CLASSIFYING BRAIDINGS ON FUSION CATEGORIES
DMITRI NIKSHYCH

ABSTRACT. We show that braidings on a fusion category C correspond to certain fusion
subcategories of the center of C transversal to the canonical Lagrangian algebra. This
allows to classify braidings on non-degenerate braided fusion categories and on those dual
to the categories of group-graded vector spaces.

1. INTRODUCTION

Throughout this article we work over an algebraically closed field k of characteristic 0.

In general, a fusion category C may have several different braidings or no braidings at all.
For example, if C = Vecgq, the category of finite-dimensional k-vectors spaces graded by a
finite abelian group G, then braidings on C are parameterized by bilinear forms on G. If G
is non-Abelian then of course Vecg does not admit any braidings.

The goal of this note is to give a convenient parameterization of braidings on an arbitrary
fusion category C. We introduce the notion of transversality between algebras and subcate-
gories of a braided fusion category. Then we show that the set of braidings on C is in bijection
with the set of fusion subcategories B of the center Z(C) such that FPdim(B) = FPdim(C)
and B is transversal to the canonical Lagrangian algebra of Z(C). In several interesting
situations it is possible to give an explicit parameterization of such subcategories. We do
this in two cases: (1) for fusion categories C admitting a non-degenerate braiding and (2)
for group-theoretical categories. In the latter case the parameterization is given in terms of
the subgroup lattice of a group and can be conveniently used in concrete computations.

The paper is organized as follows. Section 2 contains some background information and a
categorical analogue of Goursat’s lemma (Theorem 2.2) for subcategories of tensor products
of fusion categories. In Section 3 we introduce transversal pairs of algebras and subcategories
and characterize braidings in these terms. In Section 4 we classify braidings on a fusion
category B that already admits a non-degenerate braiding (Theorem 4.1) and consider several
examples. We show that with respect to any other braiding the symmetric center of B remains
pointed. In Section 5 we classify braidings on group-theoretical fusion categories (dual to
the category Vecg). As an application we parameterize braidings on the Drinfeld center of
Vecg.
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2. PRELIMINARIES

2.1. Fusion categories. We refer the reader to [EGNO] for a general theory of tensor
categories and to [DGNO] for braided fusion categories.

A fusion category over k is a k-linear semisimple rigid tensor category with finitely many
isomorphism classes of simple objects, finite-dimensional Hom-spaces, and a simple unit
object 1. By a fusion subcategory of a fusion category C we always mean a full tensor sub-
category. An example of subcategory is the maximal pointed subcategory C,, C C generated
by invertible objects of C. We say that C is pointed if C = Cp;.

We denote Vec the fusion category of finite-dimensional k-vector spaces.

For a fusion category C let O(C) denote the set of isomorphism classes of simple objects.

Let G be a finite group. A grading of C by G is a map deg : O(C) — G with the
following property: for any simple objects X, Y, Z € C such that X ® Y contains Z one has
deg Z = deg X -deg Y. We will identify a grading with the corresponding decomposition

(1) C= @ C,

geG

where C, is the full additive subcategory of C generated by simple objects of degree g € G.
The subcategory C; is called the trivial component of the grading. The grading is called
faithful if deg : O(C) — G is surjective.

For any fusion category C there is a universal grading O(C) — U(C) [GN], where U(C) is
the universal grading group of C. Any grading of C comes from a quotient of U(C). The trivial
component of the universal grading is the adjoint fusion subcategory C,q C C generated by
objects X ® X*, X € O(C).

2.2. Fiber products of fusion categories. Let C, D be fusion categories graded by the
same group G. The fiber product of C and D is the fusion category

(2) CReD =) C,RD,.
geG
Here X denotes Deligne’s tensor product of abelian categories. Clearly, C Kg D is a fusion

subcategory of C XD graded by G. The trivial component of this grading is C; X D;. When
the gradings of C and D are faithful one has

FPdim(C)FPdim(D)

(3) FPdim(C K¢ D) = rel
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2.3. Goursat’s Lemma for subcategories of the tensor product. Let C, D be fusion

categories.

Definition 2.1. A subcategory datum for C X D consists of a pair &€ C C and F C D of
fusion subcategories, a group G, and fixed faithful gradings of £ and F by G.

We will identify subcategory data (£, F, G) and (£, F, G') if there is an isomorphism
a: G S G such that &y = Euag) and Fy = F,(y). When no confusion is likely we will denote
a subcategory datum simply by (£, F, GG) omitting the grading maps.

Given a subcategory datum (€, F, G) we can form a fusion subcategory
(4) S, F,G)=EX; FCCHD.

It turns out that S(&, F, G) is a typical example of a fusion subcategory of £ X F. The
following theorem is a categorical analogue of the well known Goursat’s Lemma in group

theory.

