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Abstract

Most recent datacenter topology designs have focused on
performance properties such as latency and throughput. In
this paper, we explore a new dimension, life cycle manage-
ment complexity, which attempts to understand the complex-
ity of deploying a topology and expanding it. By analyzing
current practice in lifecycle management, we devise complex-
ity metrics for lifecycle management, and show that existing
topology classes have low lifecycle management complexity
by some measures, but not by others. Motivated by this, we
design a new class of topologies, FatClique, that, while being
performance-equivalent to existing topologies, is compara-
ble to, or better than them by all our lifecycle management
complexity metrics.

1 Introduction

Over the past decade, there has been a long line of work on
designing datacenter topologies [2, 35, 31, 32, 3, 4, 20, 1].
While most have focused on performance properties such as
latency and throughput, and on resilience to link and switch
failures, datacenter lifecycle management [30, 38] has largely
been overlooked. Lifecycle management is the process of
building a network, physically deploying it on a data-center
floor, and expanding it over several years so that it is available
for use by a constantly increasing set of services.

With datacenters living on for years, sometimes up to a
decade [31, 12], their lifecycle costs can be high. A data
center design that is hard to deploy can stall the rollout of
services for months; this can be expensive considering the rate
at which network demands have historically increased [31,
23]. A design that is hard to expand can leave the network
functioning with degraded capacity impacting the large array
of services that depend on it.

It is therefore desirable to commit to a data-center network
design only after getting a sense of its lifecycle management
cost and complexity over time. Unfortunately, the costs of
the large array of components needed for deployment such as
switches, transceivers, cables, racks, patch panelsl, and cable
trays, are proprietary and change over time, and so are hard
to quantify. An alternative approach is to develop complexity
measures (as opposed to dollar costs) for lifecycle manage-
ment, but as far as we know, no prior work has addressed this.
In part, this is due to the fact that intuitions about lifecycle
management are developed over time and with operations ex-
perience, and these lessons are not made available universally.

A patch panel or a wiring aggregator is a device that simplifies cable
re-wiring.
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Unfortunately, in our experience, this lack of a clear under-
standing of lifecycle management complexity often results
in costly mistakes in the design of datacenters that are dis-
covered during deployment and therefore cannot be rectified.
Our paper is a first step towards useful characterizations of
lifecycle management complexity.

Contributions. To this end, our paper makes three contribu-
tions. First, we design several complexity metrics (§3 and §4)
that can be indicative of lifecycle management costs (i.e., cap-
ital expenditure, time and manpower required). These metrics
include the number of: switches, patch panels, bundle-types,
expansion steps, and links to be re-wired at a patch panel rack
during an expansion step.

We design these metrics by identifying structural elements
of network deployments that make their deployment and ex-
pansion challenging. For instance, the number of switches
in the topology determines how complex the network is in
terms of packaging — laying out switches into homogeneous
racks in a space efficient manner. Wiring complexity can
be assessed by the number of cable bundles and the patch
panels a design requires. As these increase, the complexity of
manufacturing and packaging all the different cable bundles
efficiently into cable trays, and then routing them from one
patch panel to the next can be expected to increase. Finally,
because expansion is carried out in steps [38], where the net-
work operates at degraded capacity at each step, the number
of expansion steps is a measure of the reduced availability
in the network induced by lifecycle management. Wiring
patterns also determine the number of links that need to be
rewired at a patch panel during each step of expansion, a
measure of step complexity [38].

Our second contribution is to use these metrics to compare
the lifecycle management costs of two main classes of data-
center topologies recently explored in the research literature
(§2), Clos [2] and expander graphs [32, 35]. We find that
neither class dominates the other: Clos has relatively lower
wiring complexity; its symmetric design leads to more uni-
form bundling (and fewer cable bundle types); but expander
graphs at certain scales can have simpler packaging require-
ments due to their edge expansion property [32]; they end
up using much fewer switches than Clos to achieve the same
network capacity. Expander graphs also demonstrate better
expansion properties because they have fat edges (§4) which
permit more links to be rewired in each step.

Finally we design and synthesize a novel and practical class
of topologies called FatClique (§5), that has lower overall
lifecycle management complexity compared to Clos and ex-
pander graphs. We do this by combining favorable design
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elements from these two topology classes. By design, Fat-
Clique incorporates 3 levels of hierarchy and uses a clique
as a building block while ensuring edge expansion. At every
level of its hierarchy, FatClique is designed to have fat edges,
for easier expansion, while utilizing much fewer patch panels
and therefore inter-rack cabling.

Evaluations of these topology classes at three different
scales, the largest of which is 16x the size of Jupiter, shows
that FatClique is the best at most scales by all our complexity
metrics. It uses 50% fewer switches and 33% fewer patch
panels than Clos at large scale, and has a 23% lower cabling
cost (an estimate we are able to derive from published cable
prices). Finally, FatClique can permit fast expansion while
degrading network capacity by small amounts (2.5-10%): at
these levels, Clos can take 5 x longer to expand the topology.

2 Background

Data center topology families. Data centers are often de-
signed for high throughput, low latency and resilience. Exist-
ing data center designs can be broadly classified into the fol-
lowing families: (a) Clos-like tree topologies, e.g., Google’s
Jupiter [31], Facebook’s fbfabric [3], Microsoft’s VL2 [13],
F10 [22]; (b) Expander graph based topologies, e.g., Jelly-
fish [32], Xpander [35]; (c) ‘Direct’ topologies built from
multi-port servers, e.g., BCube [14], DCell [15]. (d) Low
diameter, strongly-connected topologies that rely on high-
radix switches, e.g., Slimfly [4], Dragonfly [20]; (e) Re-
configurable optical topologies like Rotornet and Project-
ToR [24, 9, 11, 16, 39].

Of these, Clos and Expander based topologies have been
shown to scale using widely deployed merchant silicon. The
ecosystem around the hardware used by these two classes,
e.g., cabling, cable trays used, rack sizes, is mature and well-
understood, allowing us to quantify some of the operational
complexity of these topologies.

Direct multi-port server topologies and some reconfig-
urable optical topologies [24, 11, 16, 39] rely on newer hard-
ware technologies that are not mainstream yet. It is hard to
quantify the operational costs of these classes without making
significant assumptions about such hardware. Low diameter
topologies like Slimfly [4] and Dragonfly [20], can be built
with hardware that is available today, but they require strongly
connected groups of switches. Their incremental expansion
comes at high cost and complexity; high-radix switches either
need to be deployed well in advance, or every switch in the
topology needs to be upgraded during expansion, to preserve
low diameter.

To avoid estimating operational complexity of topologies
that rely on new hardware, or on topologies that unacceptably
constrain expansion, we focus on the Clos and Expander
families.

Clos. A logical Clos topology with N servers can be
constructed using switches with radix & connected in n =
log k (%) layers based on a canonical recursive algorithm

in [36]2. Fattree [2] and Jupiter [31] are special cases of Clos
topology with 3 and 5 layers respectively. Clos construction
naturally allows switches to be packaged together to form a
chassis [31]. Since there are no known generic Clos pack-
aging algorithm that can help design such a chassis, for a
Clos of any scale, we designed one to help our study of its
operational complexity. We present this algorithm in §A.1.
Expander graphs. Jellyfish and Xpander benefit from the
high edge expansion property of expander graph to use a near
optimal number of switches, while achieving the same bisec-
tion bandwidth as Clos based topologies [35]. Xpander splits
N servers among switches by attaching s servers to each
switch. With a k port switch, the remaining ports p =k — s
are connected to other switches that are organized in p blocks
called metanodes. Metanodes are a group of switches, con-
taining [ = N/(s- (p+ 1)) switches, which increase as topol-
ogy scale N increases. There are no connections between the
switches of a metanode. Jellyfish is a degree bounded random
graph (see [32] for more details).

Takeaway. A topology with high edge expansion [35] can
achieve a target capacity with fewer switches, leading to lower
overall cost.

3 Deployment Complexity

Deployment is the process of realizing a physical topology
in a data center space (e.g., a building), from a given logical
topology. Deployment complexity can be reduced by careful
packaging, placement and bundling strategies [31, 20, 1].

3.1 Packaging, Placement, and Bundling

Packaging of a topology involves careful arrangement of
switches into racks, while placement involves arranging these
racks into rows on the data center floor. The spatial arrange-
ment of the topology determines the type of cables needed
between switches. For instance, if two connected switches
are within the same rack, they can use short-range cheaper
copper cables, while connections between racks require more
expensive optical cables. Optical cable costs are determined
by two factors: the cost of transceivers and the length of ca-
bles (§3.2). Placement of switches on the datacenter floor
can also determine costs: connecting two switches placed at
two ends of the data center building might require long range
cables and high-end transceivers.

Chassis, racks, and blocks. Packaging connected switches
into a single chassis using a backplane completely removes
the need for physical connecting cables. At scale, the cost and
complexity savings from using a chassis-backplane can be
significant. One or more chassis that are interconnected can
be packed into racks such that: (a) racks are as homogeneous
as possible, i.e., a topology makes use of only a few types of
racks to simplify manufacturing and (b) racks are packed as

2This equation for n can be used to build a Clos with 1:1 oversubscription.

. . -N,
For a Clos with an over-subscription z:y we would need n = log k (%)

layers.
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densely as possible to reduce space wastage. Some topolo-
gies define larger units of co-placement and packaging called
blocks, which consist of groups of racks. Examples of blocks
include pods in Fattree. External cabling from racks within a
block are routed to wiring aggregators (i.e., patch panels [25])
to be routed to other blocks. For blocks to result in lower
deployment complexity, three properties must be met: (a) the
ports on the patch panel that it connects to are not wasted,
when the topology is built out to full scale, (b) wiring out of
the block should be as uniform as possible, and (c) racks in a
block must be placed close to each other to reduce the length
and complexity of wiring.

