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Abstract—A large number of techniques for analyzing and
optimizing mobile apps have emerged in the past decade. How-
ever, those techniques’ components are notoriously difficult to
extract and reuse outside their original tools. This paper intro-
duces MAOMAO, a microservice-based reference architecture
for reusing and integrating such components. MAOMAO’s twin
goals are (1) adoption of available app optimization techniques
in practice and (2) improved construction and evaluation of new
techniques. The paper uses several existing app optimization tech-
niques to illustrate both the motivation behind MAOMAO and
its potential to fundamentally alter the landscape in this area.

I. INTRODUCTION

Over the past decade, mobile computing devices have

become dominant [1] and this trend is bound to continue into

the foreseeable future. New technologies invariably bring chal-

lenges that require researchers’ attention, such as the problems

in the mobile domain that affect mobile app performance [2]–

[8], energy use [9]–[15], and security [16]–[22].

We have studied the recent work in this domain to identify

emerging research trends as well as problems that remain

unaddressed. We have found that the research in the mobile

app domain is still at a relatively early stage, and that there is a

pronounced gap between research and practice. The majority

of existing work still focuses on identifying problems, such

as detecting performance bugs [3], [4], security vulnerabili-

ties [16], [17], and energy hotspots [9], [15], while techniques

for solving them are invariably left to future work.

As an illustration, 48 papers have dealt with mobile apps

in the last five ICSEs (2014–2018). However, only 7 of

those papers propose a technique that aims to optimize

an app to address an identified problem. Even then, these

techniques are usually evaluated on limited numbers of real

apps, making their practical applicability unclear. For example,

PALOMA [2] was evaluated on 32 apps and Bouquet [10]

on only 5. Furthermore, these techniques are hard to adopt

in practice because they usually involve non-trivial steps,

such as advanced program analysis, that are likely to have

a prohibitively steep learning curve for most app developers.

To identify the reasons behind the dearth of app optimiza-

tion techniques and their lack of adoption in practice, we con-

tacted the authors of several techniques and studied published

causes of research-industry barriers [23]–[26]. We discovered

several common themes. In the research community, (1) it is

challenging to find subject apps that fit a given target problem;

(2) app optimization techniques are usually built on top of

research tools that have limited documentation and technical

support; (3) it is hard to simulate real-world scenarios in a lab

environment. From the practitioner’s side, (1) it is hard to find

research techniques that solve the exact problems a developer

faces; (2) the research techniques are usually not evaluated in

large-scale, real scenarios, rendering any claims unconvincing;

(3) research techniques usually have limited documentation,

making them difficult to adopt by app developers with little-

to-no knowledge in a specific research area.
We believe the fundamental problem behind this gap is

the lack of a standard protocol to guide the development of

research techniques and to connect developers and researchers

in a way that leverages each side’s expertise. Specifically,

individual app optimization techniques are designed in ad-

hoc ways that hinder their reusability and composability. To

address the problem, we propose a Microservice Architecture

for Online Mobile App Optimization (MAOMAO) and a cor-

responding Microservice Repository (MR). MAOMAO is a

reference architecture for mobile app optimization techniques

that is intended to be comprehensive in scope, but simple

enough to be easily extensible. MR is a cloud-based repository

to deploy MAOMAO-compatible techniques that connects

researchers and developers by providing a shared baseline.
In this paper, Section II summarizes representative existing

techniques and describes their (often missed) reuse opportu-

nities. Section III introduces MAOMAO and discusses how

existing techniques can be migrated to it. Section IV elaborates

our vision for adopting MAOMAO in practice. Section V

provides concluding thoughts and outlines the future work.

II. EXISTING TECHNIQUES

In this section, we introduce several independently devel-

oped techniques that focus on different problems in the mobile

domain. We highlight each technique’s major components to

illustrate the potential (and, in practice, often missed) reuse

opportunities. We will use these as well as other existing

techniques to demonstrate how MAOMAO’s architecture can

integrate disparate existing solutions (Section III) and facilitate

their reuse by both developers and researchers (Section IV).
PALOMA [2] reduces app latency by prefetching HTTP

requests, via four major components: (1) String Analyzer iden-

tifies suitable HTTP requests for prefetching by interpreting

their URL values; (2) Callback Analyzer detects the program

points to issue prefetching requests; (3) Instrumenter uses the

above information to produce a prefetching-enabled app; (4) at

app runtime, the instrumented app triggers PALOMA’s Proxy
to issue prefetching requests and cache prefetched responses.