Theorem 2.2. Let C, D be fusion categories. The assignment
(5) (€ F,G)—=S8(E F, G)

1s a bijection between the set of subcategory data for CRD and the set of fusion subcategories
of CKD.

Proof. We need to show that every fusion subcategory S C CKD is equal to some S(€, F, G)
for a unique choice of (€, F, G).

Let £ C C be a fusion subcategory generated by all X € O(C) such that X XY € S
for some non-zero Y € D. Similarly, let 7 C D be a fusion subcategory generated by all
Y € O(D) such that X XY € S for some non-zero X € C.

Let

(6) £:=8N(CKXVec) C £ and F := SN (VecXD) C F.

If X € OC)and Y € O(D) are such that X KXY € S then (X*® X)X1 and 1K (Y*®Y)
are objects of . This means that £, C € and Foqy C F. Let He C U(E) and Hr C U(F)
be the subgroups of the universal groups corresponding to £ and F. We claim that these
subgroups are normal. Indeed, let X € O(€) and V € O(E). Then XK1 € Sand VRU € S
for some U € O(D). So (V*RU*) @ (XX1)®@(VXU)= (V' XeV)R(U*®U) € S and
V*® X ®V e £ This implies grg~! € He for all x € He and g € U(E). Thus, He C U(E)
is normal. Similarly, Hr C U(F) is normal.

Hence, subcategories € and F have faithful gradings dege : O(€) — U(E)/Hs =: G¢ and

degy : O(F) — U(F)/Hr =: G5 with trivial components £ and F, respectively.
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Let X € O(C) and Y1, Yy € O(D) be such that that XXY;, XKY; € S. Then 1K (Y ®Y3)
is a subobject of (X X Y;)* ® (X K Y;) and so belongs to S. Therefore, Y;* ® Y, € F, so
deg (Y1) = degr(Y2). Similarly, if X;, Xo € O(C) and Y € O(D) are such that that
X; XY, Xo ¥Y € S then degg(X;) = degg(Xa).

Therefore, there is a well-defined isomorphism f : G¢ — Gx such that f(degg(X)) =
deg (V) for all X € O(C) and Y € O(D) such that X XY € O(S). This means that S is a
fiber product of £ and F.

It is clear that subcategories £, F and their gradings are invariants of S. U

Remark 2.3. Let (&, F1, G1) and (&2, Fo, G2) be subcategory data for C X D. Then
(7) S(&1, Fi, G1) N S(&, Fa, Go) = (&N &) Mg, xa, (F1 N Fa),

where the gradings of £ N &, and F; N Fy by Gy X Gy are such that the (g1, g2) components
are (&1)g, N (E2)g, and (F1)g, N (F2)g,, respectively (note that these gradings are not faithful

in general).

2.4. Braided fusion categories and their gradings. Let B be a braided fusion category
with a braiding cxy : X ® Y = Y ® X. Two objects X,Y of B centralize each other if
cy x © cxy = idxgy and projectively centralize each other if cy x o cxy = Aidxgy for some

scalar A € k. For a fusion subcategory D C B its centralizer is
D' ={Y € B|Y centralizes each X € D}.

The symmetric center of B is Zg,,,(B) = BN B'. We say that B is non-degenerate if
Zgym(B) = Vec.

For a non-degenerate B there is a canonical non-degenerate bimultiplicative pairing
(8) (,): OBy) xU(B) =k~

defined by ¢y xcxy = (X, g)idxgy for all X € O(B,) and Y € B, g € U(B). See [DGNO,
3.3.4] for details.

Proposition 2.4. Let B be a non-degenerate braided fusion category and let D C B be a
fusion subcategory with a faithful grading
P-@n,
geG
where G is an Abelian group. The centralizer of the trivial component Dy of D admits a

faithful grading
D, = P (D),

el
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where G is the group of characters of G and
(Dll)¢ = {X - B | Cy7X e} CX,Y = QS(g)?:dX@y, fOT all Y - Dg, g c G}

The trivial component of this grading is D’.

Proof. 1t follows from [DGNO, 3.3] that a simple object X belongs to D; if and only if
projectively centralizes every simple Y € D, i.e., ¢y x o cx,y = Ayidxgy for some Ay € k*.
Furthermore, if Y7, Y5 are simple objects lying in D, then Ay, = Ay,. Let us denote the latter

scalar by ¢x(g). It follows from the braiding axioms that the assignment
OM) = G: X — by

is a grading of D] by G.
The fact that the trivial component is D’ and the faithfulness of grading follow from the

non-degeneracy of B. U

2.5. Lagrangian algebras in the center. For any fusion category C let Z(C) denote its
Drinfeld center.

Let B be a braided fusion category. A Lagrangian algebra in B is a commutative separable
algebra A in B such that Homg(A, 1) & k and FPdim(A)? = FPdim(B).