Bundling and cable trays. When multiple fibers from the
same set of physically adjoint (or neighboring) racks are des-
tined to another set of neighboring racks, these fibers can
be bundled together. A fiber bundle is a fixed number of
identical-length fibers between two clusters of switches or
racks. Manufacturing bundles is simpler than manufacturing
individual fibers, and handling such bundles significantly sim-
plifies operation complexity. Cable bundling reduces capex
and opex by around 40% in Jupiter [31].

Patch panels facilitate bundling since the patch panel rep-
resents a convenient aggregation point to create and route
bundles from the set of fibers destined to the same patch
panel (or the same set of physically proximate patch panels).
Figure | shows a Clos topology instance (left) and its physi-
cal realization using patch panels (right). Each aggregation
block in the Clos network connects with one link to each
spine block. The figure on the right shows how these links
are routed physically. Bundles with two fibers each from
two aggregations are routed to two (lower) patch panels. At
each patch panel, these fibers are rebundled, by grouping
fibers that go to the same spine in new bundles, and routed
to two other (upper) patch panels that connect to spines. The
bundles from the upper patch panels are then routed to the
spines. Figure | assumes that patch panels are used as fol-
lows: bundles are connected to both the front and back ports
on patch panels. For example, bundles from the aggregation
layer connect to front ports on patch panels and bundles from
spines connect to the back ports of patch panels. This enables
bundle aggregation and rebundling and simplifies topology
expansion.’

Bundles and fibers are routed through the datacenter on ca-
ble trays. The cables that aggregate at a patch panel rack must
be routed overhead by using over-row and cross-row trays
[26]. Trays have capacity constraints [34], which can con-
strain rack placement, block sizes, and patch panel placement.
Today, trays can support at most a few thousand fibers [34].

3[38]’s usage of patch panels is slightly different. All bundles are con-
nected to front ports of patch panels and links are established using jumper
cables between the back ports of patch panels. For patch panels of a given
port count, both approaches require the same number of patch panels. Our
approach enables bundling closer to the aggregation and spine layers; [38]
does not describe how bundling is accomplished in their design.

M
ESAggr é?j—Aggr

Logical Clos Physical Clos
- Switch [ Patch Panel
Figure 1: Fiber Re-bundling for Clos at Patch Panels

With current rack and cable tray sizes, a single rack of patch
panels can be accommodated by four overhead cable trays,
arranged in four directions. In order to avoid aggregating too
many links into a single location, it is desirable to space such
patch panels apart to accommodate more cable trays. This
consideration in turn constrains block sizes; if cables from
blocks must be all routed locally, it is desirable that a block
only connect to a single rack of patch panel.

3.2 Deployment Complexity Metrics

Based on the previous discussion, we identify several metrics
that quantify the complexity of the two aspects of datacen-
ter topology deployment: packaging and placement. In the
next subsection, we use these metrics to identify differences
between Clos and Expander graph topology classes.
Number of Switches. The total number of switches in the
topology determines the capital expenditure for the topology,
but it also determines the packaging complexity (switches
need to be packed to chassis and racks) and the placement
complexity (racks need to be placed on the datacenter floor).
Number of Patch panels. By acting as bundle waypoints,
the number of patch panels captures one measure of wiring
complexity. The more the number of patch panels, the shorter
the cable lengths from switches to the nearest patch panel,
but the fewer the bundling opportunities, and vice versa. The
number of patch panels needed is a function of topological
structure. For instance, in a Clos topology, if an aggregation
layer fits into one rack or a neighboring set of racks, a patch
panel is not needed between the ToR and the aggregation layer.
However, for larger Clos topologies where an aggregation
block can span multiple racks, ToR to aggregation links may
need to be rebundled through a patch panel. We discuss this
in detail in §6.2.

Number of Bundle Types. The number of patch panels alone
does not capture wiring complexity. The other measure is the
number of distinct bundle types. A bundle type is represented
by a tuple of (a) the capacity of the number of fibers in the
bundle, and (b) the length of the bundle. If a topology requires
only a small number of bundle types, its bundling is more
homogeneous; manufacturing and procuring such bundles
is significantly simpler, and deploying the topology is also
simplified since fewer bundling errors are likely with fewer
types.

These complexity measures are complete. The number
of cable trays, the design of the chassis, and the number of
racks can be derived from the number of switches (and the
number of servers and the datacenter floor dimensions, which
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Topology 4-layer Clos (Medium) | Jellyfish
#servers 131,072 131,072
#switches 28,672 16,384
#bundle types 74 1577
#patch panels 5546 7988

Table 1: Deployment Complexity Comparison

are inputs to the topology design). The number of cables and
transceivers can be derived from the number of patch panels.

In some cases, a metric is related to another metric, but
not completely subsumed by it. For example, the number
of switches determines rack packaging, which only partially
determines the number of transceivers per switch. The other
determinant of this quantity is the connectivity in the logical
topology (which switch is connected to which other switch).
Similarly, the number of patch panels can influence the num-
ber of bundle types, but these are also determined by logical
connectivity.

3.3 Comparing Topology Classes

To understand how the two main classes of topologies com-
pare by these metrics, we apply these to a Clos topology and
to a Jellyfish topology that support the same number of servers
(131,072) and the same bisection bandwidth. This topology
corresponds to twice the size of Jupiter. In §6, we perform a
more thorough comparison at larger and smaller scales, and
we describe the methodology by which these numbers were
generated.

Table 1 shows that the two topology classes are qualita-
tively different by these metrics. Consistent with the finding
in [32], Jellyfish only needs a little over half the switches
compared to Clos to achieve comparable capacity due to its
high edge expansion property. But, by other measures, Clos
performs better. It exposes far fewer ports outside the rack
(a little over half that of Jellyfish); we say Clos has better
port-hiding. A pod in this Clos contains 16 aggregation and
16 edge switches*. The aggregation switches can be can be
packed into a single rack, so bundles from edge switches
to aggregation switches do not need to be rebundled though
patch panels, and we only need two layers of patch panels
between aggregation and spine layer. However, in Jellyfish,
almost all links are inter-rack links, so it requires more patch
panels.

Moreover, for Clos, since each pod has the same number
of links to each spine, all bundles in Clos have the same ca-
pacity (number of fibers). However, the length of bundles
can be different, depending on the relative placement of the
patch panels between aggregation and spine layers, so Clos
has 74 bundle types. However, since Jellyfish is a purely ran-
dom graph without structure, to enable bundling, we group a
fixed amount of neighbor racks as blocks to enable bundling.
Since connectivity is random, the number of links between
blocks are not uniform, Jellyfish needs almost 20x the num-
ber of bundle types. In §6, we show that Xpander also has

4we follow the definition of pod in [2].

qualitatively similar behavior in large scale.

Takeaway. Relative to a structured hierarchical class of
topologies like Clos, the expander graph topology has inher-
ently higher deployment complexity in terms of the number
of bundle types and cannot support port-hiding well.

4 Topology Expansion

The second important component of topology lifecycle man-
agement is expansion. Datacenters are rarely deployed to
maximal capacity in one shot; rather, they are gradually ex-
panded as network capacity demands increase.

4.1 The Practice of Expansion

In-place Expansion. At a high-level, expanding a topology
involves two conceptual phases: (a) procuring new switches,
servers, and cables and laying them on the datacenter floor,
and (b) re-wiring (or adding) links between switches in the ex-
isting topology and the new switches. Phase (b), the re-wiring
phase, can potentially disrupt traffic; as links are re-wired, net-
work capacity can drop, leading to traffic loss. To avoid traffic
loss, providers can either take the existing topology offline
(migrate services away, for example, to another datacenter),
or can carefully schedule link re-wiring while carrying live
traffic, but schedule the re-wiring to maintain a desired tar-
get capacity. The first choice can impact service availability
significantly.

So, today, datacenters are expanded while carrying live

traffic [30, 12, 31, 38]. To do this, expansion is carried out
in steps, where at each step, the capacity of the topology is
guaranteed to be at least a percentage p of the capacity of
the existing topology. This fraction is sometimes called the
expansion SLO. Today, many providers operate at expansion
SLOs of 75% [38]; higher SLOs of 85-90% can impact avail-
ability budgets less while allowing providers to carry more
traffic during expansion.
The unit of expansion. Since expansion involves procure-
ment, topologies are usually expanded in discrete units called
blocks to simplify the procurement and layout logistics. In a
structured topology, there are natural candidates for blocks.
For example, in a Clos, a pod can be block, while in an
Xpander, the metanode can be a block. During expansion,
a block is first fully assembled and placed, and links be-
tween switches within a block are connected (as an aside, an
Xpander metanode has no such links). During the re-wiring
phase, only links between existing blocks and new blocks are
re-wired. (This phase does not re-wire links between switches
within an existing block). Aside from simplifying logistics,
expanding at the granularity of a block preserves structure in
structured topologies.

4.2 An Expansion Step

What happens during a step. Figure 2 shows an example
of Clos expansion. The upper left figure shows a partially-
deployed logical Clos, in which each spine and aggregation
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Expansion for Clos Topology

SLO: 87.5%.
Step 1: 1,3; Step2: 2,4

Expansion at Patch Panels (or Optical Circuit Switches)
B Switch mmmm Patch Panel Original Links or — — - Rewired () Reserved
New-added Links Links Ports

Figure 2: Clos Expansion with Patch Panels
block are connected by two links. The upper right is the target
fully-deployed Clos, where each spine and aggregation block
are connected by a single link. During expansion, we need to
redistribute half of existing links (dashed) to the newly added
spines without violating wiring and capacity constraints.

