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Abstract

Most recent datacenter topology designs have focused on

performance properties such as latency and throughput. In

this paper, we explore a new dimension, life cycle manage-

ment complexity, which attempts to understand the complex-

ity of deploying a topology and expanding it. By analyzing

current practice in lifecycle management, we devise complex-

ity metrics for lifecycle management, and show that existing

topology classes have low lifecycle management complexity

by some measures, but not by others. Motivated by this, we

design a new class of topologies, FatClique, that, while being

performance-equivalent to existing topologies, is compara-

ble to, or better than them by all our lifecycle management

complexity metrics.

1 Introduction

Over the past decade, there has been a long line of work on

designing datacenter topologies [2, 35, 31, 32, 3, 4, 20, 1].

While most have focused on performance properties such as

latency and throughput, and on resilience to link and switch

failures, datacenter lifecycle management [30, 38] has largely

been overlooked. Lifecycle management is the process of

building a network, physically deploying it on a data-center

floor, and expanding it over several years so that it is available

for use by a constantly increasing set of services.

With datacenters living on for years, sometimes up to a

decade [31, 12], their lifecycle costs can be high. A data

center design that is hard to deploy can stall the rollout of

services for months; this can be expensive considering the rate

at which network demands have historically increased [31,

23]. A design that is hard to expand can leave the network

functioning with degraded capacity impacting the large array

of services that depend on it.

It is therefore desirable to commit to a data-center network

design only after getting a sense of its lifecycle management

cost and complexity over time. Unfortunately, the costs of

the large array of components needed for deployment such as

switches, transceivers, cables, racks, patch panels1, and cable

trays, are proprietary and change over time, and so are hard

to quantify. An alternative approach is to develop complexity

measures (as opposed to dollar costs) for lifecycle manage-

ment, but as far as we know, no prior work has addressed this.

In part, this is due to the fact that intuitions about lifecycle

management are developed over time and with operations ex-

perience, and these lessons are not made available universally.

1A patch panel or a wiring aggregator is a device that simplifies cable

re-wiring.

Unfortunately, in our experience, this lack of a clear under-

standing of lifecycle management complexity often results

in costly mistakes in the design of datacenters that are dis-

covered during deployment and therefore cannot be rectified.

Our paper is a first step towards useful characterizations of

lifecycle management complexity.

Contributions. To this end, our paper makes three contribu-

tions. First, we design several complexity metrics (§3 and §4)

that can be indicative of lifecycle management costs (i.e., cap-

ital expenditure, time and manpower required). These metrics

include the number of: switches, patch panels, bundle-types,

expansion steps, and links to be re-wired at a patch panel rack

during an expansion step.

We design these metrics by identifying structural elements

of network deployments that make their deployment and ex-

pansion challenging. For instance, the number of switches

in the topology determines how complex the network is in

terms of packaging – laying out switches into homogeneous

racks in a space efficient manner. Wiring complexity can

be assessed by the number of cable bundles and the patch

panels a design requires. As these increase, the complexity of

manufacturing and packaging all the different cable bundles

efficiently into cable trays, and then routing them from one

patch panel to the next can be expected to increase. Finally,

because expansion is carried out in steps [38], where the net-

work operates at degraded capacity at each step, the number

of expansion steps is a measure of the reduced availability

in the network induced by lifecycle management. Wiring

patterns also determine the number of links that need to be

rewired at a patch panel during each step of expansion, a

measure of step complexity [38].

Our second contribution is to use these metrics to compare

the lifecycle management costs of two main classes of data-

center topologies recently explored in the research literature

(§2), Clos [2] and expander graphs [32, 35]. We find that

neither class dominates the other: Clos has relatively lower

wiring complexity; its symmetric design leads to more uni-

form bundling (and fewer cable bundle types); but expander

graphs at certain scales can have simpler packaging require-

ments due to their edge expansion property [32]; they end

up using much fewer switches than Clos to achieve the same

network capacity. Expander graphs also demonstrate better

expansion properties because they have fat edges (§4) which

permit more links to be rewired in each step.

Finally we design and synthesize a novel and practical class

of topologies called FatClique (§5), that has lower overall

lifecycle management complexity compared to Clos and ex-

pander graphs. We do this by combining favorable design
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elements from these two topology classes. By design, Fat-

Clique incorporates 3 levels of hierarchy and uses a clique

as a building block while ensuring edge expansion. At every

level of its hierarchy, FatClique is designed to have fat edges,

for easier expansion, while utilizing much fewer patch panels

and therefore inter-rack cabling.

