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Abstract. We show that braidings on a fusion category C correspond to certain fusion
subcategories of the center of C transversal to the canonical Lagrangian algebra. This
allows to classify braidings on non-degenerate braided fusion categories and on those dual
to the categories of group-graded vector spaces.

1. Introduction

Throughout this article we work over an algebraically closed field k of characteristic 0.

In general, a fusion category C may have several different braidings or no braidings at all.

For example, if C = VecG, the category of finite-dimensional k-vectors spaces graded by a

finite abelian group G, then braidings on C are parameterized by bilinear forms on G. If G

is non-Abelian then of course VecG does not admit any braidings.

The goal of this note is to give a convenient parameterization of braidings on an arbitrary

fusion category C. We introduce the notion of transversality between algebras and subcate-

gories of a braided fusion category. Then we show that the set of braidings on C is in bijection

with the set of fusion subcategories B of the center Z(C) such that FPdim(B) = FPdim(C)

and B is transversal to the canonical Lagrangian algebra of Z(C). In several interesting

situations it is possible to give an explicit parameterization of such subcategories. We do

this in two cases: (1) for fusion categories C admitting a non-degenerate braiding and (2)

for group-theoretical categories. In the latter case the parameterization is given in terms of

the subgroup lattice of a group and can be conveniently used in concrete computations.

The paper is organized as follows. Section 2 contains some background information and a

categorical analogue of Goursat’s lemma (Theorem 2.2) for subcategories of tensor products

of fusion categories. In Section 3 we introduce transversal pairs of algebras and subcategories

and characterize braidings in these terms. In Section 4 we classify braidings on a fusion

category B that already admits a non-degenerate braiding (Theorem 4.1) and consider several

examples. We show that with respect to any other braiding the symmetric center of B remains

pointed. In Section 5 we classify braidings on group-theoretical fusion categories (dual to

the category VecG). As an application we parameterize braidings on the Drinfeld center of

VecG.
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2. Preliminaries

2.1. Fusion categories. We refer the reader to [EGNO] for a general theory of tensor

categories and to [DGNO] for braided fusion categories.

A fusion category over k is a k-linear semisimple rigid tensor category with finitely many

isomorphism classes of simple objects, finite-dimensional Hom-spaces, and a simple unit

object 1. By a fusion subcategory of a fusion category C we always mean a full tensor sub-

category. An example of subcategory is the maximal pointed subcategory Cpt ⊂ C generated

by invertible objects of C. We say that C is pointed if C = Cpt.

We denote Vec the fusion category of finite-dimensional k-vector spaces.

For a fusion category C let O(C) denote the set of isomorphism classes of simple objects.

Let G be a finite group. A grading of C by G is a map deg : O(C) → G with the

following property: for any simple objects X, Y, Z ∈ C such that X ⊗ Y contains Z one has

deg Z = deg X · deg Y . We will identify a grading with the corresponding decomposition

(1) C =
⊕

g∈G

Cg,

where Cg is the full additive subcategory of C generated by simple objects of degree g ∈ G.

The subcategory C1 is called the trivial component of the grading. The grading is called

faithful if deg : O(C) → G is surjective.

For any fusion category C there is a universal grading O(C) → U(C) [GN], where U(C) is

the universal grading group of C. Any grading of C comes from a quotient of U(C). The trivial

component of the universal grading is the adjoint fusion subcategory Cad ⊂ C generated by

objects X ⊗X∗, X ∈ O(C).

2.2. Fiber products of fusion categories. Let C, D be fusion categories graded by the

same group G. The fiber product of C and D is the fusion category

(2) C ⊠G D :=
⊕

g∈G

Cg ⊠Dg.

Here ⊠ denotes Deligne’s tensor product of abelian categories. Clearly, C ⊠G D is a fusion

subcategory of C ⊠D graded by G. The trivial component of this grading is C1 ⊠D1. When

the gradings of C and D are faithful one has

(3) FPdim(C ⊠G D) =
FPdim(C)FPdim(D)

|G|
.
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2.3. Goursat’s Lemma for subcategories of the tensor product. Let C, D be fusion

categories.

Definition 2.1. A subcategory datum for C ⊠ D consists of a pair E ⊂ C and F ⊂ D of

fusion subcategories, a group G, and fixed faithful gradings of E and F by G.

