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ABSTRACT
This paper will explain how analyzing experiments as a
group can improve estimation and inference of causal effects–
even when the experiments are testing unrelated treatments.
The method, composed of ideas from meta-analysis, shrink-
age estimators, and Bayesian hierarchical modeling, is par-
ticularly relevant in studies of educational technology. An-
alyzing experiments as a group–”partially pooling” their re-
spective datasets–increases overall accuracy and avoids is-
sues of multiple comparisons, while incurring small bias.
The paper will explain how the method works, demonstrate
it on a set of randomized experiments run within the AS-
SISTments platform, and illustrate its properties in a simu-
lation study.

1. INTRODUCTION
Using educational technology to conduct many experiments,
as in the ASSISTments TestBed [7], allows education re-
searchers to rigorously answer many causal questions and
test many hypotheses independently. Perhaps more surpris-
ingly, the various experiments can help each other. Effect
estimates that partially pool data across experiments—even
those that are testing very different interventions—are of-
ten more precise and accurate, and less error-prone, than
estimates based on the experiments individually.

This poster will illustrate a Bayesian approach to analyzing
several experiments simultaneously. (By “Bayesian,” here,
we mean merely that the goal of the approach is a posterior
distribution for treatment effects.) The method combines
ideas from [8] and [1] on shrinkage, from [12] on Bayesian
partial pooling to examine treatment effect heterogeneity,
and [6] on multiple comparisons. The paper’s main contribu-
tions will be to introduce these ideas to an EDM audience—
where, due to proliferation of online experiments, they are
particularly applicable—and to illustrate their potential.

Previously, [10] combined data across experiments to im-

prove covariance adjustment; that method is orthogonal,
and perhaps complementary, to ours, which does not use
covariates. [3], [9], and many others have used multilevel,
hierarchical Bayesian modeling to analyze intelligent tutor
data, but not in the context of experiments.

After describing and explaining the method (Section 2), we
will illustrate it in an analysis of a dataset comprised of 22
parallel experiments run inside ASSISTments [13] (Section
3) and in a simulation study (Section 4). We will show that
partially pooling data from across experiments increases pre-
cision while lowering type-I error rates, decreases the width
of confidence intervals while improving their coverage, and
substantially reduces the incidence of drawing incorrect con-
clusions from experimental data.

2. SHRINKAGE, PARTIAL POOLING, AND

REGRESSION TO THE MEAN
Unbiased estimates d̂np of effect sizes d from randomized
A/B tests are noisy—a different estimate would have re-
sulted had the treatment been randomized differently. The
standard error of a particular effect size estimate, σi =
SD(d̂np

i |di), depends on a number of factors, most princi-
pally the sample size ni, but in practice it is never zero.
Similarly, among a group of K experiments, the true effect
sizes di, i = 1, ...,K, (presumably) vary as well—var(d) = τ ,
say. Considered together, the variance of a group of effect
size estimates is the sum of both components: the variance
of the true effects plus the average of the (squared) standard
errors of the individual estimates:

var(d̂np) = τ
2 + E[σ2]

In other words, the distribution of effect size estimates is
wider than the distribution of true effect sizes. Therefore,
the largest effect size estimates d̂np typically overestimate
their respective true effects d, and that the smallest ef-
fect size estimates typically underestimate their true effects.
This is an example of regression to the mean [4] (also see
[16]).

The implication for estimating effects can be startling. When
A/B tests are analyzed independently, the best estimate for

the true effect size di in experiment i is d̂np

i . However, when

the K experiments are considered as a group, d̂np is inad-
missible. A better estimate, d̂pp, corrects for the fact that
the extreme estimates are probably too extreme, and shrinks
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them toward the overall mean effect size µ [2]:

d̂
pp

i = µ+ ci

⇣

d̂
np

i − µ
⌘

(1)

where ci is a “shrinkage coefficient” between 0 and 1. When
ci = 1, d̂ppi = d̂

np

i ; when ci = 0, d̂ppi = µ.

Another term for this procedure is “partial pooling” [5]. The
overall mean treatment effect, µ, can be estimated by com-
pletely pooling the data across all K experiments. In con-
trast, individualized estimates d̂np result if data from differ-
ent A/B tests are not pooled at all—d̂np is a “no pooling”

estimate. The optimal estimate d̂pp combines the the no-
pooling estimate d̂np with a complete-pooling estimate of
µ—hence, partial pooling.

In general, the size of the shrinkage coefficient ci, which
regulates the extent of the partial pooling, depends both on
the standard deviation of the true effects, τ , and σi, the
standard error of d̂

np

i . When τ is large, the experiments
differ widely from each other, so the overall mean effect µ

tells us little about the individual effects d. When σi is
large, then d̂

np

i is quite noisy, and tells us little about di.
The shrinkage coefficient ci balances these two factors.