Evaluations of these topology classes at three different

scales, the largest of which is 16× the size of Jupiter, shows

that FatClique is the best at most scales by all our complexity

metrics. It uses 50% fewer switches and 33% fewer patch

panels than Clos at large scale, and has a 23% lower cabling

cost (an estimate we are able to derive from published cable

prices). Finally, FatClique can permit fast expansion while

degrading network capacity by small amounts (2.5-10%): at

these levels, Clos can take 5 × longer to expand the topology.

2 Background

Data center topology families. Data centers are often de-

signed for high throughput, low latency and resilience. Exist-

ing data center designs can be broadly classified into the fol-

lowing families: (a) Clos-like tree topologies, e.g., Google’s

Jupiter [31], Facebook’s fbfabric [3], Microsoft’s VL2 [13],

F10 [22]; (b) Expander graph based topologies, e.g., Jelly-

fish [32], Xpander [35]; (c) ‘Direct’ topologies built from

multi-port servers, e.g., BCube [14], DCell [15]. (d) Low

diameter, strongly-connected topologies that rely on high-

radix switches, e.g., Slimfly [4], Dragonfly [20]; (e) Re-

configurable optical topologies like Rotornet and Project-

ToR [24, 9, 11, 16, 39].

Of these, Clos and Expander based topologies have been

shown to scale using widely deployed merchant silicon. The

ecosystem around the hardware used by these two classes,

e.g., cabling, cable trays used, rack sizes, is mature and well-

understood, allowing us to quantify some of the operational

complexity of these topologies.

Direct multi-port server topologies and some reconfig-

urable optical topologies [24, 11, 16, 39] rely on newer hard-

ware technologies that are not mainstream yet. It is hard to

quantify the operational costs of these classes without making

significant assumptions about such hardware. Low diameter

topologies like Slimfly [4] and Dragonfly [20], can be built

with hardware that is available today, but they require strongly

connected groups of switches. Their incremental expansion

comes at high cost and complexity; high-radix switches either

need to be deployed well in advance, or every switch in the

topology needs to be upgraded during expansion, to preserve

low diameter.

To avoid estimating operational complexity of topologies

that rely on new hardware, or on topologies that unacceptably

constrain expansion, we focus on the Clos and Expander

families.

Clos. A logical Clos topology with N servers can be

constructed using switches with radix k connected in n =
log k

2

(N
2

) layers based on a canonical recursive algorithm

in [36]2. Fattree [2] and Jupiter [31] are special cases of Clos

topology with 3 and 5 layers respectively. Clos construction

naturally allows switches to be packaged together to form a

chassis [31]. Since there are no known generic Clos pack-

aging algorithm that can help design such a chassis, for a

Clos of any scale, we designed one to help our study of its

operational complexity. We present this algorithm in §A.1.

Expander graphs. Jellyfish and Xpander benefit from the

high edge expansion property of expander graph to use a near

optimal number of switches, while achieving the same bisec-

tion bandwidth as Clos based topologies [35]. Xpander splits

N servers among switches by attaching s servers to each

switch. With a k port switch, the remaining ports p = k − s
are connected to other switches that are organized in p blocks

called metanodes. Metanodes are a group of switches, con-

taining l = N/(s · (p+1)) switches, which increase as topol-

ogy scale N increases. There are no connections between the

switches of a metanode. Jellyfish is a degree bounded random

graph (see [32] for more details).

Takeaway. A topology with high edge expansion [35] can

achieve a target capacity with fewer switches, leading to lower

overall cost.

3 Deployment Complexity

Deployment is the process of realizing a physical topology

in a data center space (e.g., a building), from a given logical

topology. Deployment complexity can be reduced by careful

packaging, placement and bundling strategies [31, 20, 1].

3.1 Packaging, Placement, and Bundling

Packaging of a topology involves careful arrangement of

switches into racks, while placement involves arranging these

racks into rows on the data center floor. The spatial arrange-

ment of the topology determines the type of cables needed

between switches. For instance, if two connected switches

are within the same rack, they can use short-range cheaper

copper cables, while connections between racks require more

expensive optical cables. Optical cable costs are determined

by two factors: the cost of transceivers and the length of ca-

bles (§3.2). Placement of switches on the datacenter floor

can also determine costs: connecting two switches placed at

two ends of the data center building might require long range

cables and high-end transceivers.

Chassis, racks, and blocks. Packaging connected switches

into a single chassis using a backplane completely removes

the need for physical connecting cables. At scale, the cost and

complexity savings from using a chassis-backplane can be

significant. One or more chassis that are interconnected can

be packed into racks such that: (a) racks are as homogeneous

as possible, i.e., a topology makes use of only a few types of

racks to simplify manufacturing and (b) racks are packed as

2This equation for n can be used to build a Clos with 1:1 oversubscription.

