Generalizability of Methods for Imputing
Mathematical Skills Needed to Solve Problems
from Texts

Thanaporn Patikorn[0000-0002-9879-2709] ' ayid Deisadze, Leo Grande, Ziyang
Yu, and Neil Heffernan!0000—0002—3280-288X]

Worcester Polytechnic Institute, Worcester, MA, 01609, USA
{tpatikorn, dodeisadze, lgrande@wpi.edu, zyu, nth}@wpi.edu

Abstract. Identifying the mathematical skills or knowledge components
needed to solve a math problem is a laborious task. In our preliminary
work, we had two expert teachers identified knowledge components of a
state-wide math test and they only agreed only on 35% of the items. Pre-
vious research showed that machine learning could be used to correctly
tag math problems with knowledge components at about 90% accuracy
over more than 100 different skills with five-fold cross-validation. In this
work, we first attempted to replicate that result with a similar dataset
and were able to achieve a similar cross-validation classification accuracy.
We applied the learned model to our test set, which contains problems in
the same set of knowledge component definitions, but are from different
sources. To our surprise, the classification accuracy dropped drastically
from near-perfect to near-chance. We identified two major issues that
cause of the original model to overfit to the training set. After address-
ing the issues, we were able to significantly improve the test accuracy.
However, the classification accuracy is still far from being usable in a
real-world application.

Keywords: Natural Language Processing- Knowledge Component- Mul-
ticlass Classification- Generalizability

1 Introduction

One of the most important skills teachers need to have is the ability to recognize
which sets of skills are needed to solve specific problems. While teaching, many
teachers solve practice problems as an example. Those problems are also often
used as homework practices to help students learn and to allow teachers to be
able to measure student knowledge. For students who are unable to reach satis-
factory level of knowledge, it is also common for teachers to give a student a few
more problems as a chance to show their improvements [9]. Thus, it is impor-
tant for teachers, educators, content providers, publishers, and researchers to use
the same categorization of skills, also known as knowledge components (KCs), as
vocabularies for their communication and interaction. Common Core State Stan-
dard (CCSS, www.corestandards.org) is one of the most common categorizations

2 T. Patikorn et al.

of knowledge components skills in English language arts and mathematics from
kindergarten to high school in United States. CCSS provides both broad and in-
depth specific descriptions of skills, which is often accompanied by an example
problem belonging to the skill. Figure 1 shows Common Core definitions of two
8th grade skills in expressions and equations.

Grade 3
Grade 4
Grade 5
Grade 6
Grade 7
Grade 8
Introduction
The Number System
»Expressions & Equations
Functions
Geometry
Statistics & Probability

Fig. 1. An example of Common Core definitions from 8th grade skills in expressions
and equations.

In recent years, there has been a significant increase of digital devices in the
classroom. Such devices enable teachers and students to use learning manage-
ment systems (LMSs), such as Google Classroom (classroom.google.com) and
Schoology (www.schoology.com). These LMS tools are designed to help teachers
organize their classrooms and classwork, improve communication between teach-
ers and students, and provide students with help such as instant feedback for
their homework. In addition, LMSs allow teachers to easily access course materi-
als provided by other teachers, content creators, or publishers through Learning
Tools Interoperability (LTI). As such, skill standards such as Common Core are
now more important than ever, as they reduce miscommunication and ensures
that teachers can navigate to the right materials, especially through content
sharing such as LTT.

Tagging problems with their associated skills or knowledge components are
usually done manually, often by experienced teachers and experts in the fields of
learning. Identifying knowledge components is also hard, even for experts. In our
preliminary study, we had two expert teachers identify knowledge components
of a 37-item state-wide math test called TerraNova and they only agreed only
on 13 items (35%). In addition, skill tagging is a very tedious and time con-
suming task [5]. With the growing pools of content created and shared through
online systems, there is a need for a method that can identify knowledge com-
ponents quickly and accurately, using the only information that is consistent
across problems from different systems: the content of problems. In the field of
machine learning, techniques used to extract information from text are called
text mining and natural language processing (NLP). With the interactions of

Title Suppressed Due to Excessive Length 3

many systems through LTI, generalizability of models is the top priority since
the input problems in real applications may be from different sources, authored
for different intents, and come in different formats. Generalizability will be the
main focus of this work.