For instance, Rubin [12] models each d̂
np

i as normal, with
mean di (since it is unbiased) and standard error σi:

d̂
np

i ∼ N (di,σi) (2)

This would be approximately the case if estimators d̂np were
difference-in-means or regression estimators from sufficiently
large experiments. Then, he models the effects themselves
as drawn from a normal distribution:

di ∼ N (µ, τ). (3)

Under model (2)–(3),

ci =
τ2

τ2 + σ2
i

. (4)

When τ is large (so the true effects are very different from

each other) and σi is small (so d̂
np

i is very precise), ci is close

to one—the partial pooling estimator d̂
pp

i ≈ d̂
np

i —data are
barely pooled across experiments at all. Conversely, when σi

is large (so d̂
np

i is noisy) and τ is small (so the true effects are

similar to each other), then ci is close to zero, and d̂pp ≈ µ,
the overall mean effect size, completely pooling data across
experiments. In general ci is in between zero and one, and
the estimator d̂pp partially pools information between the
individual effect estimate d̂

np

i and the overall mean µ. The
mean of the true effects µ and their variance τ are, of course,
unknown, but they may be estimated from the data.

Unlike d̂
np

i , d̂ppi is biased—it is shrunk towards the overall

mean µ. To compensate for the bias, d̂ppi is less noisy than

d̂
np

i ; its standard error is
√
ciσi. Since ci < 1, this is al-

ways less than d̂
np

i ’s standard error σi. Overall, [15] shows

the root mean squared error (RMSE) of the estimates d̂pp,
considered as a group, will be less than the RMSE of the
individual unbiased estimates d̂np. This result is that it
applies even when the causal estimates do not need to be
related in any way.

When analyzing a set of A/B tests run inside intelligent
tutors, estimates of the effects based on partial pooling will
be more accurate, on average, than estimates that consider
each test individually.

3. ANALYZING 22 EXPERIMENTS
How does partial pooling work in practice, in an authentic
EDM setting?

The ASSISTments TestBed [7] allows education researchers
to propose and conduct minimally-invasive A/B tests within
the ASSISTments intelligent tutor. The TestBed infrastruc-
ture automatically publishes anonymized data from these
experiments. Conveniently, [13] combined 22 of these datasets
into one publicly available file. All 22 experiments were skill
builders, which are problem sets designed to teach, or bol-
ster, a specific topic or skill. Inside a skill builder, students
are required to solve problems associated to that skill un-
til mastery is achieved, typically defined as answering three
questions in a row.

The dataset includes a number of student features and two
dependent measures. In this paper, We will focus only on
one dependent measure complete, a binary variable indi-
cating completion of the skill builder, taking value 1 if the
student achieved mastery or 0 if the student either stopped
working before achieving mastery or exhausted all of the
skill builder’s problems without achieving mastery.

To estimate treatment effects conventionally, without pool-
ing across experiments, we fit a separate logistic regression
to each of the 22 experiments, regressing complete on an
indicator for treatment condition.

Pr(complete = 1) = invLogit (αexpr + βexprZ) (5)

Where invLogit(·) is the inverse logit function. The inter-
cept αexpr and treatment effect βexpr (the log odds ratio of
completion for the treatment vs the control condition) were
estimated separately in each experiment expr.

To estimate effects using partial pooling, we re-fit (5) within
a Bayesian multilevel logistic regression using the rstanarm

package [14] in R [11]. That is, we assigned models αexpr ∼
N (α0,σα) and βexpr ∼ N (β0, τ), where hyperparamters α0,
β0, σα and σβ were estimated from the data using weakly-
informative priors.

Figure 1 plots estimated treatment effects and approximate
95% confidence intervals (±2SE) for the 22 experiments,
using both the conventional no-pooling estimator and the
partially-pooling estimator. The partial pooling shrunk the
estimates quite a bit: while the no-pooling estimates ranged
from approximately -1.3 to 0.6, the partial pooling estimates
were all close to zero, ranging from -0.2 to 0.1. The esti-
mated standard errors were also much smaller for the par-
tially pooled estimators. The average standard error for the
no-pooling estimates was 0.39, whereas the average stan-
dard error for the partial-pooling estimates was less than
half that, 0.17. Finally, though two of the no-pooling esti-
mates were statistically significant, with confidence intervals
excluding zero, none of the partial-pooling estimates was.

Figure 2 plots the estimated standard errors from the two
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Figure 1: Partial-pooling an no-pooling treatment
estimates and approximate 95% confidence intervals
for the 22 experiments, arranged horizontally by the
no-pooling treatment effect. The outcome was com-

plete, and the treatment effects are log-odds ratios.

