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Abstract—Cycling communities have been related to lower
obesity rates and lower stress levels. Nevertheless, one of the
main obstacles to increase ridership in cities is the lack of
information regarding perceived cycling safety at the street
level. City planners have typically used extensive road network
and traffic information to approximate cycling safety levels.
However, this approach requires the deployment of expensive
sensors thus making it hard for many cities to get access
to accurate cycling safety maps. In this paper, we evaluate
several methods to predict urban cycling safety at the street
level, exclusively using public information from open and
crowdsourced datasets. We evaluate the proposed approach
in the city of Washington D.C. and achieve F1 scores of 66%,
70% and 88% when five, four or three different cycling safety
levels are considered.
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I. INTRODUCTION

The benefits of cycling are well studied: reduction in
urban pollution [1]; savings in healthcare costs due to daily
exercise [2]; or improvements in workforce accessibility for
low-income communities [3], among others. As a result,
cities have created bike lanes, started bike-shared systems
and supported bike to work programs in the past years.
However, as bicyclists take the streets, bicycle safety is
increasingly becoming an important concern [4]. One of the
main obstacles to decrease the number of bicycle crashes is
the lack of information regarding perceived cycling safety
at the street level. Building bicycle-friendly communities
that promote an increase in ridership will require accurate,
citywide cycling safety maps. Such maps would allow
policy makers to make informed decisions on the optimal
distribution of budgets across road improvements and would
back bicycle activists in their arguments.

Local departments of transportation (DoTs) use numeric
scales e.g., from 1 to 5, to measure cycling safety at the
street level [5]. Safety levels are typically computed using
different estimation models that require extensive informa-
tion including features such as daily traffic or average speed
[6]. However, accessing such information entails setting
up expensive sensors thus highly limiting cycling safety
maps to cities with economic resources, and to only a
handful of streets where such sensors are deployed. In
an attempt to make cycling safety maps accessible to a
larger number of cities and for a larger number of streets,
we propose to use information exclusively extracted from
open and crowdsourced datasets as proxies to predict the
cycling safety levels of urban streets. We will work with
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two types of information that have been reported to play a
role in cycling safety perception, social features and built-
in environment characteristics [7]. Social features which
characterize citizen behaviors that take place in streets e.g.,
crime, can be extracted from cities’ open data repositories
(like NYC open data or London Datastore); while built-
in environment characteristics that describe street features
such as the presence of cycling facilities, can be extracted
from crowdsourced platforms like Open Street Map. In this
paper, we will evaluate various methods to predict perceived
cycling safety levels at the street level using social and
built-in environment features from Washington, D.C.; and
we will show that we can lower the bar in the access to
comprehensive and accurate cycling safety maps for many
cities worldwide only using (a) open data repositories, which
are available for over 2600 cities worldwide [8], and (b)
crowdsourced data from Open Street Map, which is available
for over 4 million small- to mid-sized cities [9].

Cities interested in using the cycling safety predictive
methods we propose, will also require access to cycling
safety ground truth levels so as to train their own local
models to achieve the highest prediction accuracies. For that
purpose, we have designed an open-source, crowdsourced
rating platform which uses cycling videos recorded by real
cyclists to collect perceived safety ratings from cyclists with
different levels of expertise. These ratings, together with
the social and built-in environment features extracted from
open and crowdsourced datasets, will be used to assess
the accuracy of various machine learning approaches in
predicting perceived cycling safety levels.

II. RELATED WORK

Research in transportation planning has focused on the
design of quantitative models to estimate cycling safety
levels [6]. One of the first models was the bicycle safety
index rating (BSIR) which related bicycle safety to the
physical and operational features of the roadway, using
variables such as annual daily traffic, speed limit, lane width
or pavement conditions to estimate cycling safety levels [10].
The Bicyclist Stress Levels index (BSL) was introduced
by Sorton and Walsh who determined that stress levels
(characterized from one to five) suffered by cyclists could be
measured as a function of peak-hour traffic volume, motor
vehicle speeds and lane width [11]. Building on all these
models, the Bicycle Level of Service (BLOS) was the first
measure to introduce the presence of a stripe separating
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motor vehicle from bicycle lanes as an important factor in
determining cycling safety [5]. From BSIR to RCI or BLOS,
all these safety estimation models suffer from two important
limitations. First, they require a large set of variables that
cities might not have the ability to collect at all, or can
collect but only for a limited number of streets e.g., traffic
information requires the deployment of speed sensors that
due to their cost can only be put in selected places. Second,
many of these estimation models are evaluated using a
manual approach i.e., the accuracy of the safety levels
output by the models is checked through explorations of
the physical environment by cycling safety experts rather
than through data-driven approaches that would require far
less work. The approach we present in this paper overcomes
these limitations by using features extracted from open
and crowdsourced datasets that many cities are already
collecting, thus lowering the bar in the access to cycling
safety maps for many cities worldwide.