We will identify subcategory data (E , F , G) and (E , F , G′) if there is an isomorphism

α : G
∼
−→ G′ such that Eg = Eα(g) and Fg = Fα(g). When no confusion is likely we will denote

a subcategory datum simply by (E , F , G) omitting the grading maps.

Given a subcategory datum (E , F , G) we can form a fusion subcategory

(4) S(E , F , G) := E ⊠G F ⊂ C ⊠D.

It turns out that S(E , F , G) is a typical example of a fusion subcategory of E ⊠ F . The

following theorem is a categorical analogue of the well known Goursat’s Lemma in group

theory.

Theorem 2.2. Let C, D be fusion categories. The assignment

(5) (E , F , G) 7→ S(E , F , G)

is a bijection between the set of subcategory data for C⊠D and the set of fusion subcategories

of C ⊠D.

Proof. We need to show that every fusion subcategory S ⊂ C⊠D is equal to some S(E , F , G)

for a unique choice of (E , F , G).

Let E ⊂ C be a fusion subcategory generated by all X ∈ O(C) such that X ⊠ Y ∈ S

for some non-zero Y ∈ D. Similarly, let F ⊂ D be a fusion subcategory generated by all

Y ∈ O(D) such that X ⊠ Y ∈ S for some non-zero X ∈ C.

Let

(6) Ẽ := S ∩ (C ⊠ Vec) ⊂ E and F̃ := S ∩ (Vec⊠D) ⊂ F .

If X ∈ O(C) and Y ∈ O(D) are such that X⊠Y ∈ S then (X∗⊗X)⊠1 and 1⊠ (Y ∗⊗Y )

are objects of S. This means that Ead ⊂ Ẽ and Fad ⊂ F̃ . Let HE ⊂ U(E) and HF ⊂ U(F)

be the subgroups of the universal groups corresponding to Ẽ and F̃ . We claim that these

subgroups are normal. Indeed, let X ∈ O(Ẽ) and V ∈ O(E). Then X⊠1 ∈ S and V ⊠U ∈ S

for some U ∈ O(D). So (V ∗
⊠U∗)⊗ (X⊠1)⊗ (V ⊠U) = (V ∗⊗X⊗V )⊠ (U∗⊗U) ∈ S and

V ∗ ⊗X ⊗ V ∈ Ẽ . This implies gxg−1 ∈ HE for all x ∈ HE and g ∈ U(E). Thus, HE ⊂ U(E)

is normal. Similarly, HF ⊂ U(F) is normal.

Hence, subcategories E and F have faithful gradings degE : O(E) → U(E)/HE =: GE and

degF : O(F) → U(F)/HF =: GF with trivial components Ẽ and F̃ , respectively.
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LetX ∈ O(C) and Y1, Y2 ∈ O(D) be such that thatX⊠Y1, X⊠Y2 ∈ S. Then 1⊠(Y ∗
1 ⊗Y2)

is a subobject of (X ⊠ Y1)
∗ ⊗ (X ⊠ Y2) and so belongs to S. Therefore, Y ∗

1 ⊗ Y2 ∈ F̃ , so

degF(Y1) = degF(Y2). Similarly, if X1, X2 ∈ O(C) and Y ∈ O(D) are such that that

X1 ⊠ Y, X2 ⊠ Y ∈ S then degE(X1) = degE(X2).

Therefore, there is a well-defined isomorphism f : GE → GF such that f(degE(X)) =

degF(Y ) for all X ∈ O(C) and Y ∈ O(D) such that X ⊠ Y ∈ O(S). This means that S is a

fiber product of E and F .

It is clear that subcategories E , F and their gradings are invariants of S. �

Remark 2.3. Let (E1, F1, G1) and (E2, F2, G2) be subcategory data for C ⊠D. Then

(7) S(E1, F1, G1) ∩ S(E2, F2, G2) ∼= (E1 ∩ E2)⊠G1×G2
(F1 ∩ F2),

where the gradings of E1 ∩E2 and F1 ∩F2 by G1 ×G2 are such that the (g1, g2) components

are (E1)g1 ∩ (E2)g2 and (F1)g1 ∩ (F2)g2, respectively (note that these gradings are not faithful

in general).