For a Clos with an over-subscription x:y we would need n = log k

2

(
y·N/x

2
)

layers.
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Topology 4-layer Clos (Medium) Jellyfish

#servers 131,072 131,072

#switches 28,672 16,384

#bundle types 74 1577

#patch panels 5546 7988

Table 1: Deployment Complexity Comparison

are inputs to the topology design). The number of cables and

transceivers can be derived from the number of patch panels.

In some cases, a metric is related to another metric, but

not completely subsumed by it. For example, the number

of switches determines rack packaging, which only partially

determines the number of transceivers per switch. The other

determinant of this quantity is the connectivity in the logical

topology (which switch is connected to which other switch).

Similarly, the number of patch panels can influence the num-

ber of bundle types, but these are also determined by logical

connectivity.

3.3 Comparing Topology Classes

To understand how the two main classes of topologies com-

pare by these metrics, we apply these to a Clos topology and

to a Jellyfish topology that support the same number of servers

(131,072) and the same bisection bandwidth. This topology

corresponds to twice the size of Jupiter. In §6, we perform a

more thorough comparison at larger and smaller scales, and

we describe the methodology by which these numbers were

generated.

Table 1 shows that the two topology classes are qualita-

tively different by these metrics. Consistent with the finding

in [32], Jellyfish only needs a little over half the switches

compared to Clos to achieve comparable capacity due to its

high edge expansion property. But, by other measures, Clos

performs better. It exposes far fewer ports outside the rack

(a little over half that of Jellyfish); we say Clos has better

port-hiding. A pod in this Clos contains 16 aggregation and

16 edge switches4. The aggregation switches can be can be

packed into a single rack, so bundles from edge switches

to aggregation switches do not need to be rebundled though

patch panels, and we only need two layers of patch panels

between aggregation and spine layer. However, in Jellyfish,

almost all links are inter-rack links, so it requires more patch

panels.

Moreover, for Clos, since each pod has the same number

of links to each spine, all bundles in Clos have the same ca-

pacity (number of fibers). However, the length of bundles

can be different, depending on the relative placement of the

patch panels between aggregation and spine layers, so Clos

has 74 bundle types. However, since Jellyfish is a purely ran-

dom graph without structure, to enable bundling, we group a

fixed amount of neighbor racks as blocks to enable bundling.

Since connectivity is random, the number of links between

blocks are not uniform, Jellyfish needs almost 20× the num-

ber of bundle types. In §6, we show that Xpander also has

4we follow the definition of pod in [2].

qualitatively similar behavior in large scale.

Takeaway. Relative to a structured hierarchical class of

topologies like Clos, the expander graph topology has inher-

ently higher deployment complexity in terms of the number

of bundle types and cannot support port-hiding well.

4 Topology Expansion

The second important component of topology lifecycle man-

agement is expansion. Datacenters are rarely deployed to

maximal capacity in one shot; rather, they are gradually ex-

panded as network capacity demands increase.

4.1 The Practice of Expansion

In-place Expansion. At a high-level, expanding a topology

involves two conceptual phases: (a) procuring new switches,

servers, and cables and laying them on the datacenter floor,

and (b) re-wiring (or adding) links between switches in the ex-

isting topology and the new switches. Phase (b), the re-wiring

phase, can potentially disrupt traffic; as links are re-wired, net-

work capacity can drop, leading to traffic loss. To avoid traffic

loss, providers can either take the existing topology offline

(migrate services away, for example, to another datacenter),

or can carefully schedule link re-wiring while carrying live

traffic, but schedule the re-wiring to maintain a desired tar-

get capacity. The first choice can impact service availability

significantly.

So, today, datacenters are expanded while carrying live

traffic [30, 12, 31, 38]. To do this, expansion is carried out

in steps, where at each step, the capacity of the topology is

guaranteed to be at least a percentage p of the capacity of

the existing topology. This fraction is sometimes called the

expansion SLO. Today, many providers operate at expansion

SLOs of 75% [38]; higher SLOs of 85-90% can impact avail-

ability budgets less while allowing providers to carry more

traffic during expansion.

The unit of expansion. Since expansion involves procure-

ment, topologies are usually expanded in discrete units called

blocks to simplify the procurement and layout logistics. In a

structured topology, there are natural candidates for blocks.