III. CYCLING SAFETY PREDICTION

In this section, we present an approach that uses social and
built-in environment features as proxies to predict perceived
cycling safety at the street level. Since streets in cities can
be long, we focus on the prediction of cycling safety at
the street segment level, defined as the section of the road
between two adjacent intersections. We frame the cycling
safety prediction as a classification problem where given a
set of n features F; = {F(1),...,F(n)} that characterize
a street segment 4, and given a ground truth safety label
L; that characterizes the perceived cycling safety for that
segment, we explore the accuracy of various classification
methods M in the prediction of the perceived cycling safety
exclusively using the available features across all segments
in the geographical area under study i.e., L = M(F).

A. Prediction Features

It has been shown that variables that characterize the built-
in and social environment of a street play a role in the
perceived cycling safety. For example, streets that are known
to have a lot of on-street parking tend to be avoided mostly
due to dooring concerns (the door of a parked car opens onto
the cycling lane and hits a cyclist) [12]; or that roads in high
crime areas are less favored by cyclists when choosing their
cycling routes [13]. Informed by an extensive exploration
of the related work in cycling safety and by the types
of variables typically available in open and crowdsourced
datasets, we have created a list of features as potential
predictive proxies for street cycling safety levels in urban
environments. We consider two types of features: social
features and built-in environment features. Social features
focus on the characterization of human behaviors that take
place in the streets and that change over time e.g., parking
violations or crime rates, while built-in environment features
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provide an atemporal depiction of the network formed by all
the streets in the city.

We consider the following social features (a to e): (a)
crime rates have been found to play a role in cycling safety
perception, with cyclists avoiding high crime areas unless
there is no other route available [13]. Crime statistics per
street segment, typically collected by police departments, are
usually available in open data portals by total volume or by
type of crime e.g., liquor law violations, thefts or robberies.
We will evaluate both representations as predictive proxies
for the perceived cycling safety of a segment; (b) specific
points of interest such as parks, residential building areas or
malls have been identified as being connected to high crime
rates [14]. In an attempt to incorporate these factors into the
cycling safety prediction models, we will extract the points
of interest (POIs) at a given street segment using Open Street
Map; (c) bicycle-related crashes have been shown to play a
role in safety perception with cyclists favoring roads that are
known to have low numbers of cycling related crashes [15].
Crash statistics per street segment are typically available by
total volume or by type of crash e.g., collision with fixed car
or hit and run. We will explore the use of both to predict
cycling safety levels at the street segment; (d) 311 requests
are typically available in open data portals. These are citizen-
initiated requests to solve a specific problem, and they are
collected by city halls through their 311 portals. We will only
use 311 requests related to street conditions such as number
of curb, light bulb or road bump repairs as proxies for road
conditions, since these have shown to affect the perception
of cycling safety [16]; and finally, (e) parking volumes
have been shown to impact safety perception, with higher
parking volumes associated to less safety [17]. Although
parking volumes are not typically available in open data
portals, parking and moving violations characterized by their
type are e.g., distracted driving using cell phone or parked
car obstructing sidewalk or driveway. Thus, we will explore
whether the volumes of parking and moving violations might
help in predicting the perceived cycling safety.

On the other hand, we explore the following built-in
environment features (f to /) as potential predictive proxies
for cycling safety at the segment level: (f) road network
variables including type of road (street, avenue, etc.), number
of lanes, directionality and slope, which have been reported
to play a role in cycling safety perception [18]. These
features are available in Open Street Map, except for the
slope which can be computed using Google’s API Elevation
Service, retrieving the elevation of several points in each
segment; (g) graph-based features of the street segments
in terms of centrality measures that quantify the importance
of the segment in the overall road network i.e., whether it
is a central segment that is typically cycled through to go
between any two points in the city, or more of an outlier
segment. Related literature has shown that network centrality
measures play a role in promoting cycling activities which