2.4. Braided fusion categories and their gradings. Let B be a braided fusion category

with a braiding cX,Y : X ⊗ Y → Y ⊗ X . Two objects X, Y of B centralize each other if

cY,X ◦ cX,Y = idX⊗Y and projectively centralize each other if cY,X ◦ cX,Y = λidX⊗Y for some

scalar λ ∈ k. For a fusion subcategory D ⊂ B its centralizer is

D′ = {Y ∈ B | Y centralizes each X ∈ D}.

The symmetric center of B is Zsym(B) := B ∩ B′. We say that B is non-degenerate if

Zsym(B) = Vec.

For a non-degenerate B there is a canonical non-degenerate bimultiplicative pairing

(8) 〈 , 〉 : O(Bpt)× U(B) → k×

defined by cY,XcX,Y = 〈X, g〉 idX⊗Y for all X ∈ O(Bpt) and Y ∈ Bg, g ∈ U(B). See [DGNO,

3.3.4] for details.

Proposition 2.4. Let B be a non-degenerate braided fusion category and let D ⊂ B be a

fusion subcategory with a faithful grading

D =
⊕

g∈G

Dg,

where G is an Abelian group. The centralizer of the trivial component D1 of D admits a

faithful grading

D′
1 =

⊕

φ∈Ĝ

(D′
1)φ,



CLASSIFYING BRAIDINGS ON FUSION CATEGORIES 5

where Ĝ is the group of characters of G and

(D′
1)φ = {X ∈ B | cY,X ◦ cX,Y = φ(g)idX⊗Y , for all Y ∈ Dg, g ∈ G}.

The trivial component of this grading is D′.

Proof. It follows from [DGNO, 3.3] that a simple object X belongs to D′
1 if and only if

projectively centralizes every simple Y ∈ D, i.e., cY,X ◦ cX,Y = λY idX⊗Y for some λY ∈ k×.

Furthermore, if Y1, Y2 are simple objects lying in Dg then λY1
= λY2

. Let us denote the latter

scalar by φX(g). It follows from the braiding axioms that the assignment

O(D′
1) → Ĝ : X 7→ φX

is a grading of D′
1 by Ĝ.

The fact that the trivial component is D′ and the faithfulness of grading follow from the

non-degeneracy of B. �

2.5. Lagrangian algebras in the center. For any fusion category C let Z(C) denote its

Drinfeld center.

Let B be a braided fusion category. A Lagrangian algebra in B is a commutative separable

algebra A in B such that HomB(A, 1) ∼= k and FPdim(A)2 = FPdim(B).

Let I : C → Z(C) denote the adjoint of the forgetful functor F : Z(C) → C. Then I(1) is

a canonical Lagrangian algebra in Z(C).

It was explained in [DMNO] that any braided equivalence a : Z(C)
∼
−→ B gives rise to

a Lagrangian algebra A = a(I(1)) in B. Conversely, given a Lagrangian algebra A ∈ B

there is a braided tensor equivalence Z(BA)
∼
−→ B, where BA denotes the fusion category of

A-modules in B.

3. Subcategories transversal to a Lagrangian algebra

Definition 3.1. Let C be a fusion category, let B ⊂ C be a fusion subcategory, and let A be

an algebra in C. We will assume that HomC(A, 1) ∼= k, i.e., that A is a connected algebra.

We say that B is transversal to A if

(9) HomC(X, A) = HomC(X, 1)

for all X ∈ B.

In other words, B is transversal to A if and only if HomC(X, A) = 0 for all non-identity

X ∈ O(B).

Theorem 3.2. Let C be a fusion category and let A := I(1) be the canonical Lagrangian alge-

bra in Z(C). Braidings on C are in bijection with fusion subcategories B ⊂ Z(C) transversal

to A and such that FPdim(B) = FPdim(C).
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Proof. It is well known that braidings on a fusion category C are in bijection with sections of

the forgetful functor F : Z(C) → C, i.e., with embeddings ι : C → Z(C) such that F ◦ι = idC.

The latter correspond to fusion subcategories B ⊂ Z(C) such that the restriction F |B : B → C

is an equivalence. This is equivalent to FPdim(B) = FPdim(C) and F |B : B → C being

injective, i.e., fully faithful.

Note that F is identified with the functor of taking free A-modules:

Z(C) → Z(C)A ∼= C : Z 7→ A⊗ Z.

