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Abstract— One of the difficulties of implementing and ana-
lyzing algorithms that achieve information theoretic limits is
adapting asymptotic results to the finite block-length regime.
Results on secrecy for both regimes utilize Shannon entropy and
mutual information as metrics for security. In this paper, we
determine that Shannon entropy does not necessarily have equal
utility for wireless authentication in finite block-length regimes
with a focus on the fingerprint embedding framework. Then, we
apply a new security performance metric to the framework that
is linked to min-entropy rather than Shannon entropy and is
similar to cheating probability used in the literature. The metric
is based upon an adversary’s ability to correctly guess the
secret key over many observations using maximum likelihood
decoding. We demonstrate the effect that system parameters
such as the length of the key and the identification tag have
on an adversary’s ability to attack successfully. We find that if
given a large key, it is better to use it all at once, than to use
some and then renew the key with the remaining bits after a
certain number of transmissions.

I. INTRODUCTION

Authentication, in addition to secrecy and privacy, is a fun-
damental part of the security for any communication system.
It is the process of verifying the source and integrity of a
received message to protect communications between trusted
parties. In wireless communications, authentication is doubly
important due to the open nature of the medium which
enhances an adversary’s ability to eavesdrop on communica-
tions and transmit messages of their own. While existing
cryptographic authentication methods are computationally
secure1, the wireless medium allows for the possibility of
achieving information-theoretic security, which has much
stronger guarantees, by taking advantage of channel differ-
ences between the legitimate and illegitimate parties. The
concept of information-theoretic secrecy originates from the
work of Shannon [1] and Wyner [2].

Their seminal works utilize Shannon’s metric of entropy
and mutual information to quantify the secrecy of the mes-
sage being transmitted. More specifically, Wyner’s work on
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1Computational security refers to when a system is secure due to
prohibitive computational complexity required to break them, that is, modern
computers cannot efficiently infiltrate in a practical amount of time.

the wire-tap channel and Csiszár and Körner’s generalization
[3] derive rate regions with a secrecy requirement in which
the mutual information between an adversary’s observation
and the message must be made arbitrarily small as the
block-length goes to infinity. Authentication, on the other
hand, doesn’t have a direct entropy metric that can be
used to quantify a given scheme’s performance. Instead,
cheating probability, or the probability that an adversary
can deceive the legitimate receiver, is used. Bounds on the
cheating probability using entropy or mutual information,
however, can be found in [4], [5], and [6] or in terms of
an achievable rate region in [7]. The presence of entropy
in these bounds and the importance of the shared key in
authentication partially motivated our approach [8] of using
key equivocation, i.e. conditional entropy of the key given
an observation, to quantify authentication and key security.

The bounds, however, are of limited practical use for the
fingerprint embedding authentication framework since one
is for the noiseless case [4], one is only a lower bound
[5], and one is for the asymptotic block-length regime [6].
In this paper, we investigate the utility of Shannon entropy
in authentication and suggest using min-entropy [9] in an
alternative metric. We also develop a means to measure an
adversary’s ability to impersonate a legitimate transmitter to
show how much information-theoretic authentication security
can be achieved in practice. More specifically, we directly
calculate the cheating probability of an adversary with in-
finite computational resources over the course of multiple
authenticated transmissions in the fingerprint embedding
framework. The analysis is based on an adversary’s ability to
infer the key using a maximum likelihood decoder from their
observations of legitimate communications and then sending
a message authenticated using the most likely key.

This paper is organized as follows. Section II provides
an overview of the fingerprint embedding authentication
framework while Section III discusses the use of Shannon
entropy and min-entropy as security metrics for authentica-
tion. Section IV presents the revised security analysis and
results for the framework.

II. FINGERPRINT EMBEDDING FRAMEWORK OVERVIEW

The fingerprint embedding authentication framework [8]
is designed to take advantage of the physical layer by
protecting an authentication tag in noise to achieve a degree
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of information theoretic secrecy. A block diagram of the
authentication framework can be found in Figure 1.

In our model, a legitimate transmitter (Alice) wishes to
have her communications with a legitimate receiver (Bob)
authenticated in the presence of a single adversary (Eve)
who may try to impersonate Alice by sending messages of
her own to Bob. To facilitate authentication, Alice and Bob
both agree upon a shared key k that is drawn uniformly
from the set of all κ-bit keys K and is kept secret from
Eve before communication begins. When Alice wishes to
transmit a message s to Bob, she proceeds by first gener-
ating a tag t = g(s,k) following the hash-based message
authentication code (HMAC) protocol [10]. We assume that
the tag generating function g(·, ·) is deterministic, but where
outputs were selected uniformly over the tag space.