in turn create a critical mass that enhances the perception
of cycling safety [19]. Road network maps can be retrieved
from either Open Street Map or open data portals (as GIS
resources). Using the SNAP package over the road networks
will allow to evaluate various centrality measures such as
degree, betweenness or page rank, among others, consid-
ering the road network of the city both as an undirected
and directed graph (taking into account the direction of the
traffic flow) [20]. Additionally, we will evaluate both primal
and dual road network approaches that consider either each
segment as an edge and each intersection as a node, or
vice versa [21], [22]; and finally, (h) presence of cycling
facilities and their type e.g., dedicated bike lane or lane
shared with traffic. These features, which can be extracted
from Open Street Map, have also been shown to play a role
in cycling safety perception [7], [11].

B. Crowdsourced Rating Platform

We have created a crowdsourced platform that cities
can use to collect ground truth data from cyclists with
respect to perceived cycling safety at the street segment
level. The objective of the platform is to collect ground
truth labels to be able to train and evaluate the accuracy
of the prediction methods proposed. When users access the
platform (http://www.cyclingsafety.umd.edu), they are first
asked to voluntarily rate their cycling experience level by
choosing among the four following standard options in the
cycling literature: fearless, confident, interested or reluctant
[23]. After that, the user will be shown 20s cycling videos
recorded by actual cyclists and after each video, she will
be prompted to provide a cycling safety rating between 1
(too dangerous) and 5 (very safe) as previously described
in cycling safety literature [23]. Users are also asked about
their familiarity with the route shown in the video, which
will be used in the evaluation as a feature that might play a
role in cycling safety perception.

Although platform users rate the perceived cycling safety
conditions of the videos, we need to collect safety labels per
street segment since that is the granularity of the proposed
prediction methods. The platform internally computes the
cycling safety levels at the street segment as follows. The
videos shown in the platform have been recorded by cyclists
with a bike-mounted camera. The recordings contain not
only the video footage but also the GPS traces associated to
the cycling trip. We use such GPS information to retrieve
the street segments associated to a given video. However,
such process is not straight forward since GPS sensors have
errors, and more so in urban environments where when
surrounded by tall buildings the GPS might loose signal or
record a location quite far away from the actual visited point.
As a result, we retrieve the list of street segments cycled
using Mapbox’s Map Matching API, which snaps fuzzy,
inaccurate GPS traces to actual segments in the road network
[24]. Internally, Mapbox uses the map-matching algorithm
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by Newson and Krumm, based on Hidden Markov Models
(HMM) that find the most likely street segment in the net-
work that is represented by the collected GPS location [25].
Since a video might include only portions of a given street
segment %, the platform maintains internal lists that associate
each video j to a set of street segments, with the percentage
of each street segment covered within the video (c; ;). Street
segment safety levels (labels) are computed by (i) averaging
all available participant ratings r for that segment across
videos, with the ratings weighted by their segment coverage
in the video i.e., L; = (3°7", (30, cijrq)/n)/m, where
n is the number of segment ratings and m is the number
of videos since a segment might partially or fully appear on
multiple videos; and (ii) assigning it to its closest integer
value in the range [1-5].

1V. EVALUATION

In this section, we evaluate the proposed cycling safety
prediction approach using open and crowdsourced data for
the city of Washington D.C. We first present the set of social
and built-in environment features F; = {F(1),...,F(n)}
extracted for each street segment using Washington’s D.C.
open data portal and Open Street Map. Next, we describe
the ground truth data collection of perceived cycling safety
ratings using the crowdsourced rating platform deployed for
Washington D.C. in collaboration with Washington Area
Bicyclist Association (WABA). Finally, video safety ratings
are transformed into street segment labels L; € [1-5] and put
together with the features to evaluate the accuracy of various
cycling safety classification methods. We also evaluate the
impact that sparsity and class imbalance might have on the
accuracy of the classification methods.