Observe that

HomC(F (Z), 1) ∼= HomZ(C)A(A⊗ Z, A) ∼= HomZ(C)(Z, A),

for all Z ∈ Z(C). The injectivity of F |B : B → C is equivalent to HomC(F (Z), 1) =

HomB(Z, 1) for all Z ∈ B and, hence, to A and B being transversal. �

4. Braidings on non-degenerate fusion categories

4.1. Classification of braidings. Let B be a fusion category with a non-degenerate braid-

ing c = {cX,Y }.

Any grading of a fusion category C by a group G determines a homomorphism

hC : O(Cpt) → G.

Theorem 4.1. The braidings on B are in bijection with subcategory data (E , F , G) such

that E ∨ F = B, E ∩ F is pointed, and hE + hF : O(F ∩ E) → G is an isomorphism. Here

E ∨ F denotes the fusion subcategory of B generated by E and F .

Proof. We will use the characterization of braidings from Theorem 3.2.

Since B is non-degenerate, we have Z(B) ∼= B⊠Brev, where Brev denotes B equipped with

the reverse braiding crevX,Y := c−1
Y,X. The forgetful functor F : Z(B) → B is identified with the

tensor multiplication B ⊠ Brev → B and the canonical Lagrangian algebra in Z(B) is

A = ⊕X∈O(B) X
∗
⊠X.

The notion of a subcategory datum for a tensor product of fusion categories was intro-

duced in Definition 2.1. Suppose that S(E , F , G) is transversal to A and is such that

FPdim(S(E , F , G)) = FPdim(B). Since the restriction of F on S(E , F , G) is injective we

must have

FPdim(F (S(E , F , G))) = FPdim(B).

On the other hand, FPdim(F (S(E , F , G))) ≤ FPdim(E ∨ F), so E ∨ F = B.

Using [DGNO, Lemma 3.38] we get

(10) FPdim(S(E , F , G)) =
FPdim(E)FPdim(F)

|G|
=

FPdim(E ∨ F)FPdim(E ∩ F)

|G|
.
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It follows from (10) that FPdim(E ∩F) = |G|. If X is a non-zero simple object in Eg ∩Fh

then X ⊗X∗ ∈ E1 ∩F1. It follows that X ⊗X∗ = 1 (since other possibilities contradict the

transversality of S(E , F , G) and A). Thus, X is invertible and E∩F is pointed. For any non-

identity g ∈ G we must have Eg ∩ Fg−1 = 0. This is equivalent to the injectivity of hE + hF .

Indeed, otherwise there is a nonzero X ∈ Eg such that X∗ ∈ Fg and X ⊠X∗ ∈ S(E , F , G),

contradicting the transversality assumption.

Since |O(E ∩ F)| = |G|, hE + hF is an isomorphism.

Conversely, suppose that a datum (E , F , G) satisfies conditions in the statement of the

theorem. By (10), FPdim(S(E , F , G)) = FPdim(B). We have Eg ∩ Fg−1 = 0 for all g ∈

G, g 6= e. Thus, S(E , F , G) contains no simple objects of the form X∗
⊠X for X 6= 1, i.e.,

S(E , F , G) is transversal to A. �

Remark 4.2. Under the conditions of Theorem 4.1, we have B ∼= E ⊠G F (as a fusion

category) and the corresponding braiding c̃ is given by

c̃X1⊠Y1,X2⊠Y2
= cX1,X2

⊠ c−1
Y2,Y1

for all X1 ⊠ Y1, X2 ⊠ Y2 in B.

Corollary 4.3. Let (E , F , G) be a subcategory datum for B ⊠ Brev. Then

(11) S(E , F , G)′ =
⊕

φ∈Ĝ

(E ′
1)φ ⊠ (F1)

′
φ−1 ,

where the Ĝ-gradings on E ′
1 and F ′

1 are defined as in Proposition 2.4.

Proof. For all objects V,W let us denote βV,W := cW,V ◦ cV,W .

Let X ⊠ Y be an object of B ⊠ B and let Xg ⊠ Yg be an object of S(E , F , G)g, g ∈ G.

Then

βX⊠Y,Xg⊠Yg
= βX,Xg

⊠ βY,Yg

and so X ⊠Y centralizes Xg ⊠ Yg if and only if βX,Xg
and βY,Yg

are mutually inverse scalars.