In the field of education, there have been multiple usages of text mining and
NLP to help automate laborious tasks. Siyuan et al. applied several types of
neural network-based models to automatically grade English essays [10]. Their
best model, with Kappa of 0.78, was a variant of a neural network called a
memory-augmented network, which can outperform state-of-the-art models like
long short-term memory network (LSTM). Decision rules and Bayesian classifiers
were shown to be able to automatically assign topics to news stories correctly
(1] [6].

Another example of text mining in education is a work by Pardos and Dadu
in 2017. The model they presented could accurately assign problems to their
associated knowledge components [7]. With five-fold cross validation and 198
different Common Core knowledge components, their best model was able to
identify knowledge components with an impressive accuracy of 90%. Their best
model was a combination of using skip-gram on the sequence of problem IDs as
they are encountered by students, and a neural network on bag of words of the
problem text.

In this work, we replicated the methodology presented in [7] on a similar set
of problems from the same source they used. In addition, as our work is driven by
the need for the models to be accurate both problems within the same system
and problems from other sources, i.e. problems created by different teachers,
textbooks and publishers. Thus, the main focus of this work is applying the
trained models to different sets of problems, and find the best hyper-parameters
and preprocessing that allow the model to generalize effectively.

2 Replicability

Our first step to replicate the results from [7] was to obtain a dataset. We chose to
use problems from a web-based LMS called ASSISTments (www.assistments.org).
We decided to use only certified Skill Builder problems for K-12 mathematics as
our training sets because these problems are officially curated and maintained
by experts from the ASSISTments system. In addition, each ASSISTments Skill
Builder is problem set of a large number of similar problems specifically cre-
ated to help students learn a specific Common Core State Standard. Thus, these
problems match ground truth labels of KCs. The dataset used in [7] also came
from ASSISTments, which led us to expect results similar to theirs. Our final
dataset includes 65,120 problems from 336 problem sets belonging to 173 dif-
ferent skill standards. The minimum number of problems belonging to a single
skill standard is 14 problems and the maximum is 6,480 problems. All problems
are formatted using HTML, which is a standard markup for text display in web
pages. An example of a problem formatted using html is shown in Figure 2.

4 T. Patikorn et al.

2.1 Text Representation and Preprocessing

For text representation, we used the bag-of-word technique similarly to [7]. Bag-
of-word is a technique that converts text into a vector representation of the size
of the vocabulary. Each element of the vector represents how many times each
word in appears in the text. After we get the bag-of-word representation of each
problem text, we divide each element of the vector by the sum of all elements.
This process is also called L1 normalization.

We decided to keep all html tags and entities in our bag of words. However,
unlike in [7] where html elements are used directly as input to the models, we
transformed html tags and many symbols that are often used in mathematical
problems such as less than (<), greater than (>), and equal (=) into special
”words” that corresponds to each html tag and entity. For instance, and
π are encoded as htmltag_img and htmlentity_pi. All html attributes (such as
links, text colors, and text sizes) and html syntax elements (such as closing tags)
are removed. The main idea of this text replacement is to keep relevant special
formatting and symbols, such as superscript and subscript, with discarding other
information that are not directly related to math knowledge such as text colors
and font sizes. In addition, some content sources may use different schemes to
format their contents other than html. This transformation would allow models
to be used on problems with equivalent formatting.

2.2 Replicated Model

After preprocessing the dataset, we applied various machine learning models.
We evaluated each model by calculating its prediction accuracy with five-fold
cross-validation. We explored using three different common machine learning
models: artificial neural networks, decision trees, and random forests. Artificial
neural networks, or ANNs, are models that are inspired by how human nerve
cells (neurons) connect and communicate. ANNs have been shown to work very
well on text processing, including in [7].

Decision trees are another type of model that have been shown in [1] and [6]
to be able to do well in text classification tasks. The main benefit of decision trees
are simplicity and interpretability of the models. Since in our dataset, certain
skill contains only one sample, we chose to train all decision trees with minimum
leaf size of 1.

Random forests are tree-based, ensemble machine learning models [2]. Ran-
dom forests utilize feature bagging and bootstrapping to achieve both flexibility
and prediction powers, while being resistant to overfitting. Random forests have
been widely used in many fields from biology [4], text mining [8], and UMAP [3].
We chose the minimum leaf size of 1, similarly to decision trees, with 10 random
trees in a random forest.