Next, Alice superimposes the tag on the message wave-
form

x = pss+ ptt , (1)

where the power allocation of the message and tag, ps and pt,
respectively, are non-negative scalars that designed such that
p2s+p2t = 1. We assume that x is a length L complex-valued
vector of iid symbols with zero mean and unit variance in
the form of a desired modulation scheme, e.g. QPSK, QAM.
Finally, she sends x over two additive white Gaussian noise
(AWGN) channels to Bob and Eve, respectively

y = x+wb (2)
z = x+we , (3)

where wb and we are L-length random complex Gaussian
noise vectors with zero mean and variance σ2

b and σ2
e ,

respectively. Note here that, unlike for non-zero secrecy
capacity in the wire-tap channel, we do not necessarily
assume that σ2

b < σ2
e . We do assume that Eve is not actively

jamming or interfering with Alice’s transmissions.
Bob receives y from the channel and first decodes the

primary message ŝ before determining its authenticity. As-
suming he decodes without error, he obtains a noisy version
of the tag t̃ by removing the primary message’s contribution
to y. Bob, knowing k and obtaining ŝ, computes the expected
tag using the same function g(·, ·) as Alice which produces
the same tag as in Eq. (1). He then uses a matched filter
and threshold designed using the Neyman-Pearson lemma
to test for the presence of the expected tag in t̃ . In the
hypothesis test, H0 corresponds to the expected tag not
being present while H1 corresponds to the expected tag
being present. Authentication is successful when Alice sends
an appropriately tagged message and Bob selects H1. The
false alarm α used to determine the threshold corresponds to
the situation where Bob incorrectly authenticates a message
containing an invalid tag.

For full details on the fingerprint embedding authentication
framework, please refer to [8].

III. ENTROPY AS A SECURITY METRIC IN
AUTHENTICATION

Typical treatments of security for authentication systems
approach performance in terms of the success probability of
the adversary. In this case, success for the adversary occurs
when a legitimate receiver erroneously accepts one of their
false messages. The way in which the attack is performed
is frequently broken down into two types, impersonation
and substitution. The two attacks differ in that in an im-
personation attack, the adversary sends a message hoping
to get it authenticated before a legitimate source transmits
whereas for a substitution attack, the adversary first intercepts
a transmission, and then replaces it with their own message.
The maximum success probability between the two attacks
is frequently called the cheating probability which is used as
the security performance metric for authentication.

Thus, an authentication system must protect against both
attacks to minimize the cheating probability. Due to the
similarity between the two attacks, we assume that the
impersonation attack subsumes the substitution attack and
consider just the former. In the case of the framework
presented in Section II, impersonation attacks are first limited
by the designed false alarm rate α and the size of the key
space. This is due to the fact without knowledge of the key,
the adversary is limited to uniformly guessing a key/tag
to superimpose and attacks with which has a probability
of max{α, 1/|K|} of succeeding. Once the adversary gains
access to additional observations, they can be more intelli-
gent with their attack strategy by making a better key/tag
selection. Thus, attacks are limited by the amount of key
leakage in each transmission.

In previous analysis [8], we measured the amount of key
leakage using key equivocation which is simply the entropy
of the key conditioned on the adversary’s observations.
Besides its use in the cheating probability bounds found in
[4], [5], and [6], the direct link from key equivocation to the
adversary’s capabilities was never fully explored. Thus, we
propose a new metric to quantify security of the fingerprint
embedding authentication framework, or any HMAC-based
authentication scheme, that is more in line with cheating
probability in the literature. We define the metric as the
probability that Eve successfully impersonates Alice when
attacking with the most likely key based on her observations
which is calculated as

PS = PKPD + (1− PK)α , (4)

where PK is Eve’s probability of choosing the correct key
and PD is the probability that Bob accepts a correctly tagged
message. Equation (4) takes into account the possibly that
even if Eve does obtain the correct key, she is still limited
by the power of Bob’s hypothesis test PD. Additionally,
even if she guesses the wrong key, there is still a chance
she is successful due to possible type I errors (limited by
α) in Bob’s test. With α chosen by Bob and the value for
PD obtained from the process outlined in Section II [11],



Fig. 1. System diagram of the physical layer fingerprinting authentication framework. A legitimate transmitter-receiver pair share the same secret key
that is then used to create an identifying tag that enables authentication.

all that remains to calculate is PK . In the next section, we
demonstrate the merits of using min-entropy (defined in Eq.
(8)) in order to define

PK = 2−H∞(K|Y ) . (5)

