1
i=0 yi|i〉 where the sequence {yi}2

n−1
i=0 is the sequence achieved by applying

the classical Fourier transform QFTN to the sequence {xi}2
n−1

i=0 :

yk =
1√
N

2n−1∑
i=0

xiω
ik
n

where ωn = e2πi/N , i is the imaginary unit.
One interesting property of QFT is that by preparing |0n〉 and applying QFT2

to each qubit, (QFT2|0〉)⊗n = 1√
2n

∑
x∈{0,1}n |x〉 which is a uniform superpo-

sition over all possible x ∈ {0, 1}n.

For convenience, we sometimes ignore the normalization of a pure state which
can be calculated from the context.
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2.2 Grover’s Algorithm and BHT Algorithm

Definition 1 (Database Search Problem). Suppose there is a func-
tion/database encoded as F : X → {0, 1} and F−1(1) is non-empty. The problem
is to find x∗ ∈ X such that F (x∗) = 1.

We will consider adversaries with quantum access to F , meaning they submit
queries as

∑
x∈X,y∈{0,1} αx,y|x, y〉 and receive in return

∑
x∈X,y∈{0,1} αx,y|x, y ⊕

F (x)〉. Grover’s algorithm [Gro96] finds a pre-image using an optimal number
of queries:

Theorem 1 ([Gro96,BBHT98]). Let F be a function F : X → {0, 1}. Let t =
|F−1(1)| > 0 be the number of pre-images of 1. There is a quantum algorithm
that finds x∗ ∈ X such that F (x∗) = 1 with an expected number of quantum

queries to F at most O

(√
|X|
t

)
even without knowing t in advance.

We will normally think of the number of queries as being fixed, and con-
sider the probability of success given the number of queries. The algorithm from
Theorem 1, when runs for q queries, can be shown to have a success probability
min(1, O(q2/(|X|/t))). For the rest of the paper, “Grover’s algorithm” will refer
to this algorithm.

Now let us look at another important problem: 2-collision finding problem
on 2-to-1 functions.

Definition 2 (Collision Finding on 2-to-1 Functions). Assume |X| =
2|Y | = 2N . Consider a function F : X → Y such that for every y ∈ Y ,
|F−1(y)| = 2. In other words, every image has exactly two pre-images. The
problem is to find x �= x′ such that F (x) = F (x′).

Brassard, Høyer and Tapp proposed a quantum algorithm [BHT98] that
solved the problem using only O(N1/3) quantum queries. The idea is the fol-
lowing:

– Prepare a list of input and output pairs, L = {(xi, yi = F (xi)}t
i=1 where xi

is drawn uniformly at random and t = N1/3;
– If there is a 2-collision in L, output that pair. Otherwise,
– Run Grover’s algorithm on the following function F ′: F ′(x) = 1 if and only

if there exists i ∈ {1, 2, · · · , t}, F (x) = yi = F (xi) and x �= xi. Output the
solution x, as well as whatever xi it collides with.

This algorithm takes O(t+
√

N/t) quantum queries and when t = Θ(N1/3), the
algorithm finds a 2-collision with O(N1/3) quantum queries.

2.3 Multi-collision Finding and [HSX17]

Hosoyamada, Sasaki and Xagawa proposed an algorithm for k-collision finding
on any function F : X → Y where |X| ≥ k|Y | (k is a constant). They generalized
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the idea of [BHT98] and gave the proof for even arbitrary functions. We now
briefly talk about their idea. For simplicity in this discussion, we assume F is a
k-to-1 function.

The algorithm prepares t pairs of 2-collisions (x1, x
′
1), · · · , (xt, x

′
t) by running

the BHT algorithm t times. If two pairs of 2-collisions collide, there is at least
a 3-collision (possibly a 4-collision). Otherwise, it uses Grover’s algorithm to
find a x′′ �= xi, x′′ �= x′

i and f(x′′) = f(xi) = f(x′
i). The number of queries is

O(tN1/3 +
√

N/t). When t = Θ(N1/9), the query complexity is O(N4/9).
By induction, finding a (k − 1)-collision requires O(N (3k−1−1)/(2·3k−1)) quan-

tum queries. By preparing t (k−1)-collisions and applying Grover’s algorithm to

it, it takes O(tN (3k−1−1)/(2·3k−1) +
√

N
t ) quantum queries to get one k-collision.

It turns out that t = Θ(N1/3k

) and the complexity of finding k-collision is
O(N (3k−1)/(2·3k)).

2.4 Compressed Fourier Oracles and Compressed Phase Oracles

In [Zha18], Zhandry showed a new technique for analyzing cryptosystems in the
random oracle model. He also showed that his technique can be used to re-prove
several known quantum query lower bounds. In this work, we will extend his
technique in order to prove a new optimal lower bound for multi-collisions.