2.3 Replicability Result

We were able to successfully replicate the results from [7] using the methodology
they described. For each method, only the model with the best 5-fold cross-

Title Suppressed Due to Excessive Length 5

html image

<p>fimg src="/images/assistments/16485.jpg" alt="" />7t/p>
<p>What is the equation of 1he@)y;\me graphed above?f/p>

]

html tag htm entity characters

Fig. 2. An example of a problem formatted using html

validation accuracy is included. Our best model, which is shown in Table 1,
which uses all the html information of all the problems in the dataset, was able to
achieve 92.47% accuracy with five-fold cross-validation in our dataset. Removing
html markups reduces the 5-fold cross-validation. While Random Forest is the
best model, the 5-fold cross-validation accuracy for the other two models are
only 1%-2% lower than that of the Random Forest.

. 5-Fold Cross- Illustrative Math.
Preprocessing Model Validation Accuracy|Problem Accuracy
keep all html markups| Decision Tree 92.47% 12.14%
keep all html markups|Neural Network 92.07% 13.67%
keep all html markups| Random Forest 92.74% 6.98%
Table 1. Results from using bag-of-word approach with different models using all

problems and tranformed html markups.

2.4 Does It Generalize?

Since our goal is to develop a model that can identify knowledge components of
problems from different sources and authors, we chose to obtain a second dataset
for our generalizability test. We chose problems from Ilustrative Mathematics
as our test set. Illustrative Mathematics (www.illustrativemathematics.org) is
an open and free mathematics curriculum. We chose problems from Ilustrative
Mathematics because 1) the problems are created with Common Core State
Standard in mind, meaning we have the ground truth KCs, 2) it is an open and
free educational resource widely used by teachers across the United States, and
3) all problems from Illustrative Mathematics we compiled are in html format
similar to the training set. We compiled together 1,581 problems from grade 7
and 8, belonging to 114 different skill standards. The number of problem per
skill standard ranged from 4 to 71. We removed all problems belonging to skills
outside of our training set. Our final test set contains 392 problems from 23
skills. Afterward, we retrained the model using all training data, and uses on the
problems from Illustrative Mathematics. To our surprise, the accuracy dropped

6 T. Patikorn et al.

drastically as shown in Table 1. While the performance of all models is still
better than chance, it is far from usable in a real-world application.

2.5 Causes of Overfitting

We investigated what could have caused such a massive overfitting by looking
through our dataset and models. We found two potential causes of the overfit-
ting. The first cause stems from a large number of near-identical problems. In
order to create a large number of math problems, it is common for content cre-
ators to create a few templates and substitute different numbers and keywords
in the problems and answers. For instance, a teacher might create "Train A
from New Mexico to Nevada leaves at TIME_A at SPEED_A mph. Train B from
Nevada to New Mexico leaves at TIME_B at SPEED_B mph. The two stations
are 900 miles apart. What time will the two trains meet each other?” With this
template, the teacher can substitute TIME_A, SPEED_A, TIME_B, SPEED_B
with different numbers to create a massive number of practice problems. Specif-
ically, Out of 65,120 problems in our dataset, only 2,523 problems are created
without using templates. For the other 62,597 problems, there are at least 1,193
different templates, each of which has been used for more than 10 problems.

Using cross-validation without regard of templates could potentially mislead
models to remember the specific words in templates rather than to learn the
terminologies of skills, causing their cross-validation accuracy to inflate. In our
train example, the model may choose to remember the word ”New Mexico”
and ”Nevada”, instead of "mph”, "miles”, and ”"time”. Pardos and Dadu were
aware of this issue of their best model and attempted to solve it by doing cross-
validation in such a way that all problems from the same problem set were in
the same fold, which significantly reduced their accuracy to around 70%. This
approach did not resolve all the issue with templates, since problems created
using the same template also exist outside of the problem sets.

The second cause of overfitting stems from the html elements and formatting
included in the models. While the html elements are shown to improve cross-
validation accuracy in [7], we found that it causes the decision trees to over-
prioritize the formatting in the decision. In addition, templates also contribute
to overfitting here since the formatting is also copied over to each problem from
the same template. This causes the models to be unable to identify the knowledge
components once the formatting ”styles” have been changed.