A. Min-entropy as a Metric

Key equivocation, or conditional Shannon entropy,

H(K|Y ) =
∑
x∈X

PY (Y )H(K|Y = y) . (6)

allows users to examine the change in entropy of their shared
secret key as an adversary intercepts an increasing number
of transmissions between legitimate parties. Papers such as
[8] and [12] use key equivocation to define the security
of their authentication frameworks. Conditional Shannon
entropy, however, is insufficient in fully characterizing the
vulnerability of a key or the security of an authentication
system [13][14]. The insufficiency partially comes from the
lack of an intuitive explanation or practical meaning of the
obtained entropy value and how it relates to an adversary’s
ability to successfully impersonate a legitimate party. While
the two extremes of conditional Shannon entropy have clear
meanings, maximum Shannon entropy indicates no leaked
information (perfect secrecy) and zero entropy indicates that
the key is fully leaked, the intermediate values’ operational
meanings are less apparent. Additionally, since Shannon
entropy is an average measure of information, it can lead
to misleading conclusions. For example, suppose we have
the distribution of 128 keys conditioned on an observation
where one key has a probability of 1/10 and the rest are
equiprobable. Then, the Shannon entropy is 6.7588 which
is close to the maximum 7 implying that the key is fairly
secure when in reality one key stands out.

A similar information-theoretic metric that better considers
the extrema of a distribution is min-entropy, which is defined
as

H∞(X) � min
x∈X

− log2 (PX(x)) = − log2

(
max
x∈X

PX(x)

)
.

(7)

It is simply the negative logarithm of the highest probability
in the distribution. As suggested in [13] and [14], min-
entropy may be a better alternative measure for key secrecy
due to the fact that 2−H∞(K) is the probability of correctly
determining a random variable, e.g. the key, on the first try
using an optimal guessing scheme. This metric is applicable
to authentication because it quantifies the probability of an
adversary correctly guessing the key to attack with and thus
directly affects the success of an impersonation attack.

Given an observation y, the metric becomes
2−H∞(K|Y =y) = maxK P (K|Y = y). This is essentially
equivalent to the success probability of using a maximum
likelihood (ML) decoder to decode the key, something
we will take advantage of in the subsequent section. We
must be careful, though, about using conditional min-
entropy H∞(K|Y ). It, as well as other conditional Rényi
entropies, do not have generally accepted definitions [15].
For example, using the same formulation that is used
for conditional Shannon entropy breaks the monotonicity
property required for an information measure which is
undesirable. Nonetheless, analysis in [13] and [14] uses
the conditional Shannon entropy definition for conditional
min-entropy. Here, though, we will follow the formulation
suggested in [15]

H∞(Y |X) = − log

⎛
⎝∑

y∈Y
PY (y)

(
max
x∈X

PX|Y (x|y)
)⎞⎠ .

(8)

This formulation is advantageous since 2−H∞(K|Y ) is the
average performance of using an ML decoder to guess the
key, giving us PK . Additionally, it satisfies the monotonicity
property and (weak) chain rule required for a measure (see
[15]). The metric 2−H∞(K|Y ), as defined here, is equivalent
to the substitution attack upper bound given in [6].

B. Guessing Entropy

Note that in any authentication system, the adversary may
have more than one chance to guess the key. In such case,
even if the first attack using the most likely key fails, they
can try again using the next most likely key and so on until
the correct key is reached and authentication is achieved



(or the legitimate users recognize the failed attempts and
act accordingly). Thus, min-entropy alone may not be fully
sufficient. In [13] and [14] this situation is addressed by the
proposal of using guessing entropy

E [G(X)] =

|X |∑
i=1

ip∗i

where p∗ is the probability distribution on X ordered from
highest probability to the lowest. Guessing entropy indicates
the expected amount of guesses required before the correct
value is obtained. This formulation assumes that there is
no feedback at each guess which is typically valid in an
authentication setting since the adversary usually does not
know if a tag is accepted or not.

The conditional form of guessing entropy,

E [G(K|Y )] =
∑
y∈Y

PY (y)E [G(K|Y = y)] ,

is suggested in [16] to connect the idea of guessing entropy
to security. With such a metric, a secure system requires
the conditional guessing entropy to be sufficiently large. The
users would design their system such that it must take the
adversary many guesses to arrive at the correct secret key.
We take a similar approach to the multiple key guess problem
by comparing it to list decoding in Section IV-C.

The next section details how to determine PK for both a
single guess and a multiple guess attack. We determine PK

by examining the probability that an adversary can guess
the key using a maximum likelihood decoding scheme via a
random coding analogy.