For example, in a Clos, a pod can be block, while in an

Xpander, the metanode can be a block. During expansion,

a block is first fully assembled and placed, and links be-

tween switches within a block are connected (as an aside, an

Xpander metanode has no such links). During the re-wiring

phase, only links between existing blocks and new blocks are

re-wired. (This phase does not re-wire links between switches

within an existing block). Aside from simplifying logistics,

expanding at the granularity of a block preserves structure in

structured topologies.

4.2 An Expansion Step

What happens during a step. Figure 2 shows an example

of Clos expansion. The upper left figure shows a partially-

deployed logical Clos, in which each spine and aggregation
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Topology 4-layer Clos (Medium) Jellyfish

Average # links rewired

per patch panel rack 832 470

Expansion steps 6 3

North-to-south capacity ratio 1 3

Table 2: Expansion Comparison (SLO = 90%)

SLO is 90%. (§6 has more extensive comparisons for these

metrics, and also describes the methodology more carefully).

In this setting, the number of links rewired per patch panel

can be a factor of two less than Clos. Moreover, Jellyfish

requires 3 steps, while Clos twice the number of steps.

To understand why Jellyfish requires fewer steps, we define

a metric called the north-to-south capacity ratio for a block.

This is the ratio of the aggregate capacity of all “northbound”

links exiting a block to the aggregate capacity of all “south-

bound” links to/from the servers within the block. Figure 4

illustrates this ratio: a thin edge (left), has an equal number

of southbound and northbound links while a fat edge (right),

has more northbound links than southbound links. A Clos

topology has a thin edge, i.e., this ratio is 1, since the block is

a pod. Now, consider an expansion SLO of 75%. This means

that the southbound aggregate capacity must be at least 75%.

That implies that, for Clos, at most 25% of the links can be re-

wired in a single step. However, Jellyfish has a much higher

ratio of 3, i.e., it has a fat edge. This means that many more

links can be rewired in a single step in Jellyfish than in Clos.

This property of Jellyfish is required for reducing the number

of expansion steps.

Takeaway. Clos topologies re-wire more links in each patch

panel during an expansion step and require many steps be-

cause they have a low north-south capacity ratio.

5 Towards Lower Lifecycle Complexity

Our discussions in §3 and §4, together with preliminary re-

sults presented in those sections (§6 has more extensive re-

sults) suggest the following qualitative comparison between

Clos and the expander graph families with respect to lifecycle

management costs (Table 3):

• Clos uses fewer bundle types and patch panels.

• Jellyfish has significantly lower switch counts, uses fewer

expansion steps, and touches fewer links per patch panel

during an expansion step.

In all of these comparisons, we compare topologies with the

same number of servers and the same bisection bandwidth.

The question we ask in this paper is: Is there a family of

topologies which are comparable to, or dominate, both Clos

and expander graphs by all our lifecycle management met-

rics? In this section, we present the design of the FatClique

class of topologies and validate in §6 that FatClique answers

this question affirmatively.

5.1 FatClique Construction

FatClique (Figure 5) combines the hierarchical structure in

Clos with the edge expansion in expander graphs to achieve

lower lifecycle management complexity. FatClique has three

4-layer Clos (Medium) Jellyfish

switches X

bundle types X

patch panels X

re-wired links per patch panel X

expansion steps X

Table 3: Qualitative comparison of lifecycle management com-

plexity

Auxiliary Variable Description

ps = Sc − 1 # ports per switch to

connect other switches inside a sub-block

pb = k − s − ps − pc # ports per switch to connect other blocks

Rc = Sc · (pc + pb) radix of a sub-block

Rb = Sb · Sc · pb radix of a block

Nb = N/(Sb · Sc · s) #blocks

Lcc = Sc · pc/(Sb − 1) #links between two sub-blocks inside a block

Lbb = Rb/(Nb − 1) #links between two blocks

Table 4: FatClique Variables

levels of hierarchy: individual sub-block (top left), intercon-

nected into a block (top right), which are in turn intercon-

nected to form FatClique (bottom). The interconnection used

at every level in the hierarchy is a clique, similar to Dragon-

fly [20]. Additionally, each level in the hierarchy is designed

to have a fat edge (a north-south capacity ratio greater than

1). The cliques enable high edge expansion, while hierarchy

enables lower wiring complexity than random-graph based

expanders [32, 35].