This means that X projectively centralizes E and centralizes E1 (respectively, Y projectively

centralizes F and centralizes F1). Thus,

S(E , F , G)′ = E ′
1 ⊠Ĝ F ′

1 =
⊕

φ∈Ĝ

(E ′
1)φ ⊠ (F1)

′
φ−1 ,

as required. �

Let B(F , E , G) denote the braided fusion category (with underlying fusion category B)

corresponding to the datum (E , F , G) from Theorem 4.1.

Corollary 4.4. We have B(E , F , G)rev ∼= B(E ′
1, F

′
1, Ĝ), where the fiber product of E ′

1 and

F ′
1 is as in (11).
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Corollary 4.5. The symmetric center of B(F , E , G) has a (not necessarily faithful) grading

Zsym(B(F , E , G)) =
⊕

(g,φ)∈G×Ĝ

Zsym(B(F , E , G))(g,φ),

where Zsym(B(F , E , G))(g,φ) ∼= (Eg∩(E1)
′
φ)⊠(Fg∩(F1)

′
φ−1). In particular, Zsym(B(F , E , G))

is pointed.

Proof. The formula for homogeneous components follows from Corollary 4.3. The trivial

component of the grading of Zsym(B(F , E , G)) is contained in E1⊠F1 and so it is equivalent

to Vec. Hence, Zsym(B(F , E , G)) is pointed. �

Remark 4.6. Corollary 4.5 means that if B has a non-degenerate braiding then other braid-

ings on B cannot be “too symmetric” as the symmetric center remains pointed. Conversely,

if B has a braiding such that Zsym(B) is not pointed, then no non-degenerate braidings on

B can exist. In particular, Rep(G) for a non-abelian G does not admit any non-degenerate

braidings (equivalently, there are no modular category structures on Rep(G)).

Proposition 4.7. Let B be a fusion category that admits a non-degenerate braiding. Then

all non-degenerate braidings on B correspond to data (E , F , G) such that

(12) B ∩
(
(Eg ∩ Fφ)⊠ (Fg ∩ Eφ−1)

)
=

{
Vec if g = 1, φ = 1

0 otherwise,

where we use identification B = E ⊠G F ⊂ E ⊠ F .

Proof. Follows Corollary 4.5. �

4.2. Braidings on unpointed categories. Let B be a fusion category with non-degenerate

braiding. Suppose that Bpt = Vec, i.e., B is unpoitned. It was shown in [Mu] that in this

case there is factorization of B into a direct product of prime subcategories:

(13) B = B1 ⊠ · · ·⊠ Bn,

which is unique up to a permutation of factors.

Corollary 4.8. Let B be a fusion category such that Bpt = Vec. Suppose that B admits a

non-degenerate braiding. Let (13) be the prime factorization of B. Then all braidings on

B are non-degenerate and there are precisely 2n such braidings. The corresponding braided

fusion categories are

(14) B = B±
1 ⊠ · · ·⊠ B±

n ,

where B+
i = Bi and B−

i = Brev

i for i = 1, . . . , n.
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Proof. Since, B is unpointed, according to Remark 4.2 we have B ∼= E ⊠ F as a fusion

category. We claim that E and F centralize each other with respect to the original braiding

of B. Indeed, for all X ∈ O(E) and X ∈ O(F) the object X ⊠ Y is simple and, therefore,

cY,X ◦ cX,Y = λX,Y idX⊠Y , λX,Y ∈ k×.

It follows that the map

O(E ⊠ F) → k× : X ⊠ Y 7→ λX,Y

is a grading of E⊠F . But U(E⊠F) ∼= ̂O((E ⊠ F)pt) is trivial, and so λX,Y = 1 for all X, Y ,

which proves the claim. It follows that E and F must be non-degenerate subcategories of

B. By [DMNO, Section 2.2] there is a subset J ⊂ {1, . . . , n} such that E =
⊕

i∈J Bi and

F =
⊕

i 6∈J Bi. This implies the statement. �

4.3. Gauging. Let B be a non-degenerate braided fusion category with a braiding cX,Y :

X ⊗ Y → Y ⊗X . A gauging of B is the following procedure of changing the braiding by a

bilinear form b : U(B)× U(B) → k×. A new braiding c̃X,Y : X ⊗ Y → Y ⊗X is defined by

c̃X,Y = b(deg(X), deg(Y )) cX,Y ,

for all X, Y ∈ O(B), where deg denotes the degree of a simple object with respect to the

universal grading. By definition, gaugings of a given braiding form a torsor over the group

of bilinear forms on U(B).