Suppose we want to maintain 87.5% of the capacity of the
topology (i.e., the expansion SLO is 0.875), this expansion
will require 4 steps in total, where each patch panel is involved
in 2 of these steps. In Figure 2, we only show the rewiring
process on the second existing patch panels. To maintain
87.5% capacity at each pod, only one link is allowed to be
drained. In the first step, the red link from the first existing
aggregation block and the green link from the second existing
aggregation block are rewired to the first new spine block.
In the second step, the orange links from the first existing
aggregation block and the purple link from the second existing
aggregation block are rewired to the first new spine block. A
similar process happens in the first patch panel.

In practice, each step of expansion involves four sub-steps.
In the first sub-step, the existing links that are to be re-wired
are drained. Draining a link involves programming switches
at each end of the link to disable the corresponding ports, and
may also require reprogramming other switches or ports to
route traffic around the disabled link. Second, one or more
human operators physically rewire the links at a patch panel
(explained in more detail below). Third, the newly wired links
are tested for bit errors by sending test traffic through them.
Finally, the new links are undrained.

By far the most time consuming part of each step is the
second sub-step, which requires human involvement. This
sub-step is also the most important from an availability per-
spective; the longer this sub-step takes, the longer the datacen-
ter operates at reduced capacity, which can impact availability
targets [12].

The role of patch panels in re-wiring. The lower figure in
Figure 2 depicts the physical realization of the (logical) re-
wiring shown in the upper figure. (For simplicity, the figure
only shows the re-wiring of links on one patch panel to a new
pod). Fibers and bundles originate and terminate at patch
panels, so re-wiring requires reconnecting input and output

Target Wiring: c-E, d-F, e-B, -D
bcd abcd e f
Front |

a a
| |
/ Patch L /
Panel
| [
A

Bcp Bk I ABCcCpE F!ABCDE F
Original wiring Phase 1: Route Fibers
{e,f,E,F} to the patch panel

b c d

Phase 2: Rewire

Figure 3: Basic Rewiring Operations at a patch panel

Drain 25% Links

5 —
LI LI 0%
| ThinEdge | | |  FatEdge

66666666 Servers 6666666

Figure 4: Thin and Fat Edge Comparison
ports at each patch panel. One important constraint in this
process is that re-wiring cannot remove fibers that are already
part of an existing bundle.

Patch panels help localize rewiring and reuse existing cable
bundling during expansions. Figure 3 shows, in more detail
the rewiring process at a single patch panel. The leftmost
figure shows the original wiring with connections (a, A),
(b, B), (¢, (), (d, D). To enable expansion, a topology is
always deployed such that some ports at the patch panel are
reserved for expansion steps. In the figure, we use these
reserved ports to connect new fibers e, f, E and F' (Phase
1). To get to a target wiring in the expanded network with
connections (a, A), (b, B), (e, C), (f, D), (¢, E), (d, F), the
following steps are taken: (1) Traffic is drained from (c, C),
(d, D), (2) Connections (c, ), (d, D) are rewired, with ¢
being connected to F, d being connected to F and so on, and
(3) The new links are undrained, allowing traffic to use new
capacity.

25%
loss

4.3 Expansion Complexity Metrics

We identify two metrics that quantify expansion complexity
and use these metrics to identify differences between Clos
and Jellyfish in the next subsection.

Number of Expansion Steps. As mentioned each expansion
step requires a series of substeps which cannot be parallelized.
Therefore the number of expansion steps determines the total
time for expansion.

Average number of rewired links in a patch panel rack
per step. With patch panels, manual rewiring dominates
the time taken within each expansion step. Within steps,
it is possible to parallelize rewiring across racks of patch
panels. With such parallelization, the time taken to rewire a
single patch panel rack will dominate the time taken for each
expansion step.

4.4 Comparing Topology Classes

Table 2 shows the value of these measures for a medium-sized
Clos and a comparable Jellyfish topology, when the expansion
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Topology 4-layer Clos (Medium) | Jellyfish
Average # links rewired

per patch panel rack 832 470
Expansion steps 6 3
North-to-south capacity ratio 1 3

Table 2: Expansion Comparison (SLO = 90%)

SLO is 90%. (§6 has more extensive comparisons for these
metrics, and also describes the methodology more carefully).
In this setting, the number of links rewired per patch panel
can be a factor of two less than Clos. Moreover, Jellyfish
requires 3 steps, while Clos twice the number of steps.

To understand why Jellyfish requires fewer steps, we define
a metric called the north-to-south capacity ratio for a block.
This is the ratio of the aggregate capacity of all “northbound”
links exiting a block to the aggregate capacity of all “south-
bound” links to/from the servers within the block. Figure 4
illustrates this ratio: a thin edge (left), has an equal number
of southbound and northbound links while a fat edge (right),
has more northbound links than southbound links. A Clos
topology has a thin edge, i.e., this ratio is 1, since the block is
a pod. Now, consider an expansion SLO of 75%. This means
that the southbound aggregate capacity must be at least 75%.
That implies that, for Clos, at most 25% of the links can be re-
wired in a single step. However, Jellyfish has a much higher
ratio of 3, i.e., it has a fat edge. This means that many more
links can be rewired in a single step in Jellyfish than in Clos.
This property of Jellyfish is required for reducing the number
of expansion steps.
Takeaway. Clos topologies re-wire more links in each patch
panel during an expansion step and require many steps be-
cause they have a low north-south capacity ratio.

5 Towards Lower Lifecycle Complexity

Our discussions in §3 and §4, together with preliminary re-
sults presented in those sections (§6 has more extensive re-
sults) suggest the following qualitative comparison between

Clos and the expander graph families with respect to lifecycle

management costs (Table 3):

* Clos uses fewer bundle types and patch panels.

* Jellyfish has significantly lower switch counts, uses fewer
expansion steps, and touches fewer links per patch panel
during an expansion step.

In all of these comparisons, we compare topologies with the

same number of servers and the same bisection bandwidth.
The question we ask in this paper is: Is there a family of

topologies which are comparable to, or dominate, both Clos
and expander graphs by all our lifecycle management met-
rics? In this section, we present the design of the FatClique
class of topologies and validate in §6 that FatClique answers
this question affirmatively.

5.1 FatClique Construction

FatClique (Figure 5) combines the hierarchical structure in
Clos with the edge expansion in expander graphs to achieve
lower lifecycle management complexity. FatClique has three

4-layer Clos (Medium) | Jellyfish
switches v
bundle types v
patch panels v
re-wired links per patch panel v
expansion steps v

Table 3: Qualitative comparison of lifecycle management com-
plexity

Auxiliary Variable Description

ps =8c—1 # ports per switch to

connect other switches inside a sub-block

pp=k—8—ps—Dpec # ports per switch to connect other blocks

Re =S¢ (pec+pp) radix of a sub-block

Ry =5p-Sc-pp radix of a block

Ny, =N/(Sp-Sec-s) #blocks

Lee = Se-pe/(Sp—1) | #links between two sub-blocks inside a block

#links between two blocks

Ly, = Ryp/(Np— 1)

Table 4: FatClique Variables

levels of hierarchy: individual sub-block (top left), intercon-
nected into a block (top right), which are in turn intercon-
nected to form FatClique (bottom). The interconnection used
at every level in the hierarchy is a clique, similar to Dragon-
fly [20]. Additionally, each level in the hierarchy is designed
to have a fat edge (a north-south capacity ratio greater than
1). The cliques enable high edge expansion, while hierarchy
enables lower wiring complexity than random-graph based
expanders [32, 35].

FatClique is a class of topologies. To obtain an instance of
this class, a topology designer specifies two input parameters:
N, the number of servers, and k the chip radix. A synthesis
algorithm takes these as inputs, and attempts to instantiate
four design variables that completely determine the FatClique
instance Table 4. These four design variables are:

* s, the number of ports in a switch that connect to servers

* pe, the number of ports in each switch that connect to other
sub-blocks inside a block

¢ S., the number of switches in a sub-block

¢ Sy, the number of sub-blocks in a block

The synthesis algorithm searches for the best combination
of values for design variables, guided by six constraints, C;
through C§, described below. The algorithm also defines
auxiliary variables for convenience; these can be derived
from the design variables (Table 4). We define these variables
in the narrative below.

Sub-block connectivity. In FatClique, the sub-block forms
the lowest level of the hierarchy, and contains switches and
servers. All sub-blocks have the same structure. Servers
are distributed uniformly among all switches of the topology,
such that each sub-block has the same number of servers at-
tached. However, because this number of servers may not be
an exact multiple of the number of switches, we distribute
the remainder across the switches, so that some switches may
be connected to one more server than others. The alternative
would have been to truncate or round up the number of servers
per sub-block to be divisible by the number of switches in
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the sub-block, which could lead to overprovisioning or under-
provisioning. Within a sub-block, every switch has a link to
every other switch within its sub-block, to form a clique (or
complete graph). To ensure a fat edge at the sub-block level,
each switch must connect to more switches than servers, cap-
tured by the constraint C : s < r — s, where r is the switch
radix and s is the number of ports on a switch connected to
Servers.

Block-level connectivity. The next level in the hierarchy is
the block. Each sub-block is connected to other sub-blocks
within a block using a clique (Figure 5, top-left). In this clique,
each sub-block may have multiple links to another sub-block;
these inter-sub-block links are evenly distributed among all
switches in the sub-block such that every pair of switches
from different sub-block has at most one link. Ensuring a
fat edge at this level requires that a sub-block has more inter-
sub-block and inter-block links egressing from the sub-block
than the number of servers it connects to. Because sub-blocks
contain switches which are homogeneous®, this constraint is
ensured if the sum of (a) the number ports on each switch
connected to other sub-block (p.) and (b) those connected
to other blocks (py, an auxiliary variable in Table 4, see also
Figure 6) exceeds the number of servers connected to the
switch (captured by C5 : p. +pp > $).