The basic idea of Zhandry’s technique is the following: assume A is making a
query to a random oracle H and the query is

∑
x,u,z ax,u,z|x, u, z〉 where x is the

query register, u is the response register and z is its private register. Instead of
only considering the adversary’s state

∑
x,u,z ax,u,z|x, u + H(x), z〉 for a random

oracle H, we can actually treat the whole system as∑
x,u,z

∑
H

ax,u,z|x, u + H(x), z〉 ⊗ |H〉

where |H〉 is the truth table of H. By looking at random oracles that way,
Zhandry showed that these five random oracle models/simulators are equivalent:

1. Standard Oracles:

StO
∑
x,u,z

ax,u,z|x, u, z〉 ⊗
∑
H

|H〉 ⇒
∑
x,u,z

∑
H

ax,u,z|x, u + H(x), z〉 ⊗ |H〉

2. Phase Oracles:

PhO
∑
x,u,z

ax,u,z|x, u, z〉 ⊗
∑
H

|H〉 ⇒
∑
x,u,z

ax,u,z|x, u, z〉 ⊗
∑
H

ωH(x)·u
n |H〉

where ωn = e2πi/N and PhO = (I ⊗QFT† ⊗ I) · StO · (I ⊗QFT⊗ I). In other
words, it first applies the QFT to the u register, applies the standard query,
and then applies QFT† one more time.
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3. Fourier Oracles: We can view
∑

H |H〉 as QFT|0N 〉. In other words, if we
perform Fourier transform on a function that always outputs 0, we will get a
uniform superposition over all the possible functions

∑
H |H〉.

Moreover,
∑

H ωH(x)·u|H〉 is equivalent to QFT|0N ⊕ (x, u)〉. Here ⊕ means
updating (xor) the x-th entry in the database with u.
So in this model, we start with

∑
x,u,z a0

x,u,z|x, u, z〉 ⊗ QFT|D0〉 where D0 is
an all-zero function. By making the i-th query, we have

PhO
∑

x,u,z,D

ai−1
x,u,z,D|x, u, z〉⊗QFT|D〉 ⇒

∑
x,u,z,D

ai−1
x,u,z,D|x, u, z〉⊗QFT|D⊕(x, u)〉

The Fourier oracle incorporates QFT and operates directly on the D registers:

FourierO
∑

x,u,z,D

ai−1
x,u,z,D|x, u, z〉 ⊗ |D〉 ⇒

∑
x,u,z,D

ai−1
x,u,z,D|x, u, z〉 ⊗ |D ⊕ (x, u)〉

4. Compressed Fourier Oracles: The idea is basically the same as Fourier
oracles. But when the algorithm only makes q queries, the database D with
non-zero weight contains at most q non-zero entries.
So to describe D, we only need at most q different (xi, ui) pairs (ui �= 0) which
says the database outputs ui on xi and 0 everywhere else. And D ⊕ (x, u) is
doing the following: (1) if x is not in the list D and u �= 0, put (x, u) in D;
(2) if (x, u′) is in the list D and u′ �= u, update u′ to u′ ⊕u in D; (3) if (x, u′)
is in the list and u′ = u, remove (x, u′) from D.
In the model, we start with

∑
x,u,z a0

x,u,z|x, u, z〉⊗|D0〉 where D0 is an empty
list. After making the i-th query, we have

CFourierO
∑

x,u,z,D

ai−1
x,u,z,D|x, u, z〉⊗ |D〉 ⇒

∑
x,u,z,D

ai−1
x,u,z,D|x, u, z〉⊗ |D ⊕ (x, u)〉

5. Compressed Standard/Phase Oracles: These two models are essentially
equivalent up to an application of QFT applied to the query response register.
From now on we only consider compressed phase oracles.
By applying QFT on the u entries of the database registers of a compressed
Fourier oracle, we get a compressed phase oracle.
In this model, D contains all the pair (xi, ui) which means the oracle outputs
ui on xi and uniformly at random on other inputs. When making a query on
|x, u, z,D〉,

– if (x, u′) is in the database D for some u′, a phase ωuu′
n will be added to

the state; it corresponds to update w to w + u in the compressed Fourier
oracle model where w = D(x) in the compressed Fourier database.

– otherwise a superposition is appended to the state |x〉 ⊗∑u′ ωuu′
n |u′〉; it

corresponds to put a new pair (x, u) in the list of the compressed Fourier
oracle model;

– also make sure that the list will never have an (x, 0) pair in the compressed
Fourier oracle model (in other words, it is |x〉⊗∑y |y〉 in the compressed
phase oracle model); if there is one, delete that pair;

– All the ‘append’ and ‘delete’ operations above mean applying QFT.
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3 Algorithm for Multi-collision Finding

In this section, we give an improved algorithm for k-collision finding. We use the
same idea from [HSX17] but carefully reorganize the algorithm to reduce the
number of queries.

As a warm-up, let us consider the case k = 3 and the case where F : X → Y
is a 3-to-1 function, |X| = 3|Y | = 3N . They gives an algorithm with O(N4/9)
quantum queries. Here is our algorithm with only O(N3/7) quantum queries:

– Prepare a list L = {(xi, yi = F (xi))}t1
i=1 where xi are distinct and t1 = N3/7.