A. Feature Extraction

We represent each street segment ¢ in Washington D.C.
as a set of built-in environment BF; and social features
S; i.e, F; = {BE;, S;}. Built-in environment features are
extracted from D.C.’s Open Street Map, and are represented
as a number characterizing each of the features described
in section III-A ((f)-(h)). Specifically, we extract 63 built-in
environment features including 11 road network variables,
39 graph-based and 13 cycling facilities’ variables i.e.,
(|[BE;] = 63). On the other hand, the social features are
extracted from D.C’s open data portal and from Open Street
Map (OSM). We retrieve time-stamped, geolocated events
for the following 6 social features: crime, crash, 311 and
parking and moving violations datasets for the past three
years; and all the POIs in D.C. from OSM. Each social
feature is divided into the following types: 11 types for crime
data, 11 types for crash data, 72 for 311 requests, 10 for
POIs, 36 different types of parking violations and 8 types of
moving violations. We explore two representations for each
social feature per street segment (except POIs): monthly
average across all types and monthly average per type. The
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main objective is to evaluate whether a more granular repre-
sentation of the social features including volumes per type of
event, rather than total volumes, has an impact on the final
accuracy of the perceived cycling safety predictions. The
monthly average across all types is computed as a number
representing the average of the monthly feature values across
the three years of data. Monthly average per type, on the
other hand, is computed as an z-element vector where each
element contains the average of the monthly feature values
for each type across all three years. For example, the feature
crashes is classified into 11 different types including assault,
burglary or crime with dangerous weapon. Its monthly
average would be computed as a number representing the
average of all monthly crimes for the past three years; while
the monthly average per type would be computed as a 11-
element vector with each element representing the average
of monthly crimes for a specific type of crime over the past
36 months. Thus, the final size of the social features’ vectors
will be |.S;| = 6 for the monthly average across types and
|S;| = 148 for the monthly average per type.

Measuring feature sparsity as the percentage of segments
that have zero values for a given feature, we observe
that the monthly averages across all types have very little
sparsity, with values ranging between 0% and 9%. However,
the monthly averages per type have larger sparsity values
ranging from an average of 0.8% for crash violations to
1.5% for different types of parking or moving violations,
and up to values higher than 60% for certain types of 311
reports. A comparison between the two monthly average rep-
resentations, together with different classification methods
and feature selection techniques, will allow to disentangle
whether the sparsity of the feature vectors when using
the monthly averages per type might affect the predictive
accuracy. To preserve the interpretability of our models no
sparse learning approach is used, since our main objective is
to predict cycling safety levels and provide decision makers
with actionable insights behind such levels.

Finally, it is important to clarify that the effect of social
features on cycling safety perception might take place not
only at the lant,long coordinates where the feature is
recorded, but in a larger area. For example, a 311-pothole
recorded in a three-way intersection will probably affect
cycling safety perception in all three street segments. To
account for that, we create a radius buffer of rb = 5m
such that any social feature event recorded will be counted
towards all street segments covered by a radius of five meters
around its own geolocation. For the crime rates feature, we
enlarge that radius buffer to 7b = 500m since crimes can
potentially have larger areas of influence [26].

B. Ground Truth Collection

We launched the rating platform with cycling videos for
the city of Washington D.C. The platform was promoted by
Washington’s Area Cyclist Association (WABA) as well as
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by several other smaller cyclist associations through cycling
events, blog posts and social media feeds to encourage
cyclists to access the website and rate the safety of as many
cycling videos as they could. For this paper, we use all the
video safety ratings collected over a period of three months.
We collected 1,476 ratings from 159 different participants,
covering a total of 443 city street segments. Each segment
safety label L, € [1-5] was computed after averaging all
the collected individual ratings across video coverage and
participants, and assigning it to its closest integer value. We
had an average of 5.1 ratings per street segment, and these
provided perceived safety information for over 3% of all
the street segments in the city of D.C. (out of a total of
13,462). The ratings collected covered, proportionally, the
13 different road types in Washington’s D.C. road network.
Of the total 159 participants, 42.5% of the participants self-
declared themselves as fearless and 45.4% as confident,
followed by 9.2% interested in cycling and 2.9% reluctant.

C. Methods

We create the training and testing dataset as a set with all
the 443 street segments and their perceived segment safety
labels computed for the city of Washington D.C. This unique
dataset will be shared as an open resource for researchers
and practitioners working in transportation-related analyses.
Each street segment is characterized by either |F;| = 69 or
|F;| = 211 different built-in environment and social features
depending on whether the social features are measured by
total volumes or by volumes per type, as explained in the
previous section. We evaluate the classification accuracy
of the segment safety levels using the following battery
of methods: Support Vector Machines (SVM), Decision
Trees (DT), Bagging for DTs (BAG), Random Forest (RF),
Gradient Boosting (GBoost) and Extreme Gradient Boosting
(XGBoost); and compare all these techniques against a
simple baseline that considers all safety labels in our dataset
to be the majority label. Finally, we also evaluate the impact
that sparsity and class imbalance have on the accuracy of the
methods.