IMP [27] is a cost-benefit analysis that decides when and

how much data to prefetch in an app, via three major compo-

nents: (1) API Support provides “hints” on what to prefetch;

(2) Monitor monitors mobile device’s network bandwidth, data

usage, and battery status; (3) Prefetcher adapts prefetching

strategies based on the “hints” and runtime resource usage.
Bouquet [10] bundles HTTP requests to reduce the energy

consumption of an app, via three major components: (1) De-
tector of Sequential HTTP Request Sessions (SHRSs), where

triggering the first request implies the following requests will

also be made; (2) Bundling Analyzer generates code to bundle

each SHRS; (3) Proxy intercepts HTTP requests and runs the

bundling code to return corresponding SHRS responses.
Many existing app optimization techniques focus on secu-

rity. We highlight three representative examples. IccTA’s [17]

Taint Analyzer detects privacy leaks among an app’s compo-

nents. SEALANT’s [16] Analyzer also identifies such leaks,

while its Interceptor manages inter-app interactions to block

the leaks. ApkCombiner’s [18] Combiner compiles multiple

apps together to support inter-app privacy leak detection.
We see a notable reuse opportunity among these techniques.

For instance, PALOMA and Bouquet can reuse IMP’s Monitor
and Prefetcher to dynamically adapt their strategies for issuing

HTTP requests based on the runtime resource constraints.

Bouquet’s Detector can reuse PALOMA’s String Analyzer to

interpret the URL values when identifying SHRSs. PALOMA

currently targets individual apps, but ApkCombiner’s Com-
biner would enable PALOMA to prefetch HTTP requests

across apps. In another scenario, SEALANT’s Analyzer and

IccTA’s Taint Analyzer may be employed in tandem, either

to directly compare their results (benefiting researchers) or to

leverage their respective strengths (benefiting app developers).
However, reusing and combining existing research tech-

niques is not a simple task in practice: their internal designs

may not be properly modularized, their implementations may

not be publicly available, and their documentation may be

inadequate. Reuse and combination of different techniques’ ca-

pabilities currently tends to require close communication with

the authors of a given technique. This is time-consuming and

unpredictable, resulting in regularly missed reuse opportunities

and duplication of work. As a result, the above techniques

have been successfully used in tandem in only two instances

to our knowledge: SEALANT uses IccTA’s Taint Analyzer
to evaluate its own Analyzer’s accuracy, while ApkCombiner

reuses IccTA to detect inter-app privacy leaks. In the latter

case, ApkCombiner [18] and IccTA [17] share authors, which

only further reinforces our point.

III. MAOMAO

We design MAOMAO based on the existing techniques,

such as those highlighted above, and our own experience in the

mobile domain. Our aim is to render reusable components at a

proper granularity that can, both, serve as a roadmap for future

techniques and improve the reusability of existing techniques.

In this section, we introduce the design of MAOMAO’s archi-

tecture (Section III-A) and elaborate how existing techniques

can be integrated with MAOMAO (Section III-B).
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Fig. 1. MAOMAO’s six reference components and overall workflow

A. MAOMAO’s Design
MAOMAO’s design is based on the widely-adopted mi-

croservice architectural style because (1) it helps to decouple

potentially complex functionality into lightweight, “black-

box” microservices, which are easy to understand and adopt by

developers in practice [28]; (2) existing mobile techniques tend

to comprise clearly separable and often reusable components,

and the microservice style would make it easier to reuse

such components across techniques; (3) the microservice style

allows components (i.e. microservices) to be implemented in

different programming languages with different technologies,

which suits the heterogeneity of the mobile domain.

As Fig. 1 shows, MAOMAO’s reference architecture con-

sists of six components, i.e., microservices. An individual app

optimization technique can consist of one or more of the

reference components. For example, IccTA [17] only has the

Intermediate Representer and Static Analyzer.