This requires O(N3/7) classical queries on random points.
– Define the following function F ′ on X:

F ′(x) =

{
1, x �∈ {x1, x2, · · · , xt1} and F (x) = yj for some j

0, otherwise

Run Grover’s algorithm on function F ′. Wlog (by reordering L), we find
x′
1 such that x′

1 �= x1 and F (x′
1) = F (x1) using O(

√
N/N3/7) = O(N2/7)

quantum queries.
– Repeat the last step t2 = N1/7 times, we will have N1/7 2-collisions L′ =

{(xi, x
′
i, yi)}t2

i=1. This takes O(N1/7 ·
√

N/N3/7) = O(N3/7) quantum queries.
– If two elements in L′ collide, simply output a 3-collision. Otherwise, run

Grover’s on function G:

G(x) =

{
1, x �∈ {x1, x2, · · · , xt2 , x

′
1, · · · , x′

t2} and F (x) = yj for some j

0, otherwise

A 3-collision will be found when Grover’s algorithm finds a pre-image of 1 on
G. It takes O(

√
N/N1/7) = O(N3/7) quantum queries.

Overall, the algorithm finds a 3-collision using O(N3/7) quantum queries.
The similar algorithm and analysis works for any constant k and any k-to-

1 function which only requires O(N (2k−1−1)/(2k−1)) quantum queries. Let t1 =
N (2k−1−1)/(2k−1), t2 = N (2k−2−1)/(2k−1), · · · , ti = N (2k−i−1)/(2k−1), · · · , tk−1 =
N1/(2k−1). The algorithm works as follows:

– Assume F : X → Y is a k-to-1 function and |X| = k|Y | = kN .
– Prepare a list L1 of input-output pairs of size t1. With overwhelming proba-

bility (1 − N−1/2k

), L1 does not contain a collision. By letting t0 = N , this
step makes t1

√
N/t0 quantum queries.

– Define a function F2(x) that returns 1 if the input x is not in L1 but the
image F (x) collides with one of the images in L1, otherwise it returns 0. Run
Grover’s on F2 t2 times. Every time Grover’s algorithm outputs x′, it gives
a 2-collision. With probability 1 − O(N−1/2k

) (explained below), all these t2
collisions do not collide. So we have a list L2 of t2 different 2-collisions. This
step makes t2

√
N/t1 quantum queries.
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– For 2 ≤ i ≤ k − 1, define a function Fi(x) that returns 1 if the input x is not
in Li−1 but the image F (x) collides with one of the images of (i−1)-collisions
in Li−1, otherwise it returns 0. Run Grover’s algorithm on Fi ti times. Every
time Grover’s algorithm outputs x′, it gives an i-collision. With probability
1 − O(t2i /ti−1) = 1 − O(N−1/2k

), all these ti collisions do not collide. So we
have a list Li of ti different i-collisions. This step makes ti

√
N/ti−1 quantum

queries.
– Finally given tk−1 (k − 1)-collisions, using Grover’s to find a single x′ that

makes a k-collision with one of the (k − 1)-collision in Lk−1. This step makes
tk
√

N/tk−1 quantum queries by letting tk = 1 = N (2k−k−1)/(2k−1).

The number of quantum queries made by the algorithm is simply:

k−1∑
i=0

ti+1

√
N/ti =

k−1∑
i=0

√
N

t2i+1

ti

=
k−1∑
i=0

√
N · N

2·(2k−(i+1)−1)−(2k−i−1)

2k−1

= k · N (2k−1−1)/(2k−1)

So we have the following theorem:

Theorem 2. For any constant k, any k-to-1 function F : X → Y (|X| =
k|Y | = kN), the algorithm above finds a k-collision using O(N (2k−1−1)/(2k−1))
quantum queries.

We now show the above conclusion holds for an arbitrary function F : X → Y
as long as |X| ≥ k|Y | = kN . To prove this, we use the following lemma:

Lemma 1. Let F : X → Y be a function and |X| = k|Y | = kN . Let μF =
Prx

[|F−1(F (x))| ≥ k
]
be the probability that if we choose x uniformly at random

and y = F (x), the number of pre-images of y is at least k. We have μF ≥ 1
k .

Proof. We say an input or a collision is good if its image has at least k pre-images.
To make the probability as small as possible, we want that if y has less than

k pre-images, y should have exactly k − 1 pre-images. So the probability is at
least

μF =
|{x |x is good}|

|X| ≥ kN − (k − 1)N
kN

=
1
k

��
Theorem 3. Let F : X → Y be a function and |X| ≥ k|Y | = kN . The above
algorithm finds a k-collision using O(N (2k−1−1)/(2k−1)) quantum queries with
overwhelming probability.
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Proof. We prove the case |X| = k|Y |. The case |X| > k|Y | follows readily by
choosing an arbitrary subset X ′ ⊆ X such that |X ′| = k|Y | and restrict the
algorithm to the domain X ′.

As what we did in the previous algorithm, in the list L1, with overwhelming
probability, there are 0.999μF · t1 good inputs by Chernoff bound because every
input is good with probability μF . Then every 2-collision in L2 has probability
0.999μF to be good. So by Chernoff bound, L2 contains at least 0.9992μF t2 good
2-collisions with overwhelming probability. By induction, in the final list Lk−1,
with overwhelming probability, there are 0.999k−1μF ·tk−1 good (k−1)-collisions.
Finally, the algorithm outputs a k-collision with probability 1, by making at most
O(
√

N/(0.99k−1μF tk−1)) quantum queries.
As long as k is a constant, the coefficients before ti are all constants. The num-

ber of quantum queries is scaled by a constant and is still O(N (2k−1−1)/(2k−1))
and the algorithm succeeds with overwhelming probability. ��

4 Lower Bound for Multi-collision Finding

4.1 Idea in [Zha18]

We will first show how Zhandry re-proved the lower bound of 2-collision finding
using compressed oracle technique. The idea is that when we are working under
compressed phase/standard oracle model, a query made by the adversary (x, u)
can be recorded in the compressed oracle database.