The corresponding embedding B → Z(B) = B⊠Brev is given by X 7→ (X ⊗ VX)⊠ V ∗
X for

all X ∈ O(B), where VX ∈ O(Bpt) is determined by the condition

〈VX , y〉 = b(deg(X), y), for all y ∈ U(B).

Here 〈 , 〉 : O(Bpt)× Û(B) → k× denotes the canonical pairing (8).

In this situation E = B, F1 = Vec (so that F ⊂ Bpt), and G ⊂ O(Bpt) is the image of the

homomorphism U(B) → O(Bpt) : X 7→ VX .

Conversely, if a datum (E , F , G) from Theorem 4.1 is such that E = B and F1 = Vec

(respectively, F = B and E1 = Vec) then the corresponding braiding is a gauging of the

original braiding of B (respectively, of the reverse braiding).

In the next two examples for a finite group G we denote by Z(G) the center of VecG.

Example 4.9. (This result was independently obtained by Costel-Gabriel Bontea using

different techniques). Let B := Z(Sn), n ≥ 3, where Sn denotes the symmetric group on

n symbols. Observe that B has a unique maximal fusion subcategory Bad, which is the

subcategory of vector bundles supported on the alternating subgroup An. Thus, in any

presentation B = E ⊠G F either E = B or F = B. Since U(B) = Z2 we must have G = {1}

or G = Z2. If E = B then F = Vec or F = Bpt (note that FPdim(Bpt) = 2). The first
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possibility gives the standard braiding of B, while the second gives its gauging with respect

to the Z2-grading of B. The situation when F = B is completely similar.

Hence, B has 4 different braidings: the usual braiding of the center, its reverse, and their

gaugings with respect to the Z2-grading of Z(Sn). The corresponding data are: (B, Vec, 1),

(Vec, B, 1), (B, Bpt, Z2), and (Bpt, B, Z2), respectively.

Example 4.10. Let G be a non-abelian group of order 8, i.e., G is either the dihedral

group or the quaternion group. Let B = Z(G). We claim that every braiding of B is a

gauging of either its standard braiding or its reverse. The structure of Z(G) was studied

in detail by various authors including [GMN, MN]. One has U(B) = Z3
2 (so in particular,

the standard braiding of B has 29 = 512 different gaugings!) The trivial component of the

universal grading is Bpt = Bad, this is a pointed Lagrangian subcategory of the Frobenius-

Perron dimension 8. Furthermore, for any non-pointed fusion subcategory E ⊂ B its adjoint

subcategory Ead contains at least 4 invertible objects. In any presentation B = E ⊠G F

satisfying the conditions of Theorem 4.1 one of the subcategories E , F must be non-pointed

and and another must be pointed. Indeed, if both are pointed then so is B, a contradiction.

If both are non-pointed then FPdim(E1 ∩ F1) ≥ 2, a contradiction.

Suppose that E is non-pointed. Then F is a pointed fusion subcategory of B with

FPdim(B) = 1, 2, 4 or 8.

If FPdim(F) = 1 then we get the standard braiding of B.

If FPdim(F) = 2 then either G = Z2 and the corresponding braiding is a gauging of

the standard one, or G = {1} and B = E ⊠ F . The latter is impossible since in this case

FPdim(E) = 32 and E contains Bpt and, hence, F .

If FPdim(F) = 4 then either G = Z4 the corresponding braiding is a gauging of the

standard one, or G = Z2 and so FPdim(E) = 32 and FPdim(E1 ∩ F1) = 2, a contradiction,

or G = {1} and B = E ⊠ F which is impossible.

Finally, if FPdim(F) = 8 then we must have G = Z3
2 since otherwise we again have

FPdim(E1 ∩F1) ≥ 2, which contradicts conditions of Theorem 4.1. So in this case F1 = Vec

and the grading of B is a gauging of the standard one.

Thus, if E is non-pointed then the corresponding grading is always a gauging of the stan-

dard one. Switching E and F will give gaugings of the reverse brading.

5. Braidings on group-theoretical categories

Let G be a finite group. Let us denote C(G) = VecG and Z(G) := Z(VecG) = C(G)G.