We evaluate each method with the following sets of
features: (a) built-in environment features only, which ap-
plies the prediction methods over a training dataset that
contains the perceived safety labels and only built-in features
as predictors (BuiltEnv); (b) social features (total) only,
which applies the prediction methods over street segments
characterized by their perceived safety labels and social
features only, computed using the monthly average across
types approach (Socialftotal]); (c) social network features
(type) only, as above, but computing the social network
features as monthly average per type, thus increasing the
size of the predictive feature vector considered from 69
to 211 (Social[type]); (d) built-in environment and social
features (total), which applies the prediction methods over
street segments characterized by both built-in environment



Table T
MICRO-F1 (M-F1) AND MACRO-F1 (M-F1) SCORES FOR EACH METHOD (ROWS) AND SET OF FEATURES (COLUMNS).

[ METHOD / FEATURES [[ BuiltEnv  Social [total]  Social [type]  BuiltEnv+Social [total]  BuiltEnv+Social [type] |
SVM 0.59/0.31 0.52/0.27 0.54/0.31 0.58/0.34 0.58/0.36
Decision Trees (DT) 0.46/0.34 0.48/0.26 0.49/0.30 0.56/0.31 0.52/0.36
Bagging DT (BAG) 0.60/0.43 0.52/0.29 0.57/0.40 0.62/0.36 0.65/0.42
Random Forest (RF) 0.62/0.45 0.54/0.30 0.57/0.39 0.63/0.37 0.63/0.41
Gradient Boosting (GBoost) 0.60/0.41 0.55/0.31 0.58/0.41 0.62/0.40 0.64/0.44
XGBoost 0.57/0.37 0.55/0.34 0.59/0.43 0.62/0.37 0.65/0.44
Baseline 0.45/0.13 0.45/0.13 0.45/0.13 0.45/0.13 0.45/0.13

and social features represented using the monthly average
approach across all types; and (e) built-in environment and
social features (type), as above, but with social features com-
puted using the monthly average per type approach. These
analyses, together with different classification methods, will
aid in the evaluation of how the sparsity of the feature
vectors affects the classification accuracy.

We divide the dataset into 80-20% random splits of
training and testing subsets, repeat this process 10 times
and report average safety level prediction accuracies for
each method a set of features. To account for the effect
of the imbalanced nature of our dataset, we report and
analyze both micro- and macro-F1 scores. Significantly
lower micro scores when compared to macro values, re-
flect high misclassification among the most common labels,
with labels with lower numbers of samples being correctly
classified. On the other hand, macro scores significantly
lower than micro scores are associated to poor classification
rates among labels with lower numbers of samples, with
common labels being correctly classified. Table I shows
the main results for each method and set of features. The
overall trend shows that, in general, considering only built-
in environment features yields slightly better results than
considering only social features (maximum micro F-1 of
m-F1 = 0.62 vs. m-F'1 = 0.59); and that both results are
between 14-17% better that the majority vote baseline (with
a m-F1 = 0.45). This result reveals that variables such as
the type of road, slope, the centrality of the street segment,
or the presence of biking facilities are by themselves more
predictive of perceived cycling safety than variables that
characterize the social environment such as crashes, crime
rates, 311 bicycle-related complaints or parking and moving
violations. We hypothesize that this could be due to the fact
that built-in environment features are directly experienced
by cyclists every time they travel, while the social features
require awareness about the events that happen in the streets.
In other words, for social features to have an impact on
the prediction of cycling safety levels, cyclists need to be
acquainted with their environment, which might not always
be the case unless they are informed citizens or familiar
with the area they are cycling. For example, a cyclist going
through a street might not know that crime rates in that area
are high, or that the street has one of the highest indices
in bicycle crashes in the city. However, as she is cycling

1673

through the street, she will directly perceive the slope or the
presence of a bike lane. Interestingly, previous work based
mostly on surveys and qualitative studies has also shown that
while certain variables of the physical environment such as
slope or centrality are highly statistically significantly related
to cycling safety (p < 0.001), social features such as crime,
have more marginally significant associations (p < 0.10)
[27], [28], [29].