Suppose before making the next quantum query, the current joint state is
the following

|φ〉 =
∑

x,u,z,D

ax,u,z,D|x, u, z〉 ⊗ |D〉

where x is the query register, u is the response register, z is the private storage
of the adversary and D is the database in the compressed phase oracle model.
Consider measuring D after running the algorithm. Because the algorithm only
has information about the points in the database D, the only way to have a non-
trivial probability of finding a collision is for the D that results from measurement
to have a collision. More formally, here is a lemma from [Zha18].

Lemma 2 (Lemma 5 from [Zha18]). Consider a quantum algorithm A making
queries to a random oracle H and outputting tuples (x1, · · · , xk, y1, · · · , yk, z).
Let R be a collection of such tuples. Suppose with probability p, A outputs a
tuple such that (1) the tuple is in R and (2) H(xi) = yi for all i. Now consider
running A with compressed standard/phase oracle, and suppose the database D
is measured after A produces its output. Let p′ be the probability that (1) the
tuple is in R, and (2) D(xi) = yi for all i (and in particular D(xi) �= ⊥). Then

√
p ≤

√
p′ +

√
k/2n

As long as k is small, the difference is negligible. So we can focus on bounding
the probability p′.
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Let P̃1 be a projection spanned by all the states with z,D containing at least
one collision in the compressed phase oracles. In other words, z contains x �= x′

such that D(x) �= ⊥, D(x′) �= ⊥ and D(x) = D(x′).

P̃1 =
∑
x,u,z

z,D:≥1 collision

|x, u, z,D〉〈x, u, z,D|

We care about the amplitude (square root of the probability)
∣∣∣P̃1|φ〉

∣∣∣. As in the

above lemma,
∣∣∣P̃1|φ〉

∣∣∣ =
√

p′ and k = 2. Moreover, we can bound the amplitude
of the following measurement.

P1 =
∑
x,u,z

D:≥1 collision

|x, u, z,D〉〈x, u, z,D|

Here “D :≥ 1 collision” meaning D as a compressed phase oracle, it has a
pair of x �= x′ such that D(x) = D(x′). It is easy to see |P1|φ〉| ≥ |P̃1|φ〉|. So we
will focus on bounding |P1|φ〉| in the rest of the paper.

For every |x, u, z,D〉, after making one quantum query, the size of D will
increase by at most 1. Let |φi〉 be the state before making the (i+1)-th quantum
query and |φ′

i〉 be the state after it. Let O be the unitary over the joint system
corresponding to an oracle query, in other words, |φ′

i〉 = O|φi〉. By making q
queries, the computation looks like the following:

– At the beginning, it has |φ0〉;
– For 1 ≤ i ≤ q, it makes a quantum query; the state |φi−1〉 becomes |φ′

i−1〉;
and it applies a unitary on its registers U i ⊗ id to get |φi〉 where U i is some
unitary defined over the registers x, u, z.

– Finally measure it using P1, the probability of finding a collision (in the
compressed phase oracle) is at most |P1|φq〉|2

We have the following two lemmas:

Lemma 3. For any unitary U i,

|P1|φ′
i−1〉| = |P1 · (U i ⊗ id) · |φ′

i−1〉| = |P1|φi〉|
Proof. Intuitively, P1 is a measurement on the oracle’s register and U i is a uni-
tary on the adversary’s registers, applying the unitary does not affect the mea-
surement P1.

Because U i is a unitary defined over the registers x, u, z and P1 is a projective
measurement defined over the database register D, we have

∣∣P1 · (U i ⊗ id) · |φ′
i−1〉

∣∣ =

∣∣∣∣∣∣P1 · (U i ⊗ id) ·
∑

x,u,z,D

αx,u,z,D|x, u, z,D〉
∣∣∣∣∣∣

=

∣∣∣∣∣P1 · (U i ⊗ id) ·
∑
D

|ψD〉 ⊗ |D〉
∣∣∣∣∣
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=
√ ∑

D≥1 collision

|U i|ψD〉|2 =
√ ∑

D≥1 collision

||ψD〉|2

which is the same as |P1|φ′
i−1〉|. ��

Lemma 4. |P1|φ′
i〉| ≤ |P1|φi〉| +

√
i√
N
.

Proof. We have

|P1|φ′
i〉| = |P1O|φi〉|

= |P1O (P1|φi〉 + (I − P1)|φi〉)|
≤ |P1OP1|φi〉| + |P1O(I − P1)|φi〉|
≤ |P1|φi〉| + |P1O(I − P1)|φi〉|

|P1OP1|φi〉| ≤ |P1|φi〉| is because P1|φi〉 contains only D with collisions. By
making one more query, the total magnitude will not increase.