Inter-block connectivity. The top of the hierarchy is the
overall network, in which each block is connected to every

SThey are nearly homogeneous, since a switch may differ from another
by one in the number of servers connected

other block, resulting in a clique. The inter-block links are
evenly distributed among all sub-blocks, and, within a sub-
block, evenly among all switches. To ensure a fat edge at this
level, the number of inter-block links at each switch should be
larger than the number of servers it connects to, captured by
Cs : pp > s. Note that C's subsumes (is a stronger constraint
than) C5. Moreover, the constraint that blocks are connected
in a clique imposes a constraint on the block radix (Rp, a
derived variable). The block radix is the total number of links
in a block destined to other blocks. R} should be large enough
to reach all other blocks (captured by Cy : Ry, > N — 1) such
that the whole topology is a clique.

Incorporating rack space constraints. Beyond connectiv-
ity constraints, we need to consider packaging constraints in
sub-block design. Ideally, we need to ensure that a sub-block
fits completely into one or more racks with no wasted rack
space. For example, if we use S8RU racks, and each switch
is to be connected to 8 1RU servers, we can accommodate
6 switches per sub-block, leaving 58 — (6 x 8 +6) = 4U in
the rack for power supply and other equipment. In contrast,
choosing 8 switches per sub-block would be a bad choice be-
cause it would need 8 x 8 48 = 72U rack space, overflowing
into a second rack that would have 44RU un-utilized. We
model this packaging fragmentation as a soft constraint: our
synthesis algorithm generates multiple candidate assignments
to the design variables that satisfy our constraints, and of
these, we pick the alternative that has the lowest wasted rack
space.

Ensuring edge expansion. At each level of the hierarchy,
edge expansion is ensured by using a clique. This is necessary
for high edge expansion, but not sufficient, since it does
not guarantee that every switch connects to as many other
switches across the network as possible. One way to ensure
this diversity is to make sure that each pair of switches is
connected by at most one link. The constraints discussed
so far do not ensure this. For instance, consider Figure 6,
in which L. (another auxiliary variable in Table 4) is the
number of links from one sub-block to another. If this number
is greater than the number of switches S, in the sub-block,
then, some pair of switches might have more than one link
to each other. Thus, C5 : L.. < S. is a condition to ensure
that each pair of switches must be connected by a single link.
Our topology synthesis algorithm generates assignments to
design variables, and a topology generator then assigns links
to ensure this property (§5.2).

Incorporating patch panel constraints. The size of the
block is also limited by the number of ports in a single patch
panel rack (denoted by PP — Rackports). It is desirable to
ensure that the inter-block links egressing each block connect
to at most % the ports in a patch panel rack, so that the rest of
the patch panel ports are available for external connections
into the block (captured by Cg : Ry, < % - PP — Rackports)
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Topology Scalability
3-layer Clos (Fattree) | 2-(k/2)3
4-layer Clos 2. (k/2)%
5-layer Clos (Jupiter) | 2-(k/2)°
FatClique O(k®)

Table 5: Scalability of Topologies
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Figure 7: FatClique Expansion example

5.2 FatClique Synthesis Algorithm

Generating candidate assignments. The FatClique synthesis
algorithm attempts to assign values to the design variables,
subject to constraints C7 to Cg. The algorithm enumerates
all possible combinations of value assignments for these vari-
ables, and filters out each assignment that fails to satisfy all
the constraints. For each remaining assignment, it generates
the topology specified by the design variable, and determines
if the topology satisfies a required capacity C'ap®, which is an
input to the algorithm. Each assignment that fails the capacity
test is also filtered out, leaving a candidate set of assignments.
These steps are described in §A.6.

FatClique placement. For each assignment in this candi-
date set, the synthesis algorithm generates a topology place-
ment. Because FatClique’s design is regular, its topology
placement algorithm is conceptually simple. A sub-block
may span one or more racks, and these racks are placed adja-
cent to each other. All sub-blocks within a block are arranged
in a rectangular fashion on the datacenter floor. For example,
if a block has 25 racks, it is arranged in a 5 x5 pattern of racks.
Blocks are then arranged in a similar grid-like fashion.

Selecting best candidate. For each placement, the synthe-
sizer computes the cabling cost of the resulting placement
(using [7]), and picks the candidate with the lowest cost. This
step is not shown in Algorithm 3. This approach implicitly
filters out candidates whose sub-block cannot be efficiently
packed into racks (§5.1).

5.3 FatClique Expansion

Re-wiring during expansion. Consider a small FatClique
topology, shown top left in Figure 7, that has 3 blocks and
Ly, =5, i.e., five inter-block links. To expand it to a clique
with six blocks, we would need to rewire the topology to
have Lj, = 2 (top right in Figure 7). This means we need
to redistribute more than half (6 out of 10) of existing links

(red) at each block to new blocks without violating wiring
and capacity constraints.

The expansion process with patch panels is shown in the
bottom of Figure 7. Similar to the procedure for Clos de-
scribed in §4.1, all new blocks (shown in orange) are first
deployed and interconnected and links from the new blocks
are routed to reserved ports on patch panels associated with
existing blocks (shown in blue), before re-wiring begins.

For FatClique, rewiring one existing link requires releasing
one patch panel port so that a new link can be added. Since
links are already parts of existing bundles and routed through
cable trays, we can not rewire them directly, e.g., by rerouting
it from one patch panel to another. For example, link 1 (lower
half of Figure 7) is originally connected blocks 1 and 3 by
connecting ports a and b on the patch panel. Suppose we want
to remove that link, and add two links, one from block 1 to
block 5 (labeled 3), and another from block 3 to block 5 (la-
beled 4). The part of the original link (labeled 1) between the
two patch panels is already bundled, so we cannot physically
reroute it from block 3 to block 5. Instead, we effect re-wiring
by releasing port a, connecting link 3 to port a, connecting
link 1 to port c. Logically, this is equivalent to connecting
ports a and d and b and c¢ on the patch panel shown in lower
half of Figure 7. This preserves bundling, while permitting
expansion.

If the original topology has N blocks, by comparing the

old and target topology, the total number of rewired links is
computed by Ny(Np, —1)(Ly, — Ly, )/2. For this example,
the total number of links to be rewired is 9.
Iterative Expansion Plan Generation. By design, Fat-
Clique has fat edges, which allows draining more and more
links at each step of the expansion, as network capacity in-
creases. At each step, we drain links across all blocks uni-
formly, so that each block loses the same aggregate capacity.
However the relationship between overall network capacity,
and the number of links drained at every block in FatClique
is unclear, because traffic needs to be sent over non-shortest
paths to fully utilize the fabric.

Therefore, we use an iterative approach to expansion plan-
ning, where, at each step, we search for the maximal ratio of
links to be drained that still preserves expansion SLO. (§A.4
discusses the algorithm in more detail). Our evaluation §6
shows that the number of expansion steps computed by this
algorithm is much smaller than that for expanding symmetric
Clos.

5.4 Discussion

Achieving low complexity. By construction, FatClique
achieves low lifecycle management complexity (Table 3),
while ensuring full-bisection bandwidth. It ensures high edge
expansion, resulting in fewer switches. By packaging clique
connections into a sub-block, it exports fewer external ports,
an idea we call port hiding. By employing hierarchy and a
regular (non-random) structure, it permits bundling and re-
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quires fewer patch panels. By ensuring fat edges at each level
of the hierarchy, it enables fewer re-wired links per patch
panel, and fewer expansion steps. We quantify these in §6.

Scalability. Since Xpander and Jellyfish do not incorporate
hierarchy, they can be scaled to arbitrarily large sizes. How-
ever, because Clos and FatClique are hierarchical, they can
only scale to a fixed size for a given chip radix. Table 5 shows
the maximum scale of each topology as a function of switch
radix k. FatClique scales to the same order of magnitude as a
5-layer Clos. As shown in §6, both of them can scale to 64
times bisection bandwidth of Jupiter.

FatClique and Dragonfly. FatClique is inspired by
Dragonfly [20] and they are both hierarchical topologies
that use cliques as building blocks, but differ in several
respects. First, for a given switch radix, FatClique can scale
to larger topologies than Dragonfly because it incorporates
one additional layer of hierarchy. Second, the Dragonfly
class of topologies is defined by many more degrees of
freedom than FatClique, so instantiating an instance of
Dragonfly can require an expensive search [33]. In contrast,
FatClique’s constraints enable more efficient search for
candidate topologies. Finally, since Dragonfly does not
explicitly incorporate constraints for expansion, a given
instance of Dragonfly may not end up with fat edges.

Routing and Load Balancing on FatClique. Unlike for
Clos, ECMP-based forwarding cannot be used achieve high
utilization in more recently proposed topologies [20, 35, 32,
19]. FatClique belongs to this latter class, for which a combi-
nation of ECMP and Valiant Load Balancing [37] has been
shown to achieve performance comparable to Clos [19].

6 Evaluating Lifecycle Complexity

In this section, we compare three classes of topologies, Clos,
expander graphs and FatClique by our complexity metrics.

6.1 Methodology

Topology scales. Because the lifecycle complexity of topol-
ogy classes can be a function of topology scale, we evaluate
complexity across three different topology sizes based on the
number of servers they support: small, medium, and large.
Small topologies support as many servers as a 3-layer clos
topology. Medium topologies support as many servers as
4-layer Clos. Large topologies support as many servers as
5-layer Clos topologies®. All our experiments in this section
are based on comparing topologies at the same scale.