FatClique is a class of topologies. To obtain an instance of

this class, a topology designer specifies two input parameters:

N , the number of servers, and k the chip radix. A synthesis

algorithm takes these as inputs, and attempts to instantiate

four design variables that completely determine the FatClique

instance Table 4. These four design variables are:

• s, the number of ports in a switch that connect to servers

• pc, the number of ports in each switch that connect to other

sub-blocks inside a block

• Sc, the number of switches in a sub-block

• Sb, the number of sub-blocks in a block

The synthesis algorithm searches for the best combination

of values for design variables, guided by six constraints, C1

through C6, described below. The algorithm also defines

auxiliary variables for convenience; these can be derived

from the design variables (Table 4). We define these variables

in the narrative below.

Sub-block connectivity. In FatClique, the sub-block forms

the lowest level of the hierarchy, and contains switches and

servers. All sub-blocks have the same structure. Servers

are distributed uniformly among all switches of the topology,

such that each sub-block has the same number of servers at-

tached. However, because this number of servers may not be

an exact multiple of the number of switches, we distribute

the remainder across the switches, so that some switches may

be connected to one more server than others. The alternative

would have been to truncate or round up the number of servers

per sub-block to be divisible by the number of switches in
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quires fewer patch panels. By ensuring fat edges at each level

of the hierarchy, it enables fewer re-wired links per patch

panel, and fewer expansion steps. We quantify these in §6.

Scalability. Since Xpander and Jellyfish do not incorporate

hierarchy, they can be scaled to arbitrarily large sizes. How-

ever, because Clos and FatClique are hierarchical, they can

only scale to a fixed size for a given chip radix. Table 5 shows

the maximum scale of each topology as a function of switch

radix k. FatClique scales to the same order of magnitude as a

5-layer Clos. As shown in §6, both of them can scale to 64

times bisection bandwidth of Jupiter.

FatClique and Dragonfly. FatClique is inspired by

Dragonfly [20] and they are both hierarchical topologies

that use cliques as building blocks, but differ in several

respects. First, for a given switch radix, FatClique can scale

to larger topologies than Dragonfly because it incorporates

one additional layer of hierarchy. Second, the Dragonfly

class of topologies is defined by many more degrees of

freedom than FatClique, so instantiating an instance of

Dragonfly can require an expensive search [33]. In contrast,

FatClique’s constraints enable more efficient search for

candidate topologies. Finally, since Dragonfly does not

explicitly incorporate constraints for expansion, a given

instance of Dragonfly may not end up with fat edges.

Routing and Load Balancing on FatClique. Unlike for

Clos, ECMP-based forwarding cannot be used achieve high

utilization in more recently proposed topologies [20, 35, 32,

19]. FatClique belongs to this latter class, for which a combi-

nation of ECMP and Valiant Load Balancing [37] has been

shown to achieve performance comparable to Clos [19].

6 Evaluating Lifecycle Complexity

In this section, we compare three classes of topologies, Clos,

expander graphs and FatClique by our complexity metrics.

6.1 Methodology

Topology scales. Because the lifecycle complexity of topol-

ogy classes can be a function of topology scale, we evaluate

complexity across three different topology sizes based on the

number of servers they support: small, medium, and large.

Small topologies support as many servers as a 3-layer clos

topology. Medium topologies support as many servers as

4-layer Clos. Large topologies support as many servers as

5-layer Clos topologies6. All our experiments in this section

are based on comparing topologies at the same scale.

At each scale, we generate one topology for each of Clos,

Xpander, Jellyfish, and FatClique. The characteristics of

these topologies are listed in Table 6. All these topologies use

32-port switching chips, the most common switch radix avail-

able today for all port capacities [5]. To compare topologies

6To achieve low wiring complexity, a full 5-layer Clos topology would

require patch panel racks with four times as many ports as available today, so

we restrict ourselves to the largest Clos that can be constructed with today’s

patch panel capacities

fairly, we need to equalize them first. Specifically, at a given

scale, each topology has approximately the same bisection

bandwidth, computed (following prior work [32, 35]) using

METIS [18]. All topologies at the same scale support roughly

the same number of servers; small, medium and large scale

topologies achieve, respectively, 1

4
, 4, and 16 times capacity

of Jupiter. (In A.8, we also compare these topologies using

two other metrics).

Table 6 also shows the scale of individual building blocks of

these topologies in terms of number of switches. For Clos, we

use the algorithm in §A.1 to design building blocks (chassis)

and then use them to compose Clos. One interesting aspect

of this table is that, at the 3 scales we consider, a FatClique’s

sub-block and block designs are identical, suggesting lower

manufacturing and assembly complexity. We plan to explore

this dimension in future work.