IV. SECURITY ANALYSIS

A. Random Coding Analogy

Based on Eq. (5), we assume that Eve uses a maximum
likelihood decoder to choose a key to attack with. In order
to compute the probability PK of choosing the correct key,
we consider the key to tag mapping as a random code due to
the uniform output and analyze the error performance. In this
analogy, the tag generating function is an encoder that maps
messages (keys) to codewords (tags). Eve wants to reliably
decode the received codeword to determine which key is be-
ing used by Alice and Bob. Since the tag generating function
is public, Eve has access to the codebook and can perform
maximum likelihood decoding. Since we assume that Eve has
unlimited computational abilities, the complexity of such a
decoder is not considered. Analysis in [12] takes a similar
approach, but models the tag generator as an equidistant code
in order to achieve results for the case when an adversary
has more than one observation.

When extending to multiple observations, Eve benefits
from the fact that Alice repeatedly uses the same key. Even
though the codeword changes with each transmission, Eve
can modify her codebook to treat each observation as part
of one long transmitted codeword from a single key. In the
modified codebook, each codeword is a concatenation of tags

corresponding to a specific key and all observed primary
messages, i.e.

g(ŝ1,ki)|| · · · ||g(ŝNo ,ki) ∀ki ∈ K,

where No is the number of observations. The concatenated
observed codeword is then

t̃1|| · · · ||t̃No .

She guesses a key by using maximum likelihood decoding
on the new codebook.

B. Eve Performance Analysis
With the random code analogy in hand, we can use

new and existing random coding results to analyze Eve’s
probability of correctly guessing the key using a maximum
likelihood decoder averaged over all possible random codes.
We show two approaches to calculating this probability. The
first is a simplification of the channel to be binary symmetric
where the transition probability is determined from the tag
SNR p2

t

σ2
e

and the modulation scheme used. In this channel
model, the decoder hard-decodes the received symbol and
then selects the codeword in the codebook whose Hamming
distance is the closest to the received codeword where ties
are broken by random selection. Theorem 1 gives the average
success probability for such a decoder of a random code over
a binary symmetric channel (BSC).

Theorem 1 ([17]): The probability of correctly decoding
the key over a BSC, averaged over all tag mappings, is

PK,BSC =
n∑

i=0

(n
i

)
pie(1− pe)

n−i ·
⎛
⎜⎝|K|−1∑

t=0

1

t+ 1

(|K| − 1

t

)(
2−n

(n
i

))t

⎛
⎝2−n

n∑
j=i+1

(n
j

)⎞⎠
|K|−1−t

⎞
⎟⎠ ,

(9)

where pe is the BSC transition probability and n is the tag
length in bits.

Proof: See [17, Theorem 2].
This expression, however, is difficult to compute for large
block-lengths due to the large number of binomial coef-
ficients, although bounds are available. The probability of
success for multiple observations is found by replacing all
instances of n with nNo to reflect the longer codeword
lengths.

The second approach to analyzing Eve’s decoding capa-
bilities is to assume her maximum likelihood decoder is a
bank of matched filters tuned to each key/tag and decodes by
selecting the key that has the highest matched filter output.
Theorem 2 gives the success probability of such a decoder
over an AWGN channel.

Theorem 2: Assuming an AWGN channel, the probability
that the correct key corresponds to the largest matched filter
output is

PK,AWGN =

∫ ∞

−∞
φ

⎛
⎝ t− L√

Lσ2
e

2p2
t

⎞
⎠Φ

⎛
⎝ t√

L
2 +

Lσ2
e

2p2
t

⎞
⎠

|K|−1

dt

(10)



where φ(·) and Φ(·) are the PDF and CDF of the standard
normal distribution.

Proof: In [11], the distributions for the matched filter
outputs for both a correct codeword and a random codeword
are presented. Using those distributions and the fact that
the codewords are pair-wise independent, we can simply
calculate the probability that all of the |K|−1 incorrect code-
words matched filter outputs are less than the correct one’s
output to obtain (10). Unlike in the BSC, this formulation is
continuous, so we do not need to consider the case where
two matched filter outputs are equal.

The probability of success for multiple observations is
found by replacing all instances of L with LNo to reflect
the longer codeword lengths. This formula is more efficient
to compute than (9) since it does not contain any binomial
coefficients.