So we only need to bound the second term |P1O(I − P1)|φi〉|. (I − P1)|φ〉
contains only states |x, u, z,D〉 that D has no collision. If after applying O to
a state |x, u, z,D〉, the size of D does not increase (stays the same or becomes
smaller), the new database still does not contain any collision. Otherwise, it
becomes

∑
u′ ωuu′

n |x, u, z,D ⊕ (x, u′)〉. And only |D| ≤ i out of N possible D ⊕
(x, u′) contain a collision.

|P1O(I − P1)|φi〉| =

∣∣∣∣∣∣∣P1O
∑

x,u,z,D
D: no collision

ax,u,z,D|x, u, z,D〉

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣P1

∑
x,u,z,D

D: no collision

1√
N

∑
u′

ωuu′
n ax,u,z,D|x, u, z,D ⊕ (x, u′)〉

∣∣∣∣∣∣∣

≤

⎛
⎜⎝ ∑

x,u,z,D
D: no collision

i

N
· a2

x,u,z,D

⎞
⎟⎠

1/2

≤
√

i√
N

��
By combining Lemmas 3 and 4, we have that |P1|φi〉| ≤ ∑i−1

j=1

√
j√
N

=

O(i3/2/N1/2). So we re-prove the following theorem:

Theorem 4. For any quantum algorithm, given a random function f : X → Y
where |Y | = N , it needs to make Ω(N1/3) quantum queries to find a 2-collision
with constant probability.
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4.2 Intuition for Generalizations

Here is the intuition for k = 3: as we have seen in the proof for k = 2, after
T1 = O(N1/3) quantum queries, the database has high probability to contain a
2-collision. Following the same formula, after making T2 queries, the amplitude
that it contains two 2-collisions is about

T2∑
T1+1

√
i√
N

= O

(
T

3/2
2 − T

3/2
1√

N

)
⇒ T2 = O(22/3N1/3)

And similarly after Ti = O(i2/3N1/3), the database will contain i 2-collisions.
Now we just assume between the (Ti−1 + 1)-th query and Ti-th query, the
database contains exactly (i − 1) 2-collisions.

Every time a quantum query is made to a database with i 2-collisions, with
probability at most i/N, the new database will contain a 3-collision. Similar to
the Lemma 4, when we make queries until the database contains m 2-collisions,
the amplitude that it contains a 3-collision in the database is at most

m∑
i=1

√
i√
N

(Ti − Ti−1) ≈
∫ m

1

x1/6

N1/6
dx ≈ x7/6/N1/6

which gives us that the number of 2-collisions is m = N1/7. And the total number
of quantum queries is Tm = m2/3 · N1/3 = N3/7 which is what we expected.

In the following sections, we will show how to bound the probabil-
ity/amplitude of finding a k = 2, 3, 4-collision and any constant k-collision with
constant probability. All the proof ideas are explained step by step through the
proof for k = 2, 3, 4. The proof for any constant k is identical to the proof for
k = 4 but every parameter is replaced with functions of k.

4.3 Lower Bound for 2-Collisions

Let P2,j be a projection spanned by all the states with D containing at least j
distinct 2-collisions in the compressed phase oracle model.

P2,j =
∑
x,u,z

D:≥j 2-collisions

|x, u, z,D〉〈x, u, z,D|

Let the current joint state be |φ〉 (after making i quantum queries but before
the (i + 1)-th query), and |φ′〉 be the state after making the (i + 1)-th quantum
query.

|φ〉 =
∑

x,u,z,D

ax,u,z,D|x, u〉 ⊗ |z,D〉

We have the relation following from Lemma 4:

|P2,1|φ′〉| ≤ |P2,1|φ〉| +
√

i√
N

|P2,j |φ′〉| ≤ |P2,j |φ〉| +
√

i√
N

|P2,j−1|φ′〉| for all j > 0
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Let |φ0〉, |φ1〉, · · · , |φi〉 be the state after making 0, 1, · · · , i quantum queries
respectively. Let fi,j = |P2,j |φi〉|. We rewrite the relations using fi,j :

fi,1 ≤ fi−1,1 +
√

i − 1√
N

=
∑

0≤l<i

√
l√
N

<
i3/2

√
N

fi,j ≤ fi−1,j +
√

i − 1
N

fi−1,j−1

=
∑

0≤l1<i

√
l1√
N

fl1,j−1

=
∑

0≤lj<lj−1<···<l2<l1<i

j∏
k=1

(√
lk√
N

)

<
1
j!

∑
0≤lj ,lj−1,··· ,l2,l1<i

j∏
k=1

(√
lk√
N

)

=
1
j!

(fi,1)
j

<

(
e · i3/2

j
√

N

)j

We observe that when i = o(j2/3N1/3), fi,j = o(1).

Corollary 1. For any quantum algorithm, given a random function f : X → Y
where |Y | = N , by making i queries, the probability of finding constant j 2-
collisions is at most O

(
( i3

N )j
)
.

Theorem 5. For any quantum algorithm, given a random function f : X → Y
where |Y | = N , it needs to make Ω(j2/3N1/3) quantum queries to find j 2-
collisions with constant probability.

4.4 Lower Bound for 3-Collisions

Let P3,k be a projection spanned by all the states with D containing at least k
distinct 3-collisions in the compressed phase model. And let P3,j,k be a projection
spanned by all the states with D containing exactly j distinct 2-collisions and
at least k 3-collisions.