For each topology we compute the metrics listed in Table 3:

the number of switches, the number of bundle types, the

number of patch panels, the average number of re-wired links

at a patch panel during each expansion step, and the number

of expansion steps. To compute these, we need component

parameters, and placement and expansion algorithms for each

topology class.

Component Parameters. In keeping with [4, 40], we use

optical links for all inter-rack links. We use 96 port 1RU

patch panels [10] in our analysis. A 58RU [28] rack with

patch panels can aggregate 2 ∗ 96 ∗ 58 = 11,136 fibers. We

call this rack a patch-panel rack. Most datacenter settings,

such as rack dimensions, aisle dimensions, cable routing and

distance between cable trays follow practices in [26]. We list

all parameters used in our paper in §A.7.

Placement Algorithms. For Clos, following Facebook’s fb-

fabric [3], spine blocks are placed at the center of the data-

center, which might take multiple rows of racks, and pods are

placed at two sides of spine blocks. Each pod is organized

into a rectangular area with aggregation blocks placed in the

middle to reduce the cable length from ToR to aggregation.

FatClique’s placement algorithm is discussed in §5.2. For

Xpander, we use the placement algorithm proposed in [19].

We follow the practice that all switches in a metanode are

placed closed to each other. However, instead of placing a

metanode into a row of racks, we place a metanode into a

rectangular area of racks, which reduces cable lengths when

metanodes are large. For Jellyfish, we design a random search

algorithm to aggressively reduce the cable length (§A.2).

Expansion Algorithms. For Clos, as shown in [38], it is

fairly complex to compute the optimal number of rewired

links for asymmetric Clos during expansion. However, when

the original and target topologies are both symmetric, this

number is easy to compute. For this case, we design an opti-

mal algorithm (§A.5) which rewires the maximum number of

links at each step and therefore uses the smallest number of

steps to finish expansion. For FatClique, we use the algorithm

discussed in §5.3. For Xpander and Jellyfish, we design an
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number of links to be rewired at each step per patch panel can

be 30-50% higher.

7 Related Work

Topology Design. Previous topology designs have focused

on cost effective, high capacity and low diameter datacenter

topologies like [6, 35, 32, 4, 20]. Although they achieve good

performance and cost properties, the lifecycle management

complexity of these topologies have not been investigated

either in the original papers or in subsequent work that has

compared topologies [26, 27]. In contrast to these, we explore

topology designs that have low lifecycle complexity. Recent

work has explored datacenter topologies based on free space

optics [24, 11, 9, 16, 39] but because we lack operational

experience with them at scale, it is harder to design and

evaluate lifecycle complexity metrics for them.

Topology Expansion. Prior work has discussed several as-

pects of topology expansion [30, 32, 35, 8, 38]. Condor [30]

permits synthesis of Clos-based datacenter topologies with

declarative constraints some of which can be used to spec-

ify expansion properties. A more recent paper [38] attempts

to develop a target topology for expansion, given an exist-

ing Clos topology, that would require the least number of

link rewiring. REWIRE [8] finds target expansion topologies

with highest capacity and smallest latency without preserving

topological structure. Jellyfish [32] and Xpander [35] study

expansion properties of their topology, but do not consider

practical details in re-wiring. Unlike these, our work is ex-

amines lifecycle management as a whole, across different

topology classes, and develops new performance-equivalent

topologies with better lifecycle management properties.

8 Conclusions and Future Work

In this paper, we have attempted to characterize the com-

plexity of lifecycle management of datacenter topologies, an

unexplored but critically important area of research. Lifecycle

management consists of network deployment and expansion,

and we devise metrics that capture the complexity of each.

We use these to compare topology classes explored in the

research literature: Clos and expander graphs. We find that

each class has low complexity by some metrics, but high by

others. However, our evaluation suggests topological fea-

tures important for low lifecycle complexity: hierarchy, edge

expansion and fat edges. We design a family of topologies

called FatClique that incorporates these features, and this

class has low complexity by all our metrics at large scale.

As the management complexity of networks increases, the

importance of designing for manageability will increase in the

coming years. Our paper is only a first step in this direction;

several future directions remain.

Topology oversubscription. In our comparisons, we have

only considered topologies with an over-subscription ratio of

1:1. Jupiter [31] permits over-subscription at the edge of the

network, but there is anecdotal evidence that providers also

over-subscribe at higher levels in Clos topologies. To explore

the manageability of over-subscribed topologies it will be

necessary to design over-subscription techniques in FatClique,

Xpander and Jellyfish in a way in which all topologies can be

compared on a equal footing.