These results highlight similar findings to ours although
using different analytical approaches and focusing on rela-
tionships between features rather than on prediction. Impor-
tantly, these results also show that by exclusively using a
few features extracted from Open Street Map and Google’s
Elevation Service, the safety level accuracy rates can be
quite high (m-F1 = 0.62), indicating that for those cities
that do not have the resources to collect any other type
of open data, there is still an opportunity to extract fairly
good cycling safety maps exclusively using information
from open and crowdsourced platforms. Although built-
in environment features are highly predictive of cycling
safety by themselves, the most accurate predictions are
obtained when combining built-in environment and social
features. Furthermore, considering average feature values per
type yields better results than averages across types, which
reflects that albeit being sparser, the by type feature vectors
are also more informative thus improving prediction rates.
For cities with the ability to collect social features, this
reveals that the prediction of cycling safety ratings can be
improved with Fl-scores between 3-8% higher depending
on the method and set of features used.

Table I shows that the best result was obtained with
XGBoost using segments characterized with both built-in
environment features and social features represented by type,
which lead to m-F1 = 0.65, M-F1 = 0.44; followed by
Bagging using segments characterized with both built-in
environment features and social features represented by type,
which lead to m-F1 = 0.65, M-F1 = 0.42. Interestingly,
XGBoost has been reported to work well with sparse feature
vectors [30]. These prediction approaches improved the
majority vote baseline by 20%. The most predictive features
identified by XGBoost and ordered by feature importance
im and their standard deviation std included, centrality of
the street segment (im = 0.02,std = 0.001), presence
of cycling facilities (im = 0.019,std = 0.001), crime
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Figure 1. Confusion matrix for XGBoost. Percentage of true (rows) versus
predicted (columns) values.

rates (theft or burglary) (¢zm = 0.018,std = 0.001) and
slope (¢m = 0.017,std = 0.001). Looking at the average
values of these features for each cycling safety level showed
that cyclists associate higher safety ratings to highly central
segments that have many cycling facilities, low crime rates
and low slope. We also observe that XGBoost has micro-
F1 scores slightly higher than the macro-F1 scores which
indicates that the classification rates among labels with lower
number of samples (cycling safety labels 1, 2 and 5) are
associated to poorer results than the most common labels.

Fig. 1 shows the confusion matrix for the best approach,
XGBoost, averaged over 10 runs with different 80-20%
dataset partitions. The values in each matrix row true-¢ with
1 € [1— 5] represent the average percentage of samples with
true label i classified as pred-j with j € [1 — 5] across all
runs. We can observe that (1) the most common labels (3 and
4) are for the most part correctly predicted as its own label
(79% and 71%, respectively); and that (2) for the labels with
lower number of samples (1, 2 and 5), the largest percentage
of wrongly predicted samples is always one safety level
away from the correct one e.g., for safety level 1 (true-1),
43% of the samples are predicted as safety level 2; while for
safety level 2 (true-2), 54% of the samples are predicted as
safety level 3. A similar matrix was obtained for the second
best approach, Bagging over Decision Trees. This finding
is highly relevant from a cycling safety policy perspective
since decision makers will be able to assert that although the
accuracy of the predictions is not perfect, in a large number
of cases the incorrect prediction will be next to its correct
label rather than few levels away. If cycling safety maps
are used to identify areas that require immediate action, the
fact that the incorrect labels are just one step away from its
true values guarantees that the decisions will be adequate.
Similarly, for cyclists using these maps to choose cycling
routes, the selected streets would be not far off from their
expected cycling safety level. In the next two sections, we
explore two different approaches to improve the F1 scores:
(a) address the imbalanced nature of the dataset and (b) take
into account the experience of the participants that provide
ratings.
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1) Imbalanced Dataset.: Given that the nature of our
dataset is imbalanced i.e., we have more samples with safety
values 3 and 4 than any other labels, we also evaluate two
different approaches to potentially improve the F1 scores.
First, we explore the use of over and undersampling tech-
niques in combination with feature selection techniques; and
second, we evaluate the use of only three or four segment
cycling safety levels instead of five i.e.,, video ratings are
transformed into street segment labels L; as explained in
section III-B, but scaled to ranges [1-3] or [1-4] instead of
[1-5]. Although this approach decreases the granularity of the
safety ratings provided, it could be justified if the F1 scores
are much higher, since it would provide more accurate cy-
cling safety maps. We first focus on over and undersampling.
Undersampling reduces the number of samples of each class
to the smallest value, and repeats the process several times
to account for selection biases. On the other hand, over-
sampling creates synthetic samples, via k-nearest neighbors,
for all classes until they reach the number of samples in the
majority class. We used SMOTE to implement both methods
and the resulting F1 scores are shown in Table II. For both
over and undersampling we also evaluated the use of a
feature selection technique prior to the execution of SMOTE.
Specifically, we considered mRMR and recursive feature
elimination with cross-validation (RFECV). Additionally,
for over-sampling, we evaluated both regular-SMOTE and
SVM-SMOTE. As Table II shows, oversampling slightly
improved the XGBoost classifier by 1% when no feature
selection and a regular SMOTE were used over both built-
in environment and social features (by type).