At each scale, we generate one topology for each of Clos,
Xpander, Jellyfish, and FatClique. The characteristics of
these topologies are listed in Table 6. All these topologies use
32-port switching chips, the most common switch radix avail-
able today for all port capacities [5]. To compare topologies

To achieve low wiring complexity, a full 5-layer Clos topology would
require patch panel racks with four times as many ports as available today, so
we restrict ourselves to the largest Clos that can be constructed with today’s
patch panel capacities

fairly, we need to equalize them first. Specifically, at a given
scale, each topology has approximately the same bisection
bandwidth, computed (following prior work [32, 35]) using
METIS [18]. All topologies at the same scale support roughly
the same number of servers; small, medium and large scale
topologies achieve, respectively, i, 4, and 16 times capacity
of Jupiter. (In A.8, we also compare these topologies using
two other metrics).

Table 6 also shows the scale of individual building blocks of
these topologies in terms of number of switches. For Clos, we
use the algorithm in §A.1 to design building blocks (chassis)
and then use them to compose Clos. One interesting aspect
of this table is that, at the 3 scales we consider, a FatClique’s
sub-block and block designs are identical, suggesting lower
manufacturing and assembly complexity. We plan to explore
this dimension in future work.

For each topology we compute the metrics listed in Table 3:
the number of switches, the number of bundle types, the
number of patch panels, the average number of re-wired links
at a patch panel during each expansion step, and the number
of expansion steps. To compute these, we need component
parameters, and placement and expansion algorithms for each
topology class.

Component Parameters. In keeping with [4, 40], we use
optical links for all inter-rack links. We use 96 port 1RU
patch panels [10] in our analysis. A 58RU [28] rack with
patch panels can aggregate 2+ 96 x 58 = 11,136 fibers. We
call this rack a patch-panel rack. Most datacenter settings,
such as rack dimensions, aisle dimensions, cable routing and
distance between cable trays follow practices in [26]. We list
all parameters used in our paper in §A.7.

Placement Algorithms. For Clos, following Facebook’s fb-
fabric [3], spine blocks are placed at the center of the data-
center, which might take multiple rows of racks, and pods are
placed at two sides of spine blocks. Each pod is organized
into a rectangular area with aggregation blocks placed in the
middle to reduce the cable length from ToR to aggregation.
FatClique’s placement algorithm is discussed in §5.2. For
Xpander, we use the placement algorithm proposed in [19].
We follow the practice that all switches in a metanode are
placed closed to each other. However, instead of placing a
metanode into a row of racks, we place a metanode into a
rectangular area of racks, which reduces cable lengths when
metanodes are large. For Jellyfish, we design a random search
algorithm to aggressively reduce the cable length (§A.2).
Expansion Algorithms. For Clos, as shown in [38], it is
fairly complex to compute the optimal number of rewired
links for asymmetric Clos during expansion. However, when
the original and target topologies are both symmetric, this
number is easy to compute. For this case, we design an opti-
mal algorithm (§A.5) which rewires the maximum number of
links at each step and therefore uses the smallest number of
steps to finish expansion. For FatClique, we use the algorithm
discussed in §5.3. For Xpander and Jellyfish, we design an
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Topology Clos FatClique Xpander Jellyfish
Scale e a sp | pod cap svr sub-block | block cap svr metanode cap svr cap svr
Small 1 16 1 32 327T 8.2k 6 150 337T 8.1k 41 351T 8.2k 350T 8.2k

Medium 1 16 | 48 | 32 5.24P 131k 6 150 5.40P 132k 655 5.56P 131k | 5.56P 131k
Large 1| 512 | 48 | 768 | 20.96P | 524k 6 150 21.36P | 523k 2620 22.27P | 524k | 22.27P | 524k

Table 6: Capacities of topologies built with 32 port 40G switches. Small, medium and large scale topologies achieve %, 4, 16 times capacity
of Jupiter. The table also shows sizes of individual building blocks of these topologies in terms of number of switches. Abbreviations:

e:edge, a:aggregation, sp:spine, cap:capacity, svr:server.

expansion algorithm based on the intuition from [35, 32] that,
to expand a topology by n ports requires breaking 4 exist-
ing links. Finally, we have found that for all topologies, the
number of expansion steps at a given SLO is scale invariant:
it does not depend on the size of the original topology as
long as the expansion ratio (target-topology-size-to-original-
topology-size ratio) is fixed (§A.3).

Presenting results. In order to bring out the relative merits
of topologies, and trends of how cost and complexity increase
with scale, we present values for metrics we measure for all
topologies and scales in the same graph. In most cases, we
present the absolute values of these metrics; in some cases
though, because our three topologies span a large size range,
for some metrics the results across topologies are so far apart
that we are unable to do so without loss of information. In
these cases, we normalize our results by the most expensive,
or complex topology.

6.2 Patch Panel Placement

The placement of patch panels is determined both by the
structure of the topology and its scale.

Between edge and aggregation layers in Clos. For small
and medium scale Clos, no patch panels are needed between
edge and aggregation layers. Each pod at these scales contains
16 aggregation switches, which can be packed into a single
rack (we call this an aggregation-rack). Given that a pod
at this scale is small, all links from the edge can connect to
this rack. Since all links connect to one physical location,
bundles form naturally. In this case, each bundle from edge
racks contains 3 x 16 fibers’. Therefore, no patch panels are
needed between edge and aggregation layers.

However, a large Clos needs one layer of patch panels be-
tween edge and aggregation layers since a pod at this scale
is large. An aggregation block consists of 16 middle blocks®,
each with 32 switches. The aggregation block by itself oc-
cupies a single rack. Based on the logical connectivity, links
from any edge need to connect to all middle blocks. With-
out using patch panels, each bundle could at most contain
3 x16/16 = 3 fibers. In our design, we use patch panels to
aggregate local bundles from edges first and then rebundle
them on patch panels to form new high capacity bundles from
patch panels to aggregation racks. Based on the patch panel

"Tn our setting, each rack with 58RU can accommodate at most 3 switches
and 48 associated servers. The total number of links out of this rack is 3 x 16.

8We follow the terminology in [31]. A middle block is a sub-block in an
aggregation block.

rack capacity constraint, two patch panel racks are enough to
form high capacity bundles from edge to aggregation layers.
Specifically, in our design 128 edge switches and 8 aggrega-
tion racks connect to a single patch panel. In this design, each
edge-side bundle contains 48 fibers and each aggregation-side
bundle contains 128 fibers.

Between aggregation and spine layers. The topology be-
tween aggregation and spine layer in Clos is much larger
than that inside a pod. For this reason, to form high capacity
bundles, two layers of patch panels are needed. As shown in
Figure 1, one layer of patch panels is placed near spine blocks
at the center of the data center floor. Each patch panel rack
aggregates local bundles from four spine racks in medium and
large scale topologies. Similarly, another layer of patch pan-
els are placed near aggregation rack, permitting long bundles
between those patch panels.

In expanders and FatClique. For Jellyfish, Xpander and
FatClique, patch panels are deployed at the server block side
and long bundles form between those patch panels. In Fat-
Clique, each block requires one patch panel rack (§5.3). In
a large Xpander, since a metanode is too big (Table 6), it
is not possible to use one patch panel rack to aggregate all
links from a metanode. Therefore, we divide a metanode into
homogeneous sections, called sub-metanodes, such that links
from a sub-metanode can be aggregated at one patch panel
rack. For Jellyfish, we partition the topology into groups,
each of which contains the same number of switches as in a
block in FatClique, so each group needs one patch panel rack.

6.3 Deployment Complexity

In this section, we evaluate our different topologies by our
three measures of deployment complexity (§3.2).
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Figure 8: Number of switches. C is Clos, J is Jellyfish, X is
Xpander and F is FatClique.
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Number of Switches. Figure 8 shows how the different
topologies compare in terms of number of switches used at
various topology scales. Figure 8(a) shows the total number of
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switches for the small topologies, Figure 8(b) for the medium,
and Figure 8(c) for the large. The y-axes increase in scale
by about an order of magnitude from left to right. FatClique
has 20% fewer switches than Clos for a small topology, and
50% tewer for the large. The results for Jellyfish and Xpander
are similar, consistent with findings in [35, 32]. This bene-
fit comes from the edge expansion property of the non-Clos
topologies we consider. This implies that Clos topologies, at
large scale, may require nearly twice the capital expenditures
for switches, racks, and space as the other topologies.
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Figure 9: Number of patch panels. C is Clos, J is Jellyfish, X is
Xpander and F is FatClique.

Number of Patch panels. Figure 9 shows the number of
patch panels at different scales. As before, across these
graphs, the y-axis scale increases approximately by one order
of magnitude from left to right. At small and medium scales,
Clos relies on patch panels mainly for connections between
aggregation and spine blocks. Of all topologies at these scales,
Clos uses the fewest number of patch panels: FatClique uses
about 11% more patch panels, and Jellyfish and Xpander use
almost 44-50% more. Xpander and Jellyfish rely on patch pan-
els for all northbound links, and therefore in general, as scale
increases, the number of patch panels in these networks grows
(as seen by the increase in the y-axis scale from left to right).

At large scale, however, Clos needs many more patch pan-
els, comparable to Xpander and Jellyfish. At this scale, Clos
aggregation blocks span multiple racks, and patch panels are
also needed for connections between ToRs and aggregation
blocks. Here, FatClique’s careful packaging strategy becomes
more evident, as it needs nearly 25% fewer patch panels than
Clos. The majority of patch panels used in FatClique at all
scales comes from inter-block links (which increase with
scale).

For this metric, Clos and FatClique are comparable at small
and medium scales, but FatClique dominates at large scale.

(a) Small

X

(b) Medium

F

O NWAUON®WO

(c) Large

Scale # Bundle Types
Clos | FatClique | Xpander | Jellyfish
Small 8 11 11 28
Medium 74 61 976 1577
Large 322 212 3034 3678

Table 7: Bundle Types (Switch Radix = 32)

Number of Bundle Types. Table 7 shows the number of
bundle types used by different topologies at different scales.
A bundle type (§3.1) is characterized by (a) the number of

Figure 10: Cabling cost. C is Clos, J is Jellyfish, X is Xpander
and F is FatClique.
fibers in the bundle, and (b) the length of the bundle. The
number of bundle types is a measure of wiring complexity. In
this table, if bundles differ by more than 1m in length, they
are designated as separate bundle types.