The probability of correctly guessing the key using a
maximum likelihood decoder (Equation (10)) versus the
number of observations is plotted in Figure 2 over different
key lengths and compared to the designed α. Markers on
the plot show that the number of observations at which
the probability of Eve guessing the key surpasses α is not
linear with key length. This indicates that continual use of
a longer key is better than using some of the key until
Eve’s probability reaches α and then switching to using the
remaining key material. For example, suppose Alice has 1024
bits of secret key to use for authentication. If she uses the
first 512 bits to authenticate, she can do so for about 13
transmissions before needing to switch to the other 512 bits
for a total of 26 transmissions under α. If she instead uses
all 1024 bits, then she can transmit approximately 29 times
before reaching a compromising position. This is most likely
due to the fact that some secrecy in the key remains when it
is discarded in the former scheme and doing so twice instead
of once is inefficient. In this case, the amount of bits wasted
is log2 α ≈ 13 bits.

Figure 3 illustrates the number of observations Eve re-
quires for her attack success probability (Eq. (4)) to exceed
Alice and Bob’s designed false alarm probability, as opposed
to when her probability of guessing the key correctly exceeds
as in Figure 2. Equation (4) is calculated using PD from
[11], which in this case is PD = .9958 assuming the SNR
for Alice to Eve is the same as from Eve to Bob. PK is
obtained from (10). Eve is clearly first limited by α since
this probability is the default tolerance for accepting random
tags chosen by Alice and Bob. Once she is able to guess the
key with high probability, she is simply limited to PD which
is determined by her channel to Bob. The same conclusion
of using all key material at once continues to hold for this
plot.

C. �-Key Attack

As first mentioned in Section III-A with the idea of
guessing entropy, looking only at the probability that the
correct key is the most likely is an incomplete analysis of

Fig. 2. As Eve obtains more observations, the probability of her guessing
the key correctly increases. Adding key material naturally increases the
security of the system. The increases show that it is better to use all of the
key at once, rather than use some until it is compromised and then using
the rest.

an adversary’s capabilities. In practice, Eve has more than
one chance to impersonate Alice since she can send multiple
messages each with a tag generated from a different key.
Such an attack could have the strategy of using the top � most
likely keys in successive attacks. This changes the analysis to
now look at the probability that the correct key is contained
in the set of the � most likely keys which is the basis for list
decoding. The �-list decoding performance for the BSC and
AWGN regimes are given in Theorems 3 and 4, respectively.

Theorem 3: For the BSC, the probability of that the cor-
rect key is contained in the top � most likely keys, averaged
over all tag mappings, is given by

PK,BSC(�) =
n∑

i=0

(n
i

)
pie(1− pe)

n−i

·
�−1∑
q=0

|K|−1−q∑
t=0

min

{
�− q

t+ 1
, 1

}( |K| − 1

q, t, |K| − 1− q − t

)

·
(
2−n

i−1∑
k=0

(n
k

))q (
2−n

(n
i

))t

⎛
⎝2−n

n∑
j=i+1

(n
j

)⎞⎠
|K|−1−q−t

.

(11)
Proof: See [18].

Theorem 4: For the AWGN channel matched filter de-
coder model, the probability that the correct key is in the
top � largest outputs is

PK,AWGN(�) =

�−1∑
i=0

(M − 1

i

) ∫ ∞

−∞
φ

⎛
⎜⎜⎝ t− L√

Lσ2
e

2p2t

⎞
⎟⎟⎠Φ

⎛
⎜⎜⎝ t√

L
2
+

Lσ2
e

2p2t

⎞
⎟⎟⎠

M−1−i

·

⎛
⎜⎜⎝1− Φ

⎛
⎜⎜⎝ t√

L
2
+

Lσ2
e

2p2t

⎞
⎟⎟⎠
⎞
⎟⎟⎠

i

dt.

(12)



Fig. 3. As Eve obtains more observations, the probability of her success-
fully impersonating Alice increases. Similarly to Figure 2, it is better to use
all of the key at once, rather than use some until it is compromised and then
using the rest. The probability of a successful attack stays at the designed
α until PK approaches 1.

Proof: In order to successfully decode, the correct
codeword must be contained in the �-list. This occurs when
less than � incorrect codewords have test statistics that are
larger than the correct one. Given the distributions of the
test statistics from [11], we sum the probabilities over all
orderings in which the correct codeword is ranked � or higher
to get (12).

The probability that the correct key is contained in the top
� matched filter outputs is shown in Figure 4 with the same
parameters as in Figure 2 and a 512 bit key. Naturally, larger
list sizes have a higher probability of containing the correct
key, but in this case, the performance gain is very minimal.
In other words, if the correct key does not produce the largest
matched filter output, then it is nearly equally likely to be in
any of the remaining rankings. This shows that Eve will not
benefit much from an �-key attack, so Alice and Bob do not
have to worry about protecting against such attacks.
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