On the other hand, we also re-run all methods and sets of
features considering only three or four segment safety levels
instead of five. Table II (bottom) shows the results for the
best methods. As expected, reducing the number of cycling
safety levels improved the F1 scores. Considering only three
cycling safety levels improved the best F1 score by 21% with
micro and macro scores of m-F1 = 0.87, M-F1 = 0.54.
Importantly, this result was also better than the majority
vote baseline when only three classes are considered (m-
F1 = 0.78, M-F1 = 0.3). Similarly, when considering
four safety levels instead of five, the best approach slightly
improved the F1 scores obtained with five safety levels by
2% (m-F1 = 0.67, M-F1 = 0.49); and it also improved its
4-class majority baseline (m-F1 = 0.54, M-F1 = 0.17).
These 3- and 4-safety level experiments offer cities and
cyclists the possibility of reaching higher accuracy in the
prediction of cycling safety by sacrificing the number of
levels considered. The total number of cycling safety levels
used highly depends on the corresponding departments of
transportation and decision makers; for example while Sem-
ler et al. used four levels, Sorton et al. presented analyses
with five [31], [11]. It is up to the users of the system, city
planners or cyclists, to evaluate whether three, four or five
cycling safety levels are the ideal approach for their decision



Table II
MICRO-F1 (M-F1) AND MACRO-F1 (M-F1) SCORES WHEN CLASS IMBALANCE IS ADDRESSED WITH OVER/UNDERSAMPLING.

[ METHOD / FEATURES [[ BuiltEnv_ Social [total]  Social [type] — BuiltEnv+Social [total]  BuiltEnv+Social [type] |
Oversampling XGBoost (none, regular) 0.60/0.37 0.52/0.33 0.60/0.40 0.63/0.41 0.66/0.44
Oversampling BAG (mRMR,SVM) 0.60/0.42 0.51/0.29 0.61/0.40 0.62/0.36 0.65/0.42
Undersampling XGBoost (mRMR) 0.31/0.21 0.23/0.20 0.26/0.22 0.31/0.21 0.32/0.24
Undersampling BAG (mRMR) 0.32/0.21 0.24/0.20 0.27/0.23 0.31/0.23 0.30/0.24
Three-Class (XGBoost) 0.84/0.43 0.84/0.33 0.87/0.53 0.85/0.43 0.87/0.54
Four-Class (GBoost) 0.66/0.41 0.58/0.30 0.63/0.35 0.66/0.42 0.67/0.49

Table IIT

making and cycling route choice processes.

2) Experience and Familiarity.: The evaluation presented
so far assumes that all safety ratings provided by participants
are equally informative i.e., each street segment 7 is assigned
a cycling safety label L; computed as the closest integer in
[1-5] to the average of all ratings collected for that segment
(see Default in Table III, this formula has been simplified
for clarity purposes; recall that the ratings are also weighted
by the percentage of the segment covered across all videos
as explained in section III-B). However, a better approach
might be to give more importance to the safety ratings
provided by participants that recognize and are familiar with
the cycling route shown in the video, or by participants who
have a certain level of cycling experience. The crowdsourced
rating platform that we have developed gathers information
about the participants both in terms of cycling experience
as well as of the familiarity with the cycling route whose
safety level is being labeled. Recall that participants are
asked about their cycling experience via a screen where
four options are offered: fearless, confident, interested or
reluctant. On the other hand, every time a participant rates a
video, she is also asked about her familiarity with the route
by choosing between two options: familiar or not familiar
(although participants can also leave this selection blank).