Table 7 shows that Clos and FatClique use the fewest num-
ber of bundle types; this is due to the hierarchical structure of
the topology, where links between different elements in the
hierarchy can be bundled. As the topology size increases, the
number of bundle types also increases in these topologies, by
a factor of about 40 for Clos to 20 for FatClique when going
from small to large topologies.

On the other hand, Xpander and Jellyfish use an order of
magnitude more bundle types compared to Clos and FatClique
at medium and large scales, but use a comparable number
for small scale topologies. Even at the small scale, Jellyfish
uses many more bundle types because it uses a random con-
nectivity pattern. At small scales Xpander metanodes use
a single patch panel rack and bundles from all metanodes
are uniform. With larger scales, Xpander metanodes become
too big to connect to a single patch panel rack. We have to
divide a metanode into several homogeneous sub-metanodes
such that all links from sub-metanodes connect to a patch
panel rack. However, because of the randomness in connec-
tivity, this subdivision cannot ensure uniformity of bundles
egressing sub-metanode patch panel racks, so we find that
Xpander has a large number of bundle types in medium and
large topologies.

Thus, by this metric, Clos and FatClique have the lowest
complexity across all three scales, while Xpander and Jelly-
fish have an order of magnitude more complexity. Moreover,
across all metrics FatClique has lowest deployment complex-
ity, especially at large scales.

Case Study: Quantifying cabling costs. While not all as-
pects of lifecycle management complexity can be translated
to actual dollar costs, it is possible to estimate one aspect,
namely the cost of cables. Cabling cost includes the cost of
transceivers and cables, and is reported to be the dominant
component of overall datacenter network cost [31, 20]. We
can estimate costs because our placement algorithms gener-
ate cable or bundle lengths, the topology packaging deter-
mines the number of transceivers, and estimates of cable and
transceiver costs as a function of cable length are publicly
available [7].

Figure 10 quantifies the cabling cost of all topologies,
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across different scales. Clos has higher cabling costs at small
and medium scales compared to expander graphs, although
the relative difference decreases at medium scale. At large
scales, the reverse is true. Clos is around 12% cheaper than
Xpander in terms of cabling cost since Xpander does not sup-
port port-hiding at all and uses more long inter-rack cables.
Thus, given that cabling cost is the dominant component of
overall cost, it is unclear whether the tradeoff Xpander and
Jellyfish makes in terms of number of switches and cabling
design pays off in terms of capital expenditure, especially at
large scale.

We find that FatClique has the lowest cabling cost of the
topologies we study with a cabling cost 23-36% less than
Clos. This result came as a surprise to us, because intu-
itively topologies that require all-to-all clique like connections
might use longer length cables (and therefore more expensive
transceivers). However on deeper examination, we found that
Clos uses a larger number of cables (especially inter-rack
cables) compared to other topologies since it has a relatively
higher number of switches (Figure 8) to achieve the same bi-
section bandwidth. Thus, more switches leads to more racks
and datacenter floor area, which stretches the cable length.
All those factors together explain why Clos cabling costs are
higher than FatClique’s.

Thus, from an equipment capital expenditure perspective,
at large scale a FatClique can be at least 23% cheaper than a
Clos, because it has at least 23% fewer switches, 33% fewer
patch panel racks, and 23% lower cabling costs than Clos.

6.4 Expansion Complexity

In this section, we evaluate topologies by our two measures of
expansion complexity (§4.3): number of expansion steps re-
quired, and number of rewired-links per patch panel rack per
step. Since the number of steps is scale-invariant (§6.1), we
only present the results from expanding medium size topolo-
gies for both metrics’. When evaluating Clos, we study the
expansion of symmetric Clos topologies; generic Clos expan-
sion is studied in [38]. As discussed in §6.1, for symmetric
Clos, we have developed an algorithm with optimal number
of rewiring steps.

Number of expansion steps. Figure 11 shows the number
of steps (y-axis) required to expand topologies to twice their
existing size (expansion ratio = 2) at different expansion
SLOs (x-axis). We find that at 75% SLO, all topologies
require the same number of expansion steps. But the number

9We have verified that the relative trend in the number of re-wired links
per patch panel holds for small and large topologies
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Figure 12: Average Number of Rewired Links at a Single Patch

Panel across Steps
of steps required to expand Clos with tighter SLOs steeply
increases. This is because the number of links that can be
rewired per aggregation block in Clos per step, is limited (due
to north-to-south capacity ratio §4.3) by the SLO. The tighter
the SLO, fewer the number of links rewired per aggregation
block per step, and larger the number of steps required to
complete expansion. FatClique, Xpander and Jellyfish require
fewer and comparable number of expansion steps due to their
fat edge property, allowing many more links to be rewired per
block per step. Their curves largely overlap (with FatClique
taking one more step as SLO increases beyond 95%) .

Number of rewired links per patch panel rack per step.
This metric is an indication of the time it takes to finish an
expansion step because, today, rewiring each patch panel
requires a human operator [38]. A datacenter operator can
reduce re-wiring time by employing staff to rewire each patch
panel rack in parallel, in which case, the number of links per
patch panel rack per step is a good indicator of the complexity
of an expansion step. Figure 12 shows the average of the
maximum rewired links per patch panel rack, per step (y-axis),
when expanding to twice the topology size size at different
SLOs (y-axis). Even though the north-to-south capacity ratio
restricts the number of links that can be rewired in Clos per
step, the number of rewired links per patch panel rack per
step in Clos remains consistently higher than other topologies,
until we hit 97.5% SLO. The reason is that the links that need
to be rewired in Clos are usually concentrated in few patch
panel racks by design. As such, it is harder to parallelize
rewiring in Clos, than it is in the other topologies. FatClique
has the lowest rewiring step complexity across all topologies.

6.5 FatClique Result Summary

We find that FatClique is the best at most scales by all our
complexity metrics. (The one exception is that at small and
medium scales, Clos has slightly fewer patch panels). It uses
50% fewer switches and 33% fewer patch panels than Clos
at large scale, and has a 23% lower cabling cost (an estimate
we are able to derive from published cable prices). Finally,
FatClique can permit fast expansion while degrading network
capacity by small amounts (2.5-10%): at these levels, Clos
can take 5 X longer to expand the topology, and each step of
Clos expansion can take longer than FatClique because the
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number of links to be rewired at each step per patch panel can
be 30-50% higher.

7 Related Work

Topology Design. Previous topology designs have focused
on cost effective, high capacity and low diameter datacenter
topologies like [6, 35, 32, 4, 20]. Although they achieve good
performance and cost properties, the lifecycle management
complexity of these topologies have not been investigated
either in the original papers or in subsequent work that has
compared topologies [26, 27]. In contrast to these, we explore
topology designs that have low lifecycle complexity. Recent
work has explored datacenter topologies based on free space
optics [24, 11, 9, 16, 39] but because we lack operational
experience with them at scale, it is harder to design and
evaluate lifecycle complexity metrics for them.

Topology Expansion. Prior work has discussed several as-
pects of topology expansion [30, 32, 35, 8, 38]. Condor [30]
permits synthesis of Clos-based datacenter topologies with
declarative constraints some of which can be used to spec-
ify expansion properties. A more recent paper [38] attempts
to develop a target topology for expansion, given an exist-
ing Clos topology, that would require the least number of
link rewiring. REWIRE [8] finds target expansion topologies
with highest capacity and smallest latency without preserving
topological structure. Jellyfish [32] and Xpander [35] study
expansion properties of their topology, but do not consider
practical details in re-wiring. Unlike these, our work is ex-
amines lifecycle management as a whole, across different
topology classes, and develops new performance-equivalent
topologies with better lifecycle management properties.

8 Conclusions and Future Work

In this paper, we have attempted to characterize the com-
plexity of lifecycle management of datacenter topologies, an
unexplored but critically important area of research. Lifecycle
management consists of network deployment and expansion,
and we devise metrics that capture the complexity of each.
We use these to compare topology classes explored in the
research literature: Clos and expander graphs. We find that
each class has low complexity by some metrics, but high by
others. However, our evaluation suggests topological fea-
tures important for low lifecycle complexity: hierarchy, edge
expansion and fat edges. We design a family of topologies
called FatClique that incorporates these features, and this
class has low complexity by all our metrics at large scale.
As the management complexity of networks increases, the
importance of designing for manageability will increase in the
coming years. Our paper is only a first step in this direction;
several future directions remain.
Topology oversubscription. In our comparisons, we have
only considered topologies with an over-subscription ratio of
1:1. Jupiter [31] permits over-subscription at the edge of the
network, but there is anecdotal evidence that providers also

over-subscribe at higher levels in Clos topologies. To explore
the manageability of over-subscribed topologies it will be
necessary to design over-subscription techniques in FatClique,
Xpander and Jellyfish in a way in which all topologies can be
compared on a equal footing.

Topology heterogeneity. In practice, topologies have a long
lifetime over which they accrue heterogeneity: new blocks
with higher radix switches, patch panels with different port
counts efc. These complicate lifecycle management. To eval-
uate these, we need to develop data-driven models for how
heterogeneity accrues in topologies over time and adapt our
metrics for lifecycle complexity to accommodate heterogene-
ity.