Topology heterogeneity. In practice, topologies have a long

lifetime over which they accrue heterogeneity: new blocks

with higher radix switches, patch panels with different port

counts etc. These complicate lifecycle management. To eval-

uate these, we need to develop data-driven models for how

heterogeneity accrues in topologies over time and adapt our

metrics for lifecycle complexity to accommodate heterogene-

ity.

Other management problems. Our paper focuses on topol-

ogy lifecycle management, and explicitly does not consider

other network management problems like fault isolation or

control plane complexity. Designs for manageability must

take these into account.
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A Appendix

A.1 Clos Generation Algorithm

For Clos topologies, the canonical recursive algorithm in [36]

can only generate non-modular topologies as shown in Fig-

ure 13. In practice, as shown in Jupiter [31], the topology is

composed of heterogenous building blocks (chassis), which

are packed into a single rack and therefore enforce port hiding

(the idea that as few ports from a rack are exposed outside

the rack). Although Jupiter is modular and supports port

hiding, it is single instance of a Clos-like topology with a

specific set of parameters. We seek an algorithm that can take

any valid set of Clos parameters and produce chassis-based

topologies automatically. Besides, it would be desirable for

this algorithm to generate all possible feasible topologies sat-

isfying the parameters, so we can select the one that is most

compactly packed.

Our logical Clos generation algorithm achieves these goals.

Specifically, the algorithm uses the following steps:

1. Compute the total number of layers of homogeneous

switching chips needed. Namely, given N servers and

radix k switches, we use n = log k
2

(N
2

) to compute the

number of layers of chips n needed.

2. Determine the total number of layers of chips for edge,

aggregation and core layers, which are represented by e,

a and s respectively, such that e+a+s = n.

3. Identify blocks for edge, aggregation and core layer.

Clos networks rely on every edge being able to reach

every spine through exactly one path, by fanning out via

as many different aggregation blocks as possible (and

vice versa). We find that the resulting interconnection

is a derivative of the classical perfect shuffle Omega

network ([21], e.g., aggregation blocks in Figure 14 and

Figure 15). Therefore, we use Omega networks to build

both the edge and aggregation blocks, and to define the

connections between edge-aggregation and aggregation-

spines. The spine block on the other hand needs to be

rearrangeably-nonblocking, so it can relay flows from

any edge to any other edge with full capacity. Therefore

it is built as a smaller Clos topology [6] (e.g., spine

blocks in Figure 14).

4. Compose the whole network using edge, aggregation

and core blocks. The process to compose the whole

topology is to link all these blocks and uses the same

procedure as Jupiter[31].

We have verified that topologies generated by our construc-

tion algorithm, such as the ones in Figure 14 and Figure 15,

are isomorphic to a topology generated using the canonical

algorithm in Figure 13. By changing different combinations

of e, a and s, we can obtain multiple candidate topologies, as

shown in Figure 14 and Figure 15.

A.2 Jellyfish Placement Algorithm

For Jellyfish, we use a heuristic random search algorithm to

place switches and servers. The algorithm works as follows.

At each stage of the algorithm, a node can be in one of two

states: placed, or un-placed. A placed node is one which

has been positioned in a rack. Each step of the algorithm

randomly selects an un-placed node. If the selected node

has logical neighbor nodes that have already been placed,

we place this node at the centroid of the area formed by its

placed logical neighbors. If no placed neighbor exists, the

algorithm randomly selects a rack to place the node. We have

also tried other heuristics like neighbor-first, which tries to

place a switch’s logical neighbors as close as possible around

it. However, this performs worse than our algorithm.

A.3 Scale-invariance of Expansion

Scale-invariance of Expandability for Symmetric Clos.

For a symmetric Clos network, the number of expansion steps

is scale-invariant and independent of the degree to which the

original topology is partially deployed. Consider a simplified

Clos where the original topology has g aggregation blocks.

Each aggregation block has p ports for spine-aggregation

links, each of which has the unit capacity. Assume the worst-

case traffic in which all sources are located in the left half of

aggregation blocks and all destinations are in the right half.

This network contains g ·p/2 crossing links between left and

right halves. If, during expansion, the network is expected to

support a demand of d units capacity per aggregation block,

the total demand traversing the cut between the left and right

halves in one direction is d · g/2. Then, the maximum num-

ber of links that can be redistributed in an expansion step

is k = g · p/2 − d · g/2 = g(p − d)/2, which is linear in the

number of aggregation blocks (network size). This linearity

between k and g implies scale-invariant expandability, e.g.,

when an aggregation block is doubled to 2g, the maximum

number of redistributed links per expansion step becomes 2k.