Let the current joint state be |φ〉 (after making i quantum queries but before
the (i + 1)-th query), and |φ′〉 be the state after making the (i + 1)-th quantum
query. We have the following relation similar to Lemma 4:

|P3,k|φ′〉| ≤ |P3,k|φ〉|

+

∣∣∣∣∣∣∣∣∣∣
P3,k

∑
l≥0

∑
x,u,z

D: exactly l 2-collisions
exactly k−1 3-collision

1√
N

∑
u′

ωuu′
n · αx,u,z,D|x, u, z,D ⊕ (x, u′)〉

∣∣∣∣∣∣∣∣∣∣
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where the first term means D already contains at least k 3-collisions before the
query; and the second term is the case where a new 3-collision is added into the
database. Similar to Lemma 4, only l out of N u′ will make D ⊕ (x, u′) contain
k 3-collisions. So we have,

|P3,k|φ′〉| ≤ |P3,k|φ〉| +

√√√√√√
∑
l≥0

l

N

∑
x,u,z

D: exactly l 2-collisions
exactly k−1 3-collision

|α|2x,u,z,D

≤ |P3,k|φ〉| +
√∑

l≥0

l

N
|P3,l,k−1|φ〉|2

Let gi,k be the amplitude |P3,k|φi〉| and gi,j,k = |P3,j,k|φi〉|. It is easy to see
gi,0 ≤ 1 for any i ≥ 0 since it is an amplitude. We have the following:

gi,k ≤ gi−1,k +
√∑

l≥0

l

N
· g2i−1,l,k−1

Let fi,j = |P2,j |φi〉|. Define h3(i) = max{2e · i3/2√
N

, 10N1/8}. We have the
following lemma:

Lemma 5.

gi,k ≤ gi−1,k +

√
h3(i − 1)

N
gi−1,k−1 + fi−1,h3(i−1)

Proof.

gi,k ≤ gi−1,k +
√∑

l≥0

l

N
· g2i−1,l,k−1

≤ gi−1,k +

√√√√ ∑
0≤l≤h3(i−1)

l

N
· g2i−1,l,k−1 +

√ ∑
l>h3(i−1)

1 · g2i−1,l,k−1

≤ gi−1,k +

√
h3(i − 1)

N
·
√∑

l≥0

g2i−1,l,k−1 +
√ ∑

l>h3(i−1)

g2i−1,l,k−1

≤ gi−1,k +

√
h3(i − 1)

N
· gi−1,k−1 + fi−1,h3(i−1)

Here, in the last line, we used the fact that
∑

l≥0 g2i−1,l,k−1 represents the total
probability of the database having k − 1 distinct 3-collisions, and so is equal
to g2i−1,k−1. Similarly, we used that

∑
l>h3(i−1) g2i−1,l,k−1 represents the total

probability of having at least k − 1 distinct 3-collisions and at least h3(i − 1)
distinct 2-collisions. This probability is bounded above by the probability of just
having at least h3(i − 1) distinct 2-collisions, which is f2

i−1,h3(i−1). ��
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Lemma 6. Define Ai =
∑i−1

l=0

√
h3(l)

N . Then gi,k can be bounded as the follow-
ing:

gi,k ≤ Ak
i

k!
+ 2−N1/8

for all i ≤ N1/2, 1 ≤ k ≤ N1/8

Proof. If we expand Lemma 5, we have

gi,k ≤ gi−1,k +

√
h3(i − 1)

N
gi−1,k−1 + fi−1,h3(i−1)

≤ gi−2,k +
i−1∑

l=i−2

(√
h3(l)
N

gl,k−1 + fl,h3(l)

)

...

≤ g0,k +
i−1∑
l=0

(√
h3(l)
N

gl,k−1 + fl,h3(l)

)

where if k ≥ 1, g0,k = 0. Next,

gi,k ≤
∑

0≤l<i

√
h3(l)
N

gl,k−1 +
∑

0≤l<i

fl,h3(l)

≤
∑

0≤l<i

√
h3(l)
N

gl,k−1 + N1/2

(
1
2

)10N1/8

≤
∑

0≤l<i

√
h3(l)
N

gl,k−1 + 2−9.5N1/8

By recursively expanding the inequality, let C = 2−9.5N1/8
, we will get

gi,k ≤
∑

0≤l1<i

√
h3(l1)

N
gl1,k−1 + C

≤
∑

0≤l1<i

√
h3(l1)

N

⎛
⎝ ∑

0≤l2<l1

√
h3(l2)

N
gl2,k−2 + C

⎞
⎠+ C

≤
∑

0≤l1<i

√
h3(l1)

N

⎛
⎝ ∑

0≤l2<l1

√
h3(l2)

N

⎛
⎝ ∑

0≤l3<l2

√
h3(l3)

N
· · ·
⎞
⎠+ C

⎞
⎠+ C

=
∑

0≤lk<···<l1<i

k∏
j=1

(√
h3(lj)

N

)
+ C

k−1∑
t=0

∑
0≤lt<···<l1<i

t∏
j=1

(√
h3(lj)

N

)