Other management problems. Our paper focuses on topol-
ogy lifecycle management, and explicitly does not consider
other network management problems like fault isolation or
control plane complexity. Designs for manageability must
take these into account.
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A Appendix
A.1 Clos Generation Algorithm

For Clos topologies, the canonical recursive algorithm in [36]
can only generate non-modular topologies as shown in Fig-
ure 13. In practice, as shown in Jupiter [31], the topology is
composed of heterogenous building blocks (chassis), which
are packed into a single rack and therefore enforce port hiding
(the idea that as few ports from a rack are exposed outside
the rack). Although Jupiter is modular and supports port
hiding, it is single instance of a Clos-like topology with a
specific set of parameters. We seek an algorithm that can take
any valid set of Clos parameters and produce chassis-based
topologies automatically. Besides, it would be desirable for
this algorithm to generate all possible feasible topologies sat-
isfying the parameters, so we can select the one that is most
compactly packed.

Our logical Clos generation algorithm achieves these goals.
Specifically, the algorithm uses the following steps:

1. Compute the total number of layers of homogeneous
switching chips needed. Namely, given N servers and
radix k switches, we use n = log (%) to compute the

2

number of layers of chips n needed.

2. Determine the total number of layers of chips for edge,
aggregation and core layers, which are represented by e,
a and s respectively, such that e +a+ s =n.

3. Identify blocks for edge, aggregation and core layer.
Clos networks rely on every edge being able to reach
every spine through exactly one path, by fanning out via
as many different aggregation blocks as possible (and
vice versa). We find that the resulting interconnection
is a derivative of the classical perfect shuffle Omega
network ([21], e.g., aggregation blocks in Figure 14 and
Figure 15). Therefore, we use Omega networks to build
both the edge and aggregation blocks, and to define the
connections between edge-aggregation and aggregation-
spines. The spine block on the other hand needs to be
rearrangeably-nonblocking, so it can relay flows from
any edge to any other edge with full capacity. Therefore
it is built as a smaller Clos topology [6] (e.g., spine
blocks in Figure 14).

4. Compose the whole network using edge, aggregation
and core blocks. The process to compose the whole
topology is to link all these blocks and uses the same
procedure as Jupiter[31].

We have verified that topologies generated by our construc-
tion algorithm, such as the ones in Figure 14 and Figure 15,
are isomorphic to a topology generated using the canonical
algorithm in Figure 13. By changing different combinations
of e, a and s, we can obtain multiple candidate topologies, as
shown in Figure 14 and Figure 15.

A.2 Jellyfish Placement Algorithm

For Jellyfish, we use a heuristic random search algorithm to
place switches and servers. The algorithm works as follows.
At each stage of the algorithm, a node can be in one of two
states: placed, or un-placed. A placed node is one which
has been positioned in a rack. Each step of the algorithm
randomly selects an un-placed node. If the selected node
has logical neighbor nodes that have already been placed,
we place this node at the centroid of the area formed by its
placed logical neighbors. If no placed neighbor exists, the
algorithm randomly selects a rack to place the node. We have
also tried other heuristics like neighbor-first, which tries to
place a switch’s logical neighbors as close as possible around
it. However, this performs worse than our algorithm.

A.3 Scale-invariance of Expansion

Scale-invariance of Expandability for Symmetric Clos.
For a symmetric Clos network, the number of expansion steps
is scale-invariant and independent of the degree to which the
original topology is partially deployed. Consider a simplified
Clos where the original topology has g aggregation blocks.
Each aggregation block has p ports for spine-aggregation
links, each of which has the unit capacity. Assume the worst-
case traffic in which all sources are located in the left half of
aggregation blocks and all destinations are in the right half.
This network contains g -p/2 crossing links between left and
right halves. If, during expansion, the network is expected to
support a demand of d units capacity per aggregation block,
the total demand traversing the cut between the left and right
halves in one direction is d - g/2. Then, the maximum num-
ber of links that can be redistributed in an expansion step
isk=g-p/2—d-g/2=g(p—d)/2, which is linear in the
number of aggregation blocks (network size). This linearity
between k and g implies scale-invariant expandability, e.g.,
when an aggregation block is doubled to 2g, the maximum
number of redistributed links per expansion step becomes 2k.

Scale-invariance of Expandability for Jellyfish, Xpander,
and FatClique. A random graph consists of s nodes, which is
a first-order approximation for Jellyfish’s switch, Xpander’s
metanode and FatClique’s block. Each node has p inter-
node ports, so there are s-p/2 inter-node links. We can
treat the network as a bipartite graph. We assume the worst-
case traffic matrix, where all traffic is sent through one part
of the bipartite graph to the other. Suppose an expansion
SLO requires each source-destination node pair to support
d unit demand. Then the total demands from all sources are
d-s/2. The probability of a link being a cross link is 1/2,
and the expected number of cross links is s p/4. These cross
links are expected to be the bottleneck between the source-
destinations pairs. Therefore, in the first expansion step, we
can redistribute at most k = s-p/4—d-s/2 = s(p/4—d/2)
links, and the maximum number of redistributed links is linear
in the number of nodes (network size), e.g., if the number of

250 16th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



N=32 Clos N=16 Clos

ZN N AR AR | R

e o o o

DR NISEL /NS

=]

Spine: 32 Spine:
2 layer Clos b B . UL
= Aggregation: : Aggregation:
<1 |: 2 layer Omega b : 8 H : 3 layer Omega
S ~e : (blocking) £ ER S - (blocking)
AN : 3 3 : g
e 88 e f OO OODT iN=64 Clos : LIEIOE  MEEIL ; Edge
: 1 switch E pod : g pod * 1 switch

N=64 Clos

Figure 13: Recursive Construction

nodes is doubled to 2s, we can redistribute 2k links in the
first step. It is easy to see that, after each expansion step, the
number of links added to the bottleneck is also linear with the
number of nodes, so the expandability is scale-invariant.

A.4 FatClique Expansion Algorithm

Algorithm 1 shows the expansion algorithm for FatClique.
The input to the algorithm includes original and target topolo-
gies T° and T, the link break ratio during an expansion step
a, multipliers 5 < 1 and v > 1, which are used to adjust «
based on network capacity. « specifies the fraction of existing
links that must be broken for re-wiring. The output of the
algorithm is the expansion plan Plan.

Our expansion algorithm is an iterative trial-and-error ap-
proach (Line 4). Each iteration tries to find the right amount
of links to break while satisfying the aggregate capacity con-
straint (Line 11) and the edge capacity constraint (Line 6),
which guarantees that the north-to-south capacity ratio is al-
ways not smaller than 1 during any expansion step. If all
constraints are satisfied, we accept this plan and tentatively
increase the link break ratio « (Line 16, by multiplying by ~)
due to capacity increase. Otherwise, the link break ratio «
(Line 12) is decreased (by multiplying by /3 conservatively.)

input : 7°, 7", SLO

output: Plan
1 Initialize o € (0,00), 8 € (0,1),7 € (1,00)
2 Find the total set of links to break, L, based on T° and T"
3 Compute original capacity cg
4 while |L| > 0 do
5 Select a subset of links Ly, from L uniformly across all

blocks, where |Ly| = a|L].

6 if Ly, does not satisfy edge capacity constraint then
7 | a=auoa-f
8 end
9 Delete Ly, from T°
0 ¢ = ComputeCapacity(7°°)
1 if c < cg- SLO then
2 a=a«a-f
3 add Ly back to T°
4 else
5 T° = AddNewLinks(Ly, T°, T™)
6 a=oa-y
7 Plan.add(Ly)
8 end
9 end

Algorithm 1: FatClique Expansion Plan Generation

Figure 14: Block-Based Construction 1

Figure 15: Block-Based Construction 2

A.5 Expansion for Clos

Since the motivation of this work is to compare topologies,
we only focus on developping optimal expansion solutions
for symmetrical Clos. More general algorithms for Clos’
expansion can be found in [38]. Also, similar to [38], we
assume the worst case traffic matrices for Clos, i.e., servers
under a pod will send traffic using full capacity to servers in
other pods.

Target Topology Generation. As mentioned in §4.1, a pod
is the unit of expansion in Clos. When we add new pods and
associated spines to a Clos topology for expansion, the wiring
pattern inside a pod remains unchanged. To make the target
topology non-blocking and to ease expansion (i.e., number
of to-be-redistributed links on each pod is the same), links
from a pod should be distributed across all spines as evenly
as possible.

Expansion plan generation. Once a target Clos topology is
generated, the next step is to redistribute links to convert the
original topology into the target topology. By comparing the
original and target topology, it is easy to figure out which new
links should be routed to which patch panels to satisfy the
wiring constraint. In this section, we mainly focus on how to
drain links such that the capacity constraint is satisfied and
the number of expansion steps is minimized.

Insight 1: Maximum rewired links at each pod is bounded.
At each expansion step, when links are drained, network ca-
pacity drops. At the same time, as expansion proceeds, new
devices are added incrementally, the overall network capacity
increases gradually during the whole expansion process. In
general, during expansion, the incrementally added capac-
ity should be leveraged to speed up the expansion process.
Due to the thin edges in Clos, no matter what the overall
network capacity is, the maximum number links to be drained
at each pod is bounded by the number of links on each pod
multiplied by (1 — SLO). Figure 16 shows an example. The
leftmost figure is a folded Clos, where each pod has 16 links
(4 trunks). If the SLO is 75%, the maximum number of links
to be drained at a single step is 16 x (1 —0.75) = 4. For our
expansion plan generation algorithm, we try to achieve this
bound at each pod at every single step.

Insight 2: Drain links at spines uniformly across edges
(pods). Given the number of links allowed to be drained
at each pod, we need to carefully select which links are
to be drained. Figure 16 shows two draining plans. Drain
plan 1 will drain links from two spines uniformly across all
pods. The residual capacity is 48, satisfying the requirement
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Figure 17: Clos Draining Link Redistribution Scheduling.
SLO=75%. By uniformly, we mean the number of drained
links between the spine and all pods are the same. Drain plan
2 also drains 4 links from each pods but not uniformly (for
example, more links are drained at the third spine compared
to the fourth spine), which violates the SLO requirement since
the residual capacity is only 40, smaller than the 48 in Drain
plan 1.