5.1. Lagrangian algebras in the center of VecG. It is well known that Z(G) is identified

with the category of G-equivariant vector bundles on G. The isomorphism classes of simple
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objects of Z(G) are parameterized by pairs (K, π), where K ⊂ G is a conjugacy class and π

is the isomorphism class an irreducible representation of the centralizer CG(gK) of gK ∈ K.

The corresponding object V (K, π) = ⊕g∈K V (K, π)g is the vector bundle supported on K

whose equivariant structure restricted to CG(gK) acts by π on V (K, π)gK .

Recall that equivalence classes of indecomposable C(G)-module categories are parameter-

ized by conjugacy classes of pairs (H, µ), where H is a subgroup of G and µ ∈ H2(G, k×).

The module category M(H, µ) corresponding to (H, µ) is the category of modules over

the twisted group algebra kµ[H ] in C(G). It can be identified with a certain category of

H-invariant vector bundles on G.

Let Z(G; H) = VecHG be the category of H-equivariant objects in VecG. We have Z(H) ⊂

Z(G; H). There is an obvious forgetful functor FH : Z(G) → Z(G; H). Let IH : Z(G; H) →

Z(G) denote its adjoint.

The following construction was given in [D2]. The twisted group algebra kµ[H ] is a La-

grangian algebra in Z(H) with the obvious grading and the H-equivariant structure given

by

(15) kµ[H ] → gkµ[H ]g−1 : x 7→ εg(x)gxg
−1, where εg(x) =

µ(gxg−1, g)

µ(g, x)
, g, x ∈ H.

Here we abuse notation and identify the cohomology class µ with a 2-cocycle representing

it. Note that

(16)
εg(x)εg(y)

εg(xy)
=

µ(gxg−1, gyg−1)

µ(x, y)
, g, x, y ∈ H.

In particular, εgK restricts to a linear character of CG(gK). As an object of Z(H),

(17) kµ[H ] ∼=
⊕

K

V (K, εgK).

Let A(H, µ) ∈ Z(G) be the Lagrangian algebra corresponding to the C(G)-module category

M(H, µ). It was shown in [D2, Section 3.4] that

(18) A(H, µ) ∼= IH(kµ[H ]).

Here kµ[H ] ∈ Z(H) is considered as an algebra in Z(G; H).

5.2. Transversality criterion and parameterization of braidings. Tensor subcate-

gories of Z(G) were classified in [NNW]. They are in bijection with triples (L, M, B), where

(T1) L and M are normal subgroups of G commuting with each other,

(T2) B : L×M → k× is a G-invariant bicharacter.

The corresponding subcategory SG(L, M, B) consists of vector bundles supported on L and

such that the restriction of their G-equivariant structure on M is the scalar multiplication

by B(g, −) for all g ∈ L. Equivalently, simple objects of SG(L, M, B) are objects V (K, π),
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where K is a conjugacy class contained in L and π is contained in the induced representation

Ind
C(gK)
M B(gK , −). We have

(19) FPdim(SG(L, M, B)) = |L|[G : M ].

We denote by B̂ : L → M̂ the group homomorphism associated to B.

Let µ be a 2-cocycle on G with values in k×. The map Alt(µ) : CG(M)×M → k× defined

by

(20) Alt(µ)(g, x) =
µ(x, g)

µ(g, x)
, g ∈ CG(M), x ∈ M.

is bimultiplicative and G-invariant. We have

Alt(µ)(g, x) = εg(x)

for all g ∈ CG(M), x ∈ M .

Lemma 5.1. The subcategory SG(L,M,B) ⊂ Z(G) is transversal to the Lagrangian algebra

kµ[G] if and only if B
Alt(µ)

: L×M → k× is non-degenerate in the second argument, i.e., for

all g ∈ L, g 6= 1, there is x ∈ M such that

(21)
B

Alt(µ)
(g, x) 6= 1.

Proof. By (17) the transversality is equivalent to the condition

HomCG(gK)(εgK , Ind
CG(gK)
M B̂(gK)) = 0

for all non-identity conjugacy classes K ⊂ L. By the Frobenius reciprocity this is equivalent

to

HomM(εgK |M , B̂(gK)) = 0, K ⊂ L, K 6= {1},

i.e., εgK |M 6= B̂(gK) for all non-identity K. This condition means that for each gK with

K ⊂ L (K 6= {1}) there is x ∈ M such that

µ(x, gK)

µ(gK , x)
6= B(gK , x).