Scale-invariance of Expandability for Jellyfish, Xpander,

and FatClique. A random graph consists of s nodes, which is

a first-order approximation for Jellyfish’s switch, Xpander’s

metanode and FatClique’s block. Each node has p inter-

node ports, so there are s · p/2 inter-node links. We can

treat the network as a bipartite graph. We assume the worst-

case traffic matrix, where all traffic is sent through one part

of the bipartite graph to the other. Suppose an expansion

SLO requires each source-destination node pair to support

d unit demand. Then the total demands from all sources are

d · s/2. The probability of a link being a cross link is 1/2,

and the expected number of cross links is s ·p/4. These cross

links are expected to be the bottleneck between the source-

destinations pairs. Therefore, in the first expansion step, we

can redistribute at most k = s ·p/4−d ·s/2 = s(p/4−d/2)
links, and the maximum number of redistributed links is linear

in the number of nodes (network size), e.g., if the number of
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input : T o, T n, SLO

output: Subplan

1 Index original and new spines from left to right starting from 1

respectively

2 Index links at each pod from left to right starting from 1

3 ∀ pod p, np = num_links_per_pod · (1-SLO)

// Insight 1

4 foreach Original Spine s do

5 foreach pod p do // Insight 2

6 δsp = T o
sp − T n

sp, np = min(np, δsp)
// Insight 2

7 while np > 0 do

8 foreach New Spine s′ do // Insight 3

9 δs′p = T n
s′p − T o

s′p

10 if δs′p > 0 then break

11

12 end

13 na = min(δs′p,np)
14 Find the first na to-be-distributed links, Lsp

15 np = np − na, update(T o)

16 Subplan.add(Lsp)

17 end

18 end

19 end

Algorithm 2: Single Step Clos Expansion Plan Genera-

tion

we add this topology into candidate set (Line 15). If the

capacity is larger than required, the algorithm will increase

s by 1 which will decrease the number of switches used n =
N/s (N is fixed) and therefore reduce the network capacity

in next search step (Line 13). If the capacity is smaller than

required, the algorithm will decrease s by 1 (Line 11) to

increase the number of switches and capacity in next search

step.

A.7 Parameter Setting

The cable price with transceivers used in our evaluation is

listed in Table 9. We found that a simple linear model does

not fit the data. The data is better approximated by a piece-

wise linear function: cables shorter than 100 meters are fit

using one linear model and cables beyond 100 meters are

fit using another linear model. The latter has a larger slope

because beyond 100 meters, more advanced and expensive

transceivers are necessary. In our experiment, since we only

know the discrete price for cables and associated transceivers,

we do the following: if the length of the cable is X, we use

the exact price; if the length if larger than X, we use the first

cable price larger than X.

input : N ,r,Cap∗,s0

output: candidate
1 candidate = []
2 for i = 1; i < MaxRackPerSubblock; i++ do

3 s = s0

4 Sc = i ·RackCapacity/(1+s)
5 for Sb = 1;Sb <= MaxBlockSize;Sb ++ do

6 Pc = CheckConstraints(Sc, Sb)

7 foreach pc in Pc do

8 T = ConstructTopology(Sc, Sb, s, pc)

9 Cap = ComputeCapacity(T )

10 if Cap < Cap∗ then

11 s = s−1
12 else if Cap > Cap∗ then

13 s = s+1
14 else

15 candidate.append(T )

16 end

17 end

18 end

19 end

Algorithm 3: FatClique Topology Synthesis Algorithm

Rack width 24 inches

Rack depth 28.875 inches

Rack height 108 inches

Tray-to-rack distance 24 inches

Dist. Betw. cross-trays 48 inches

Aisle Width 48 inches

Rack units per rack 58 RU [29]

#Ports per patch panel 48 [10]

Patch panel space 1 RU

Cable tray size 24 inches x 4 inches [34]

Table 8: Datacenter settings mostly [26]

Length 3 5 10 15 20 30

Price 303 310 318 334 350 399

Length 50 100 200 300 400

Price 489 753 1429 2095 2700

Table 9: 40G QSFP Mellanox cable length in meter (Length) and

price with transceivers (Price) [7]

A.8 Other Metrics

In our evaluations, we have tried to topologies with qualita-

tively similar properties 6. In this section, we quantify other

properties of these topologies.

Edge Expansion and Spectral Gap. Since computing edge

expansion is computationally hard, we follow the method

in [35] using spectral gap [17] to approximate edge expan-

sion. A larger spectral gap implies larger edge expansion. To

fairly compare topologies, we equalize their bisection band-

width first. As shown before, to achieve the same bisection
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