<
Ak

i

k!
+

k−1∑
t=0

At
i

t!
· C

<
Ak

i

k!
+ eAi · 2−9.5N1/8
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We then bound Ai for all i ≤ N1/2 (we can always assume i = o(N1/2),
because finding any constant-collision using O(N1/2) quantum queries is easy
by a quantum computer, just repeatedly applying Grover’s algorithm):

Ai ≤
i∑

l=1

√
2e · l3/2

N3/4
+

∑
l:h3(l)=10N1/8

√
10N1/8

N1/2

≤
√

2e · i7/4

N3/4
+ O

(
N−1/48

)
Which implies Ai < 2e · N1/8 (by letting i =

√
N). So we complete the proof:

gi,k ≤ Ak
i

k!
+ eAi · 2−9.5N1/8

≤ Ak
i

k!
+ e2e·N1/8 · 2−9.5N1/8

<
Ak

i

k!
+ 2−N1/8

��
Theorem 6. For any quantum algorithm, given a random function f : X → Y
where |Y | = N , it needs to make Ω(j4/7N3/7) quantum queries to find j 3-
collisions for any j ≤ N1/8 with constant probability.

Proof. We have two cases:

– When j is a constant: If i∗ = o(N3/7), we have gi∗,j ≤ o(1) + O(N−1/48).
– When j is not a constant: For any j, let i∗ be the largest integer such that

Ai∗ < 1
2e · j. In this case, i∗ = O

(
j4/7N3/7

)
. So the probability of having at

least j 3-collisions is bounded by g2i∗,j where gi∗,j ≤ (eAi∗/j)j + 2−N1/8 ≤
2−j+1 + 2−N1/8

= o(1).

��

4.5 Lower Bound for 4-Collisions

Here we show the proof for lower bound of finding 4-collisions. The proof for
arbitrary constant has the same structure but different parameters which is
shown in the next section. We prove the case of 4-collisions here to give the idea
before generalizing.

Let fi,j be the amplitude of the database containing at least j 3-collisions
after making i quantum queries, gi,j,k be the amplitude of the database contain-
ing exactly j 3-collisions and at least k 4-collisions after i quantum queries, gi,k

be the amplitude of containing at least k 4-collisions after i quantum queries.
As we have seen in the last proof, we have

gi,k ≤ gi−1,k +
√∑

l≥0

l

N
g2i−1,l,k−1
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Define h4(i) = max{(2e)3/2 · i7/4

N3/4 , 10N1/16}. Again, we can bound gi,k by
dividing the summation into two parts:

gi,k ≤ gi−1,k +

√√√√ ∑
l≤h4(i−1)

l

N
g2i−1,l,k−1 +

√ ∑
l>h4(i−1)

1 · g2i−1,l,k−1

≤ gi−1,k +

√
h4(i − 1)

N
gi−1,k−1 + fi−1,h4(i−1)

...

≤
∑

0≤l<i

√
h4(l)
N

gl,k−1 +
∑

0≤l<i

fl,h4(l)

The second term can be bounded as the following (and we can safely assume
i < N1/2)

∑
0≤l<i

fl,h4(l) ≤
∑

0≤l<i

(
A

h4(l)
l

h4(l)!
+ 2−N1/8

)

≤
∑

0≤l<i

(
eAl

h4(l)

)h4(l)

+ N1/2 · 2−N1/8

≤
∑

0≤l<i

(
1
2

+ o(1)
)10N1/16

+ N1/2 · 2−N1/8

≤ 2−9.5N1/16

Let Bi =
∑

0≤l<i

√
h4(l)

N . And similarly, for all i ≤ N1/2,

Bi ≤ (2e)3/4 i15/8

N7/8
+ O(N− 1

16 · 1
14 )

The proof follows from the last proof for k = 3. A generalized version (for any
constant) can be found in the next section. And Bi is bounded by B√

N which
is at most 2e · N1/16.

Finally we have the following closed form:

gi,k ≤ Bk
i

k!
+

k−1∑
l=0

Bl
i

l!
· 2−9.5N1/16

<
Bk

i

k!
+ eB√

N · 2−9.5N1/16 ≤ Bk
i

k!
+ 2−N1/16

So we can conclude the following theorem:

Theorem 7. For any quantum algorithm, given a random function f : X → Y
where N = |Y |, it needs to make Ω(j8/15N7/15) quantum queries to find j 4-
collisions for any j ≤ N1/16 with constant probability.
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4.6 Lower Bound for Finding a Constant-Collision

In this section, we are going to show that the theorem can be generalized to
any constant-collision. Let fi,j be the amplitude of the database containing at
least j distinct s-collisions after i quantum queries, gi,j,k be the amplitude of the
database containing exactly j distinct s-collisions and at least k distinct (s+1)-
collisions after i quantum queries. Also let gi,k be the amplitude of the database
with at least k distinct (s + 1)-collisions after i quantum queries.

We assume fi,j is only defined for i ≤ √
N, 1 ≤ j ≤ N1/2s

and gi,k is only
defined for i ≤ √

N, 1 ≤ k ≤ N1/2s+1
. It holds for the base cases s = 4.