3 Towards Generalizability

After we have identified potential causes of overfitting, we came up with multiple
ways to address the two issues.

3.1 Near-identical problems

In order to address the issue with templates, we removed all but one problems
that are created using the same templates. Luckily, the problems inside our

Title Suppressed Due to Excessive Length 7

dataset also contain the information on creation, specifically if it is a (modified)
copy of another problem. We used that information to remove all but one prob-
lem derived from each template. As a result, the size of our dataset is significantly
reduced to 2,474 problems. The number of problem sets and skills remain the
same (336 problem sets, 173 different skills). The number of problems per skill
standard is also reduced to a minimum of 1 and a maximum of 198 problems
per skill.

3.2 html element and formatting

In order to address the html formatting issue, we introduced two approaches
to process the html elements. The first approach is to remove all html tags
and entities. The goal of this approach is that some formatting schemes may
not be equivalent or convertible to html, rendering our first approach unusable.
In fact, for some math topics, problems can be written entirely in plain text
(i.e. no formatting). This approach is advantageous because the model will be
usable on problems of any formats (or no format), albeit often with some loss of
information.

The second approach is keep only important html elements. The goal of this
approach is to have certain html elements act as keywords which, when combined
with other words, can be indicative of the knowledge components. For instance,
the words ”read” and ”graph” together with an image could indicate that in
this problem, the student needs to be able to extract information from a visual
representation of a graph. In this work, we only include tables and graphs as
important keywords.

. 5-Fold Cross- Illustrative Math.

preprocessing Model Validation Accuracy|Problem Accuracy
keep all html markups | Decision Tree 62.53% 10.85%
keep all html markups |Neural Network 68.23% 16.26%
keep all html markups |Random Forest 65.24% 12.91%
keep only image and table| Decision Tree 59.71% 12.67%
keep only image and table|Neural Network 63.62% 22.19%
keep only image and table| Random Forest 60.97% 9.56%
remove all html markups | Decision Tree 58.73% 10.33%
remove all html markups [Neural Network 63.80% 22.47%
remove all html markups | Random Forest 61.22% 4.92%

Table 2. Results from using bag-of-word approach with different preprocessing and
models using only non-template problems.

4 Results

In order to compare with the models we have in the replication section, we fol-
lowed the same methodology we used there on each of the different preprocessing

8 T. Patikorn et al.

L]

Fig. 3. Confusion Matrix from 5-fold cross validation of models using only non-
template problems. Green denotes true positive. Red denotes false positive/negative.
The intensity of color is the magnitude of correct/incorrect classification.

approaches to the dataset. The results are shown in Table 2. In general, the 5-fold
cross-validation accuracy is much lower than that of the replication, which is to
be expected since a large number of near-identical problems are removed. The
best model for both training set and test set is a neural network model trained
on no html markup at all. The best test accuracy is 22.47%, which almost that
of the best replication model. This confirms our suspicion that the near-identical
problems and the excessive/irrelevant formatting markups cause the model to
overfit.

We also investigated what caused our model to fail. Figure 3 shows the con-
fusion matrix of the our best model (no html markup, neural network) on the
training set during 5-fold cross-validation prediction. The green dots indicate
where the model correctly classified the problems, the red dots indicate where
the model is wrong, and the intensity of the colors is proportional to the percent
of correct/incorrect classification. A large number of strong green dots indicates
that our models are able recognize the large number different KCs. There are
also a large number of red dots, indicating that the model is unable to rec-
ognize some KCs, many of which are because there are not enough samples

Title Suppressed Due to Excessive Length 9

(e.g. only 1 non-template sample from that KC). Interestingly, not many red
dots fall on the same columns. This implies that the model is not quite biased
toward any specific KCs. The codes we used in this work can be found here:
https://drive.google.com/open?id=1yyJgJavBdAyPbKsFSuhI6TRN_cDRcRM7

5 Conclusion

While cross-validation has been regarded as a gold-standard technique to inves-
tigate generalizability of models, in this work we showed that it is also important
to investigate generalizability using a separated test dataset that will emulate
input data from real application. There are three main contributions of this
paper.

The first contribution is the replication of the result from [7]. We were able
to successfully replicate their work using the methodology presented. However,
after further investigation, we found that the model, while being internally valid
and consistent, was unable to generalize well to problems of different sources. We
highly recommend future models to not rely solely on cross-validation accuracy
for this problem. Instead, researchers should use problem texts obtained through
different sources to ensure generalizability. This insight is also applicable to other
domains as well.