Intermediate Representer takes an app or the Operating Sys-

tem (OS), e.g., Android framework, as the input and produces

an Intermediate Representation (IR) for Static Analyzer to

analyze. IR can be used by other Intermediate Representer to

build new IR. For example, tool-specific IR is usually built on

top of fundamental IRs, such as Abstract Syntax Tree (AST),

Control Flow Graph (CFG) of an app. GATOR [29] has an

Intermediate Representer to produce Callback Control Flow

Graph (CCFG), which is a tool-specific IR that uses CFG.

Static Analyzer analyzes the IR to extract useful information

that can be used in other components, such as the program

point to be instrumented that will be used to instrument the

app or the OS. For instance, PerfChecker [3] has a Static
Analyzer to detect performance bugs, which can be used by

app developers directly or reused by follow-up techniques to

fix the bugs based on the bug locations (i.e., program point).

App Instrumenter instruments the app code and transforms

the original app, usually based on the information extracted

from the Static Analyzer. The App Instrumenter can be cate-

gorized into Automatic App Instrumenter (AAI) or Manual
App Instrumenter (MAI), and it usually needs to be con-

figured so that the instrumented app can interact with other

specific components at runtime, such as Backend Service.

An AAI instruments the app without developer’s involve-

ment, e.g., PALOMA’s [2] Instrumenter is an AAI used to



Intermediate 
Representer Static Analyzer

App Instrumenter OS Instrumenter

Device Monitor
Backend Service

Fig. 2. MAOMAO’s reference components and their reference APIs

enable prefetching based on the information extracted from

PALOMA’s Static Analyzers. On the other hand, a MAI

provides APIs for developers to manually modify their code.

OS Instrumenter is similar to App Instrumenter, but it

instruments the OS (e.g., Android) instead of the app. OS
Instrumenters can also be categorized into Automatic OS
Instrumenters (AOSI) and Manual OS Instrumenters (MOSI).

For instance, SEALANT’s Interceptor is a MOSI that extends

the Android framework to block malicious intents at runtime.

Device Monitor observes the device-level conditions at

app runtime. It is typically used to balance the quality-of-

service (QoS) trade-offs since mobile devices are resource-

constrained. Similar to the App Instrumenter, it also needs

to be configured in order to interact with other components

at runtime, such as the Backend Service. For instance, IMP’s

Monitor is a Device Monitor targeting battery life, data usage,

and network bandwidth, that interacts with its Prefetcher.

Backend Service contains the ancillary functionalities that

are triggered at app runtime. It interacts with the instrumented

app and the Device Monitor via lightweight protocol, e.g.,

REST APIs [30]. The ancillary functionalities are usually

triggered by specific information sent from the instrumented

app or the Device Monitor. For instance, IMP’s Prefetcher
is a Backend Service that adapts its prefetching strategies

according to the device’s QoS conditions sent by its Monitor.

Fig. 2 shows the reference APIs for each reference compo-

nent that aims to aid the design and implementation of MAO-

MAO, and a concrete example will be shown in Section III-B.

B. Migration of Existing Techniques to MAOMAO

We hypothesize that designing new techniques using MAO-

MAO’s microservice architecture will be more straightforward

than migrating an existing technique. For this reason, in this

section we illustrate how the latter process can be approached

using examples from Sections II and III-A. Specifically, we

studied the designs of the existing techniques as well as their

available open-source implementations to establish that they

can be ported to MAOMAO’s architecture.

Table I shows the mapping between the components in the

existing techniques and MAOMAO’s components. We use

PALOMA [2] as an example to explain the details of the

mapping. Fig. 3 shows the class diagram of PALOMA when

migrated to MAOMAO following the reference components

and APIs shown in Fig. 2. PALOMA was selected because

it was recently published and it contains more components

to be migrated to MAOMAO’s architecture than the other

techniques, which have as few as a single relevant component.
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Violist_IR CCFG_IR

URL_Analyzer Callback_Analyzer

PALOMA_Instrumenter

PALOMA_Backend

Fig. 3. The class diagram of PALOMA in MAOMAO

PALOMA’s String Analyzer leverages an external string

analysis tool, Violist [31], to identify the string values of

URLs in an app, and outputs a URL Map. Violist has a

proprietary intermediate representation (IR) of the control-

and data-flow relationships among the string variables and

string operations. Violist’s IR is transformed from Jimple [32],

which is a fundamental IR for representing Java/Android

programs. Violist analyzes the string values at given program

points based on its IR. With MAOMAO, PALOMA’s String
Analyzer will be implemented as two Intermediate Representer
microservices (Jimple_IR, Violist_IR) and one Static
Analyzer microservice (URL_Analyzer) as shown in Fig. 3.