Define hs(i) (for any s ≥ 3) as the following:

hs(i) = max

{
(2e)

2s−2−1
2s−3

i(2
s−1−1)/2s−2

N (2s−2−1)/2s−2 , 10 · N1/2s

}

It holds for s = 3, 4 where h3(i) = max{(2e) · i3/2/N1/2, 10N1/8} and h4(i) =
max{(2e)3/2 · i7/4/N3/4, 10N1/16}.

Define Ai,s =
∑i−1

l=0

√
hs(l)

N . It is easy to see Ai and Bi in the last proof are

Ai,3 and Ai,4. And we have Ai,s ≤ (2e)
2s−2−1
2s−2 i(2

s−1)/2s−1

N(2s−1−1)/2s−1 +O(N−1/(2s(2s−2))).

Lemma 7. Ai,s ≤ (2e)
2s−2−1
2s−2 i(2

s−1)/2s−1

N(2s−1−1)/2s−1 + O(N−1/(2s(2s−2))) holds for all
constant s ≥ 3.

The lemma is consistent with the cases where s = 3, 4.

Proof.

Ai,s =
i−1∑
l=0

√
hs(l)
N

=
∑

l:hs(l)=10N1/2s

√
10N1/2s

N
+

∑
l:hs(l)>10N1/2s

√
hs(l)
N

=
∑

l:hs(l)=10N1/2s

√
10N1/2s

N
+

i−1∑
l=0

(2e)
2s−2−1
2s−2

l(2
s−1−1)/2s−1

N (2s−2−1)/2s−1 · N−1/2

where the second summation is at most (2e)
2s−2−1
2s−2 i(2

s−1)/2s−1

N(2s−1−1)/2s−1 and the first
summation is at most

∑
l:hs(l)=10N1/2s

√
10N1/2s

N
=

√
10N1/2s

N
· O

(
N( 1

2s +1− 1
2s−2 )· 2s−2

2s−1−1

)

≤ O

(
N− 1

2+
1

2s+1 · N
2s−3

4(2s−1−1)

)

≤ O
(
N− 1

2s(2s−2)

)
which completes the proof. ��
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Finally, we assume fi,j ≤ Aj
i,s

j! +O(2−N1/2s

) which holds for both s = 3, 4. We

are going to show it holds for (s+1), in other words, gi,k ≤ Ak
i,s+1
k! +O(2−N1/2s+1

).
And by induction, it holds for all constant s.

As we have seen in the last proof, we have the following inequality:

gi,k ≤ gi−1,k +
√∑

l≥0

l

N
g2i−1,l,k−1

≤ gi−1,k +

√
hs+1(i − 1)

N
· gi−1,k−1 + fi−1,hs+1(i−1)

where as i ≤ N1/2, for sufficient large N , the last term fi−1,hs+1(i−1) can be
bounded as:

fi−1,hs+1(i−1)

≤ A
hs+1(i−1)
i−1,s

hs+1(i − 1)!
+ O(2−N1/2s

)

≤

⎛
⎜⎜⎝e ·

(2e)
2s−2−1
2s−2 (i−1)(2

s−1)/2s−1

N(2s−1−1)/2s−1 + O(N−1/(2s(2s−2)))

max
{

(2e)
2s−1−1
2s−2 (i−1)(2s−1)/2s−1

N(2s−1−1)/2s−1 , 10 · N1/2s+1

}
⎞
⎟⎟⎠

10N1/2s+1

+ O(2−N1/2s

)

≤
(

1
2

+ o(1)
)10N1/2s+1

+ O(2−N1/2s

)

< 2−9.8N1/2s+1

By expanding the inequality, we get

gi,k ≤
i−1∑
l=0

√
hs+1(l)

N
gl,k−1 + N1/2 · 2−9.8N1/2s+1

≤
i−1∑
l=0

√
hs+1(l)

N
gl,k−1 + 2−9.5N1/2s+1

≤ Ak
i,s+1

k!
+

k−1∑
l=0

Al
i,s+1

l!
· 2−9.5N1/2s+1

≤ Ak
i,s+1

k!
+ eAi,s+1 · 2−9.5N1/2s+1

Because i ≤ √
N , Ai,s+1 < 2eN1/2s+1

. Finally, we have

gi,k ≤ Ak
i,s+1

k!
+ 2−N1/2s+1

which completes the induction. So we have the following theorem:



216 Q. Liu and M. Zhandry

Corollary 2. For any constant s ≥ 2, let fi,j be the amplitude of the database
containing at least j s-collisions after i quantum queries. For all 1 ≤ j ≤ N1/2s

,
we have

fi,j ≤ Aj
i,s

j!
+ O(2−N1/2s

)

where

Ai,s ≤ (2e)
2s−2−1
2s−2

i(2
s−1)/2s−1

N (2s−1−1)/2s−1 + O(N−1/(2s(2s−2)))

Theorem 8. For any quantum algorithm, given a random function f : X →
Y where N = |Y |, it needs to make Ω(j2

s−1/(2s−1)N (2s−1−1)/(2s−1)) quantum
queries to find j s-collisions for any j ≤ N1/2s

.
Moreover, for any quantum algorithm, given a random function f : X → Y

where N = |Y |, it needs to make Ω(N (2s−1−1)/(2s−1)) quantum queries to find
one s-collision.
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