Insight 3: Create physical loops by selecting the right
target spines. Ideally, drained links with the same index on a
pod on the same original spine should be redistributed to the
same spine because the traffic sent from the pod to the target
spine has a return path to the pod. Otherwise, the traffic will
be dropped. Figure 17 illustrates this insight. The right side of
the figure shows the performance of two redistribution plans.
The y axis shows the normalized capacity of the network at
each expansion step. In the first plan, link 1 is first moved to
spine s1 (1-s1),followed by link 3 to the same spine sl (3-s1)
which results in 75% capacity loss, since the two pods are
connected by three paths instead of four. Once links 1 and 3
are undrained, s1 connects the two pods by a fourth path, and
the normalized capacity is restored to 1. This redistribution
step now provides leeway for supporting 25% capacity loss
in the next step. In this next step, links 2 and 4 are rewired
to connect to s2. During the rewiring, capacity again drops
to 75%, with three paths between the pods. On undraining
links 2 and 4, the capacity is once again restored to 1. In
contrast, redistribution plan 2 violates SLO because it does
not focus on restoring capacity by establishing paths via the
new spine, as suggested by the insight (links 1 and 3 are
moved to different spines).

Inspired by these insights, we designed Algorithm 2, which
can achieve all our insights simultaneously when both original
and target topologies are symmetric. The algorithm is optimal
since at every expansion step, it achieves the upper bound of
the links that could be drained. Therefore, our algorithmn uses
smallest steps to expand Clos.

The input to the algorithm is the original and new symmet-
ric topology T and T™. We use T, and T, to represent
the number of links between spine s and pod p in the old and
new topology respectively. Initially, T:,p =0, where s’ is a
new spine. The output of the algorithm 1s the draining plan,
Subplan;, for expansion step i. The final expansion plan
Plan = {Subplan; } and the number of Subplan, |Plan], is
the total expansion step.

The algorithm starts by indexing old spines, new spines and
links on each pod from left to right respectively (Line 1-2),
which are critical for the correctness of the algorithm since the
algorithm relies on these indexes to break ties when selecting
spines and links to redistribute. Then, based on our Insight 1,
Line 3 computes the upper bound on the number of links to be
redistributed on each pod, n,. We show experimentally that
our algorithm can always achieve this upper bound in each
individual step as long as 7° and 7™ are symmetric. Next,
the algorithm iterates over all indexed old spines (Line 4) and
tries to drain n,, links uniformly across all pods (Line 5) such
that Insight 2 is satisfied. Line 6 compares the number of
remaining to-be-redistributed links 5, and n,, and is useful
only at the last expansion step. For each pod, the algorithm
needs to find spines to redistribute links to (Line 7-14) while
satisfying the constraint in Insight 3, i.e., drained links with
the same index on a pod on the same original spine are redis-
tributed to the same spine. Due to indexing and symmetric
structure of Clos, our algorithm can always satisfy Insight
3. Specifically, when selecting spines, the spine satisfying
Ogrp =11, — TS",p > () with the smallest index will be consid-
ered first (Line 8-Line 10). When selecting links from pod to
redistribute, we always select the first n, links to redistribute
(Line 14).

Theorem 1 Algorithm 2 produces the optimal expansion
plan for Clos topology.

The proof is simple. Since at every expansion step, our al-
gorithm achieves the upper bound of the links that could
be drained, our algorithm uses smallest steps to finish the
expansion.

A.6 FatClique Topology Synthesis Algorithm

The topology synthesis algorithm for FatClique is shown in
Algorithm 3. Essentially, the algorithm is a search algorithm,
and leverages the constraints C7 to Cg in §5.1 to prune the
search space. It works as follows. The outermost loop (Line 2)
enumerates the number of racks used for a sub-block. Based
on the rack space constraints, sub-block size S, is determined
Line 4. Next, the algorithm iterates over the number of sub-
blocks in a block Sy Line 5, whose size is constrained by
MaxBlockSize. Inside this loop, we leverage constraints
C1 to Cg and derivations in §5.1 to find the feasible set of
pe, which is represented by P, (Line 6). Then we construct
FatClique based all design variables Line 8 and compute its
capacity Line 9. If the capacity matches the target capacity,
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input : 7°, 7", SLO

output: Subplan
1 Index original and new spines from left to right starting from 1

respectively
2 Index links at each pod from left to right starting from 1
3 V pod p, np = num_links_per_pod - (1-SLO)
// Insight 1

4 foreach Original Spine s do

5 foreach pod p do // Insight 2
6 dsp =Teop — Top, np = min(np,dsp)
// Insight 2
7 while n, > 0 do
8 foreach New Spine s’ do // Insight 3
9 63/P:Tgp_r‘g’p
0 if 0,/ > 0 then break
1
2 end
3 Mg = Min(0g/p, Np)
4 Find the first nq to-be-distributed links, Lsp
5 np = np — Na, update(7°)
6 Subplan.add(Lsp)
7 end
8 end
9 end

Algorithm 2: Single Step Clos Expansion Plan Genera-

tion
we add this topology into candidate set (Line 15). If the
capacity is larger than required, the algorithm will increase
s by 1 which will decrease the number of switches used n =
N/s (N is fixed) and therefore reduce the network capacity
in next search step (Line 13). If the capacity is smaller than
required, the algorithm will decrease s by 1 (Line 11) to
increase the number of switches and capacity in next search
step.

A.7 Parameter Setting

The cable price with transceivers used in our evaluation is
listed in Table 9. We found that a simple linear model does
not fit the data. The data is better approximated by a piece-
wise linear function: cables shorter than 100 meters are fit
using one linear model and cables beyond 100 meters are
fit using another linear model. The latter has a larger slope
because beyond 100 meters, more advanced and expensive
transceivers are necessary. In our experiment, since we only
know the discrete price for cables and associated transceivers,
we do the following: if the length of the cable is X, we use
the exact price; if the length if larger than X, we use the first
cable price larger than X.

input : N,r,Cap*,sg
output: candidate
1 candidate = ||

2 for i =1;i < MaxRackPerSubblock;i+ + do
3 S =50

4 Se =i RackCapacity/(1+ s)

5 for S, = 1;5, <= MaxBlockSize; Sy + + do
6 P, = CheckConstraints(S,, Sp)

7 foreach p. in P, do

8 T = ConstructTopology(S¢, Sp, S, pc)
9 Cap = ComputeCapacity(7')

0 if Cap < Cap* then

1 | s=s—1

2 else if Cap > Cap* then

3 ‘ s=s5+1

4 else

5 ‘ candidate.append(T’)

6 end

7
8
9

end

end

O i G G G G G S

end

Algorithm 3: FatClique Topology Synthesis Algorithm

Rack width 24 inches
Rack depth 28.875 inches
Rack height 108 inches
Tray-to-rack distance 24 inches
Dist. Betw. cross-trays 48 inches
Aisle Width 48 inches
Rack units per rack 58 RU [29]
#Ports per patch panel 48 [10]
Patch panel space 1 RU
Cable tray size 24 inches x 4 inches [34]

Table 8: Datacenter settings mostly [26]
Length | 3 5 10 15 20 30
Price | 303 | 310 | 318 334 350 | 399

Length | 50 | 100 | 200 | 300 | 400
Price | 489 | 753 | 1429 | 2095 | 2700

Table 9: 40G QSFP Mellanox cable length in meter (Length) and
price with transceivers (Price) [7]

A.8 Other Metrics

In our evaluations, we have tried to topologies with qualita-
tively similar properties 6. In this section, we quantify other
properties of these topologies.

Edge Expansion and Spectral Gap. Since computing edge
expansion is computationally hard, we follow the method
in [35] using spectral gap [17] to approximate edge expan-
sion. A larger spectral gap implies larger edge expansion. To
fairly compare topologies, we equalize their bisection band-
width first. As shown before, to achieve the same bisection
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Figure 18: Spectral Gap Topologies

bandwidth, Clos uses many more switches. Also, Clos is
not a d-regular graph and do not know of a way to compute
the spectral graph for Clos-like topologies. Therefore, we
compare the spectral gap only for d-regular graphs, Jellyfish,
Xpander and FatClique at different scales (1k-4k nodes). The
spectral gap is defined as follows [17]. Let G with node
degree d and A(G) denote the d-regular topology and its ad-
jacent matrix. The matrix A(G) has n real eigenvalues which
we denote by Ay > Ao > --- > \,,. Spectral gap SG = d — As.
In our experiments, chip radix is 32 and each node in those
topologies connects to 8 servers, d = 24. The result is shown
in Figure 18. First, we observe that spectral gap stays roughly
the same under different scales. Also, the spectral gap of Fat-
Clique is slightly lower than that of other topologies, which
implies that FatClique has slightly smaller edge expansion
compared to Jellyfish and Xpander. This is to be expected,
since FatClique adds some hierarchical structure to cliques.
Path Diversity. We compute the path diversity for different
topologies. For Clos, we only calculate the number of shortest
paths between two ToR switches from different pods. For
other topologies, we compute the number of paths which are
no longer than the shortest paths in the same-scale Clos. For
example, for small-scale Clos, the shortest path length is 5.
We will only calculate paths whose length is no larger than 5
in other topologies. This is a rough metric for path diversity.
The results are shown in Figure 19 and Figure 20. We found
that Jellyfish, Xpander and FatClique have the same level of
path diversity, which is higher than that of Clos. Also, those
topologies have shorter paths than Clos.

4 path Length
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XX FatClique

5

Figure 19: Path Diversity for Small-scale
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Figure 20: Path Diversity for Medium-
scale Topologies
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