Our second contribution is the investigation on potential causes of overfitting
of models for imputing KCs using only the problem text. We found that near-
identical data in the training set as well as html formatting can cause the model
to over fit to the "styles” of the training set, reducing its generalizability. We
also found that including just the indicators for images and tables do no increase
generalizability as we have hypothesized.

The third contribution is an improvement of models for imputing knowledge
components using only problem texts. Our best model is a neural network model
trained using non-template problems without formatting markups. Our best
model was able to correctly identify KCs about 1/4 of the problems in our test
set, almost doubled the test accuracy of the model from our replication of [7]. It
is important to note that this model is still far from being usable in a real world
application.

6 Future Work

There are several areas that we chose not to investigate in this project. For in-
stance, math problems can require multiple skills. In this work, we only choose
one of the skills. With conjunctive skill representation, the models can be sig-
nificantly improved. In this work, we did not individually tune each model. So,
it is possible that the models, one finely tuned, may be able to generalize even
better than the result presented in this work.

In this work, we did not use any information that Common Core State Stan-
dards provided with the skills. For instance, in Figure 1, we treated 8.EE.A.1
and 8.EE.A.2 are two totally different KCs. However, we believe that a model

10 T. Patikorn et al.

that can utilize the information on the skill domains and their hierarchies, will
perform much better. For instance, a human would be able to recognize that
both of those skills are 8th grade Expressions and Equations, and they’re also a
part of "Expression and Equations Work with radicals and integer exponents”.

In addition to improvements to models, another area of future work is to
apply the trained models to real applications. One such application that we
are currently is a module for ASSISTments that automatically detects the skill
standard of problems inside a problem set teachers assigned to students. Then,
the system suggests a list of problems belonging to the same set of skill standards
as next-day review problems.

7 Acknowledgements

We thank multiple current NSF grants (I1S-1636782, ACI-1440753, DRL-1252297,
DRIL-1109483, DRL-1316736, DGE-1535428 & DRI.-1031398) , the US Dept. of
Ed (IES R305A120125 & R305C100024 and GAANN), and the ONR.

References

1. Apté, C., Damerau, F., Weiss, S.M.: Automated learning of decision rules for text
categorization. ACM Transactions on Information Systems (TOIS) 12(3), 233-251
(1994)

Breiman, L.: Random forests. Machine learning 45(1), 5-32 (2001)

3. Cheng, H., Rokicki, M., Herder, E.: The influence of city size on dietary choices.
In: Adjunct Publication of the 25th Conference on User Modeling, Adaptation and
Personalization. pp. 231-236. ACM (2017)

4. Immitzer, M., Atzberger, C., Koukal, T.: Tree species classification with random
forest using very high spatial resolution 8-band worldview-2 satellite data. Remote
Sensing 4(9), 2661-2693 (2012)

5. Karlovéec, M., Cérdova-Sanchez, M., Pardos, Z.A.: Knowledge component sug-
gestion for untagged content in an intelligent tutoring system. In: International
Conference on Intelligent Tutoring Systems. pp. 195-200. Springer (2012)

6. Lewis, D.D., Ringuette, M.: A comparison of two learning algorithms for text
categorization. In: Third annual symposium on document analysis and information
retrieval. vol. 33, pp. 81-93 (1994)

7. Pardos, Z.A., Dadu, A.: Imputing kcs with representations of problem content and
context. In: Proceedings of the 25th Conference on User Modeling, Adaptation and
Personalization. pp. 148-155. ACM (2017)

8. Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.:
Random forest: a classification and regression tool for compound classification
and gsar modeling. Journal of chemical information and computer sciences 43(6),
1947-1958 (2003)

9. Wang, Y., Heffernan, N.T.: The effect of automatic reassessment and relearning
on assessing student long-term knowledge in mathematics. In: International Con-
ference on Intelligent Tutoring Systems. pp. 490-495. Springer (2014)

10. Zhao, S., Zhang, Y., Xiong, X., Botelho, A., Heffernan, N.: A memory-augmented
neural model for automated grading. In: Proceedings of the Fourth (2017) ACM
Conference on Learning@ Scale. pp. 189-192. ACM (2017)

N