Jimple_IR’s APK_To_Jimple API is an implementation

of Intermediate Representer’s App_To_IR (Fig. 2), where

Jimple is an instance of IR, and APK [33] is an instance of

App. Similarly, Violist_IR’s Jimple_To_Violist is

an implementation of Intermediate Representer’s IR_To_IR,

where Violist and Jimple are both instances of IR.

URL_Analyzer’s Get_URLMap_From_Violist is an

implementation of Static Analyzer’s Get_Info_From_IR.

PALOMA’s Callback Analyzer leverages an external call-

back analysis tool, GATOR [29], to identify the data prefetch-

ing points in an app, and generates a Trigger Map. Specif-

ically, the Callback Analyzer relies on the CCFG defined by

GATOR. With MAOMAO, the Callback Analyzer is decom-

posed into two microservices: an Intermediate Representer
(CCFG_IR) that outputs the CCFG by reusing Jimple_IR,

and a Static Analyzer (Callback_Analyzer) that outputs

the Trigger_Map for instrumenting prefetching functions at

given program points based on the CCFG.

PALOMA’s Instrumenter takes as inputs the URL_Map,

the Trigger_Map, and the Jimple, and transforms

TABLE I
MAPPINGS BETWEEN EXISTING COMPONENTS IN EXISTING TECHNIQUES

(SECTION II) AND MAOMAO’S COMPONENTS (SECTION III-A)
Existing Technique Existing Component MAOMAO’s Component

PALOMA [2]

String Analyzer Intermediate Representer + Static Analyzer
Callback Analyzer Intermediate Representer + Static Analyzer

Instrumenter Intermediate Representer + (Automatic) App Instrumenter
Proxy Backend Service

IMP [27]
API Support (Manual) App Instrumenter

Monitor Device Monitor
Prefetcher Backend Service

Bouquet [10]
Detector Intermediate Representer + Static Analyzer

Bundling Analyzer Static Analyzer + (Automatic) App Instrumenter
Proxy Backend Service

IccTA [17] Taint Analyzer Intermediate Representer + Static Analyzer

SEALANT [16]
Analyzer Intermediate Representer + Static Analyzer

Interceptor (Manual) OS Instrumenter
ApkCombiner [18] Combiner (Automatic) App Instrumenter



the original app to a prefetching-enabled app with three

instrumentation functions. With MAOMAO, PALOMA’s

Instrumenter will be one App Instrumenter (PALOMA_
Instrumenter) that instruments the app based on the

outputs from URL_Analyzer, Callback_Analyzer, and

Jimple_IR as shown in Fig. 3.

Finally, PALOMA’s Proxy interacts with the instru-

mented app at runtime via the three instrumented func-

tions: (1) it updates the URL Map with the data sent by

SendDefinition; (2) it prefetches HTTP requests trig-

gered by TriggerPrefetch; and (3) it redirects the HTTP

requests to get the response from a cache triggered by

FetchFromProxy. Migrating PALOMA’s Proxy to MAO-

MAO is straightforward: it will be designed as a single Back-
end Service microservice (PALOMA_Backend), with three

REST APIs to represent the three instrumented functions.

Other existing mobile computing techniques would be re-

designed (and subsequently reimplemented) in an analogous

fashion. As mentioned previously, new techniques would fol-

low MAOMAO’s reference architecture and rely on its APIs

from the get-go.