Using the G-invariance of B and Alt(µ) we get the result. �

Theorem 5.2. Braidings on C(G)∗M(H, µ) are in bijection with triples (L, M,B) satisfying

(T1), (T2) and the following conditions:

(i) LH = MH = G,

(ii) the restriction of B
Alt(µ)

on (L ∩H)× (M ∩H) is non-degenerate.

Proof. By Theorem 3.2 braidings on C(G)∗M(H, µ) are parameterized by fusion subcategories

SG(L,M,B) ⊂ Z(G) of the Frobenius-Perron dimension |G| transversal to A(H, µ).
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The above dimension condition is equivalent to |L| = |M | by (19). Note that this condition

follows from (i) and (ii).

In view of (18) we see that a necessary condition for the above transversality is that

the restriction of the forgetful functor FH : Z(G) → Z(G; H) to SG(L,M,B) is injective.

The latter condition is equivalent to transversality of Rep(G/M) and the function algebra

Fun(G/H, k) in Rep(G), in other words, to HomG(Ind
G
M k×, IndGH k×) = k. Here k× denotes

the trivial module. By the Mackey restriction formula the latter is equivalent to MH = G.

If the above condition is satisfied, the transversality of SG(L,M,B) and A(H, µ) in Z(G)

is equivalent to the transversality of FH(SG(L,M,B)) and kµ[H ] in Z(G; H).

In this case we have

FH(SG(L,M,B)) ∩ Z(H) = SH(L ∩H, M ∩H, B|(L∩H)×(M∩H)).

Now we can apply Lemma 5.1 (with G replaced by H). The transversality of the subcategory

SH(L ∩H, M ∩H, B|(L∩H)×(M∩H)) and the algebra kµ[H ] is equivalent to the injectivity of

the corresponding homomorphism L∩H → M̂ ∩H , whence |L∩H| ≤ |M∩H|. This implies

|LH| =
|L||H|

|L ∩H|
≥

|M ||H|

|M ∩H|
= |MH| = |G|,

so that LH = G, |L ∩H| = |M ∩H| and, hence, B
Alt(µ)

|(L∩H)×(M∩H) is non-degenerate. �

Example 5.3. Let G be a non-abelian group and let H ⊂ G be a subgroup such that the

only normal subgroup N of G such that HN = G is G itself. Then C(G)∗M(H, µ) does not

admit a braiding. In particular, if G is simple non-abelian and H 6= G then C(G)∗M(H, µ) does

not admit a braiding.

Remark 5.4. (i) Masuoka [Ma] showed that that certain self-dual non-commutative

and non-cocommutative semisimple Hopf algebras of dimension p3, where p is an odd

prime, admit no quasi-triangular structures, thus giving examples of group-theoretical

fusion categories that do not admit any braiding. These examples, however, are not of

the form considered in Theorem 5.2 (to obtain them one has to generalize Theorem 5.2

by replacing VecG with VecωG for a non-trivial 3-cocycle ω).

(ii) An absence of braidings on certain group-theoretical categories associated to exact

factorizations of almost simple groups was established by Natale [N].

Example 5.5. The category C(G)∗M(G, 1) is equivalent to Rep(G). In this case Theorem 5.2

says that braidings on Rep(G) are in bijections of triples (L, M, B), where L and M are

normal subgroups of G commuting with each other and B : L×M → k× is a non-degenerate

G-invariant bilinear form (note that these conditions on B imply that L and M must be

Abelian). This classification was obtained by Davydov [D1].
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Example 5.6. The category Z(G) is equivalent to C(G×Gop)∗M(D, 1), where G
op is the group

with the opposite multiplication and D = {(g, g−1) | g ∈ G}. Braidings on this category

are parameterized by triples (L, M, B), where L, M are normal subgroups of G×Gop and

B : L×M → k× is a G×Gop-invariant bilinear form such that the following conditions are

satisfied:

(i) L and M commute with each other,

(ii) LD = MD = G×Gop, and

(iii) the restriction of B on (L ∩D)× (M ∩D) is non-degenerate.

The standard braiding of Z(G) corresponds to L = G× 1, M = 1×Gop, and trivial B.

This parameterization is an alternative to the description of quasitriangular structures on

the Drinfeld double of G given by Keilberg [K].
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