Figure 2: Partial-pooling vs no-pooling standard er-
rors, with point size proportional to sample size in
the experiment.

sets of estimates. The sizes of the points in the plot are pro-
portional to experimental sample sizes. The partial-pooling
standard errors are all smaller than those from the no-pooling
estimates. However, the differences are not uniform. Exper-
iments with large sample sizes and low no-pooling standard
errors had partial-pooling standard errors that were only
slightly smaller. As the sample sizes shrunk, both sets of
standard errors grew. However, the no-pooling standard er-
rors grew much faster. The largest difference in standard
errors between the two methods was for studies with the
smallest samples and the largest no-pooling standard errors.

4. A SIMULATION STUDY
Partial pooling worked as advertised when applied to the
ASSISTments dataset, shrinking estimates towards zero and
reducing standard errors, sometimes drastically—but did it
get the right answers?

We ran a simulation study to investigate the performance
of the partial-pooling estimator when the right answer is
known.

4.1 Data Generating and Analysis Models
We simulated batches of K = 20 experiments each. Within
a batch, sample sizes n varied from 20 to 115. Treatment Z
was randomized to half of the subjects in each experiment.
For each batch, outcomes Y were generated as

Yi ∼ N (αexpr[i] + βexpr[i]Zi,σY ) (6)

with random intercepts αexpr ∼ N (0, 1) and treatment ef-
fects βexpr ∼ N (0, τ), both varying at the experiment level.
The between-experiment standard deviation of treatment ef-
fects τ varied between runs. It took the values of τ = 0,
corresponding to βexpr ≡ 0 across all experiments, and τ =
{0.1, 0.2, 0.5, 1.0}. When τ was positive but low, there was
a treatment effect in every experiment, but nearly all effects
were very small. Larger values of τ corresponded to more
variance in the treatment effects, including some that were
substantial. For every study, σY = 1.

The 20 experiments in each batch were analyzed both sepa-
rately, with no-pooling estimators, and jointly, with a partial-
pooling estimator. Both estimators fit model 6 to each
dataset to estimate treatment effects βexpr; however, the
partial-pooling estimator additionally modeled βexpr ∼ N (β0, τ)
and αexpr ∼ N (α0,σα).

For each value of τ we ran 500 iterations of 20 experiments
each, producing 10,000 experimental datasets.

4.2 Simulation Results
Table 1 gives the results of the the simulation. The esti-
mated standard errors and root mean squared errors of par-
tial pooling estimates were consistently substantially lower
than those of no-pooling estimates—partial pooling increased
both accuracy and precision. The differences between the
estimators diminished as the variance of true treatment ef-
fects, τ increased. This is predicted by (4): as τ increases
relative to no-pooling standard errors σ, the shrinkage co-
efficient tends towards 1 and the the partial pooling esti-
mate tends towards the no-pooling estimate. Intuitively,
when τ increases various experiments become less informa-
tive about each other, so partial pooling decreases in value.
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τ

Pooling 0 0.1 0.2 0.5 1

SE
Partial 0.13 0.14 0.17 0.23 0.25
None 0.26 0.27 0.26 0.27 0.26

|Bias|
Partial 0.00 -0.05 -0.08 -0.08 -0.05
None 0.00 -0.00 0.00 0.00 0.00

RMSE
Partial 0.09 0.12 0.17 0.24 0.26
None 0.28 0.27 0.27 0.28 0.27

Coverage
Partial 1.00 0.98 0.95 0.95 0.95
None 0.95 0.95 0.95 0.95 0.95

Table 1: Average standard error (SE), bias magni-
tude, root mean squared error (RMSE), and empir-
ical coverage of 95% confidence intervals (Coverage)
for partial pooling and no pooling estimates for dif-
ferent values of τ .

Table 1 also shows that while the no-pooling estimates are
unbiased, the partial pooling estimates are slightly biased
towards zero, as expected, with the bias decreasing as τ in-
creases. This bias does not cause undercoverage of 95% con-
fidence intervals. Remarkably, for low τ , the partial pooling
confidence intervals over -covered—more than 95% of the re-
alized confidence intervals included the true parameter. The
width of the confidence interval is four times the standard
error, by construction—so partial-pooling confidence inter-
vals were both substantially smaller and more often correct.

5. DISCUSSION
Partial pooling is a surprising, and surprisingly effective,
technique to improve education sciences in the big data era.
As educational technology allows A/B testing to proliferate,
partial pooling is a method to use some of the oldest results
in statistics—such as regression to the mean—alongside new
Bayesian technology to improve the precision and accuracy
of experimental estimates. When experiments can be ana-
lyzed in a group, the result is smaller confidence intervals
with the same or higher coverage.

Partial pooling is a model based technique, and it remains
to be seen how it performs when the model is severely mis-
specified. A host of Bayesian model checking procedures,
including some suggested in [12], may be brought to bear on
this question. In any event, most effect estimates are approx-
imately normally distributed, by the central limit theorem,
so methods based on normal theory will apply.

All code and data for this paper may be found at https:

// github. com/ adamSales/ EDMpartialPooling .
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