IV. MAOMAO’S ENVISIONED ADOPTION

MAOMAO’s architecture allows app optimization tech-

niques to be decomposed into lightweight reusable microser-

vices with a standard workflow, enabling their use by both

developers and researchers. Specifically, MAOMAO alleviates

the problem of reusing often incompatible capabilities from

disparate research techniques.

To realize MAOMAO’s potential in practice, we propose

a Microservice Repository (MR), that aims to connect de-

velopers and researchers together by providing and enforc-

ing a shared baseline. MR is a cloud-based repository that

consists of a Service Request Pool (SRP) and a Microservice
Pool (MP). SRP stores developers’ requests for their desired

services. MP stores and provides access to the available

microservices and their corresponding API documentation.

We use mobile app security techniques—IccTA [17],

SEALANT [16], and APKCombiner [18]—to demonstrate

how developers and researchers can benefit from MAO-

MAO and MR. We choose security because it has attracted

the greatest attention among researchers in the mobile domain.

As Table I shows, IccTA’s Taint Analyzer is decomp-

sosed into Intermediate Representer (IR) and Static Analyzer
(SA) microservices in MAOMAO’s architecture. Similarly,

SEALANT consists of IR, SA, and Manual OS Instrumenter
(MOSI) microservices. Finally, ApkCombiner becomes an

Automated App Instrumenter (AAI) microservice.

The six MAOMAO microservices in the three techniques

will be deployed to MR’s MP, along with their corresponding

API documentation. We discuss several representative use

cases of developers and researchers using these services.

1) Both developers and researchers can search the MR to

find their desired microservices in a specific domain (e.g.,

mobile security domain).

2) IccTA’s authors can find ApkCombiner’s AAI in the MR

and extend IccTA’s SA to detect inter-app privacy leaks

by following the API documentation of ApkCombiner’s

AAI. Then, IccTA’s optimized inter-app SA can be de-

ployed as a new microservice to the MR.

3) SEALANT’s authors can extend its SA in the same

manner as IccTA. SEALANT and IccTA can then use

each other’s IR and SA microservices to compare the two

solutions. Moreover, since SEALANT’s MOSI outputs an

instrumented OS to block privacy leaks, it can be used

by IccTA to “upgrade” from detection to optimization.

4) A phone manufacturer’s engineers can find SEALANT’s

MOSI in the MP and follow its APIs to customize the

OS to block privacy leak on their phones.

5) If developers cannot find a desired microservice in the

MR, they can submit a service request to the SRP to

describe their needs (e.g., a request for a performance

bottleneck detection service). They can optionally attach

a benchmark app that has the relevant issue.

6) Researchers can search the SRP to find reported needs

in their domain of interest and possibly obtain the cor-

responding testing data (e.g., using submitted benchmark

apps to evaluate a performance bug detection technique).

MAOMAO’s microservices and MR allow researchers to

track the real-world needs and developers to adopt research

techniques readily by invoking lightweight APIs. An added

advantage is that the microservices are deployed on the cloud

and do not introduce significant overhead on the client apps

deployed on resource-constrained mobile devices. Researchers

can also dynamically update their microservices without re-

quiring modifications to the app code. In addition, the test-

ing data provided by developers in the SRP can serve as

benchmarks for comparing different techniques in the same

domain. Once the microservices are adopted by developers,

the underlying research techniques will be evaluated in the

real world with real users, providing insights and incentives

for researchers to improve their techniques.

V. CONCLUSION AND FUTURE WORK

We introduce MAOMAO, a reference architecture for mo-

bile app optimization techniques to guide the design of future

techniques in order to improve their reusability and exten-

sibility, with a corresponding Microservice Repository (MR)

to deploy MAOMAO-compatible techniques. Together, the

two improve the availability and practicality of research tech-

niques, and bridge the gap between researchers and developers.

Our preliminary work provides evidence of MAOMAO’s

and MR’s viability, and also shows several future research

directions in order to adopt MAOMAO in practice, such as

ensuring privacy of any data (e.g., app usage) submitted to

MR, scalability to large numbers of researchers and develop-

ers, and standardizing API documentations. As early versions

of MAOMAO and MR are deployed and adopted, this scope

will grow to include capabilities such as recommenders of

related microservices based on certain service requests and an

access control model to enable fine-grained data sharing.
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