In this section, we explore the use of the cycling experi-
ence and familiarity features to change the relevance of the
individual safety ratings (and, in turn, the safety labels as-
signed to each street segment) and evaluate its impact on the
accuracy of the safety level prediction. Specifically, we eval-
uate the following weighting schemes (see Formula column
in Table III). The familiarity scheme assumes that cyclists
familiar with the route they are rating have probably cycled it
multiple times thus gaining a more accurate understanding of
its safety level besides the observable information provided
in the recorded cycling video. Thus, the ratings provided by
cyclists who are familiar with the route are weighted higher
than those from cyclists who are not familiar with the route
or who have not provided a familiarity score. Table III shows
the formula for this scheme, where individual ratings r; are
weighted by familiarity with F AM = 3 being familiar with
the route, FAM = 1 being not familiar and FAM = 2
is the weight assigned when no familiarity information has
been provided i.e., we do not know whether the participant
is acquainted or not with the route. The next three schemes,
explore various approaches using the cycling experience of
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M-F1/M-F1 SCORES PER SCHEME FOR 4 SAFETY LEVELS, FAM:
FAMILIARITY AND E: CYCLING EXPERIENCE.

Scheme H Formula H F1 Scores
Default Doy riln 0.67/0.49
Familiarity D i FAM;r; /> FAM; 0.69/0.51
Fearless i Eiril > B 0.68/0.50
Reluctant Z;?:l(s — Ej)ry)/ Z?zl (5—E;) || 0.67/0.46
Experience (Ej =4&rj <3) »rj—=1 0.68/0.55

(Ej = l&T‘j > 3) — 7”]'+ =1

(Ej = 3&7’]' < 3) —Ti— = 5

(Ej = 2&7‘3‘ > 3) — ’I”j+ =.5

the participants that rate the videos. Scheme two, fearless,
argues that fearless cyclists tend to provide the most accurate
ratings, while reluctant cyclists are assumed to be the most
conservative in their labeling. Thus, the safety label for
each segment is re-computed giving more importance to
ratings provided by cyclists with higher experience. Table III
shows the formula for the fearless scheme with experience
FE = 1 being a reluctant cyclist, 2 interested, 3 confident
and 4 fearless. The third scheme, reluctant, assumes exactly
the opposite of the previous scheme, that is, that reluctant
cyclists are the ones that provide the most accurate ratings
and that, on the other extreme, fearless cyclists tend to
be too optimistic and label everything as highly safe. To
reflect this, the safety labels for each street segment are
modified as shown in Table III, giving the highest weight
to ratings provided by reluctant cyclists (£ = 1), followed
by interested, confident and fearless (£ = 4). Finally, the
fourth scheme, experience, is a combination of the last two
schemes that works under the hypothesis that while reluctant
cyclists (and confident cyclists, to a lesser degree) might be
the best at identifying highly safe street segments (safety
ratings r > 3), fearless cyclists (and interested cyclists, to
a lesser degree) might the best at pinpointing dangerous
streets (safety ratings » < 3). In this case, since ratings
will be modified differently based on cyclist experience, we
define rules for each experience level as shown in Table
III. For fearless cyclists, dangerous safety ratings are re-
scored as even more dangerous (decrease rating by one)
while for reluctant cyclists, safe ratings are re-scored as
safer (increase rating by one). Similar re-scoring is applied
to confident and interested cyclists respectively, although the
rating modification is smaller (.5).



We apply each of these weighting schemes to the collected
cycling safety ratings, re-computing the segment safety la-
bels L;, and replicate the safety level prediction experiments
from the previous section considering three, four or five
segment safety levels i.e., L; € [1-3], [1-4] or [1-5]. The
third column in Table III shows the micro- and macro-
F1 scores when four cycling safety levels are considered.
We can observe that all weighting approaches, except for
reluctant, improved both the micro and macro scores of
the default case which does not take into account either
familiarity or cycling experience. There were two top results:
the familiarity scheme improved by = 2% both the micro-
and macro-F1 scores; while the the experience scheme
improved the micro score by 1% and boosted the macro-
F1 score by 6%. Considering five or three different cycling
safety levels boosted the default macro-F1 scores by 3% for
all scenarios, without improving the micro F1 scores. The
best improvements with five classes were obtained using
the experience scheme and with three classes using the
familiarity scheme.

V. CONCLUSIONS

We have presented an approach to predict urban cycling
safety at the street segment level exclusively using informa-
tion from open and crowdsourced datasets. Our evaluation
for the city of Washington D.C. shows that a combination
of built-in environment and social features, extracted from
D.C’s open data portal and from Open Street Maps, pro-
vides Fl-scores of up to 88%. Additionally, we have also
shown that taking into account class imbalance or cycling
experience slightly increases the accuracy of the predictions.
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