Let I : C — Z(C) denote the adjoint of the forgetful functor ' : Z(C) — C. Then I(1) is
a canonical Lagrangian algebra in Z(C).

It was explained in [DMNO] that any braided equivalence a : Z(C) = B gives rise to
a Lagrangian algebra A = a(I(1)) in B. Conversely, given a Lagrangian algebra A € B
there is a braided tensor equivalence Z(B4) = B, where B, denotes the fusion category of

A-modules in B.

3. SUBCATEGORIES TRANSVERSAL TO A LAGRANGIAN ALGEBRA

Definition 3.1. Let C be a fusion category, let B C C be a fusion subcategory, and let A be
an algebra in C. We will assume that Hom¢(A, 1) = k, i.e., that A is a connected algebra.

We say that B is transversal to A if
(9) Hom¢ (X, A) = Home(X, 1)
for all X € B.

In other words, B is transversal to A if and only if Hom¢ (X, A) = 0 for all non-identity
X € O(B).

Theorem 3.2. Let C be a fusion category and let A := I(1) be the canonical Lagrangian alge-
bra in Z(C). Braidings on C are in bijection with fusion subcategories B C Z(C) transversal
to A and such that FPdim(B) = FPdim(C).
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Proof. 1t is well known that braidings on a fusion category C are in bijection with sections of
the forgetful functor F' : Z(C) — C, i.e., with embeddings ¢ : C — Z(C) such that Flor = idc.
The latter correspond to fusion subcategories B C Z(C) such that the restriction F|g : B — C
is an equivalence. This is equivalent to FPdim(B) = FPdim(C) and F|z : B — C being
injective, i.e., fully faithful.

Note that F' is identified with the functor of taking free A-modules:

ZIC) = Z(C)a=C:Z— AR Z.
Observe that
Home(F(Z), 1) = Homze),(A® Z, A) = Homz)(Z, A),

for all Z € Z(C). The injectivity of F|z : B — C is equivalent to Hom¢(F(Z), 1) =
Homp(Z, 1) for all Z € BB and, hence, to A and B being transversal. O

4. BRAIDINGS ON NON-DEGENERATE FUSION CATEGORIES

4.1. Classification of braidings. Let B be a fusion category with a non-degenerate braid-

ing ¢ = {cxy}-

Any grading of a fusion category C by a group G determines a homomorphism
he : OCp) — G.

Theorem 4.1. The braidings on B are in bijection with subcategory data (€, F, G) such
that ENV F = B, €N F is pointed, and hg + hy : O(F NE) — G is an isomorphism. Here
EV F denotes the fusion subcategory of B generated by £ and F.

Proof. We will use the characterization of braidings from Theorem 3.2.

Since B is non-degenerate, we have Z(B) = BX BV where B*¥ denotes BB equipped with
the reverse braiding ¢ := ¢y 'x. The forgetful functor F : Z(B) — B is identified with the
tensor multiplication B X B'" — B and the canonical Lagrangian algebra in Z(B) is

A= Dxecomn) XK X.

The notion of a subcategory datum for a tensor product of fusion categories was intro-
duced in Definition 2.1. Suppose that S(€, F, GG) is transversal to A and is such that
FPdim(S(€, F, G)) = FPdim(B). Since the restriction of F' on S(€, F, G) is injective we
must have
FPdim(F(S(€, F, G))) = FPdim(B).

On the other hand, FPdim(F(S(€, F, G))) < FPdim(€ V F),so £V F = B.

Using [DGNO, Lemma 3.38] we get
_ FPdim(&)FPdim(F)  FPdim(€ v F)FPdim(&E N F)

(10) FPdim(S(€, F, G)) Il G|




CLASSIFYING BRAIDINGS ON FUSION CATEGORIES 7

It follows from (10) that FPdim(€ NF) = |G|. If X is a non-zero simple object in £, N F,
then X ® X* € & N Fy. It follows that X ® X* =1 (since other possibilities contradict the
transversality of S(€, F, G) and A). Thus, X is invertible and £ENF is pointed. For any non-
identity g € G we must have £ N F,-1 = 0. This is equivalent to the injectivity of hge + hz.
Indeed, otherwise there is a nonzero X € &, such that X* € 7, and X X X* € S(€, F, G),
contradicting the transversality assumption.

Since |O(E N F)| = |G|, he + hz is an isomorphism.

Conversely, suppose that a datum (£, F, G) satisfies conditions in the statement of the
theorem. By (10), FPdim(S(€, F, G)) = FPdim(B). We have & N F,-1 = 0 for all ¢g €
G, g # e. Thus, S(€, F, G) contains no simple objects of the form X*X X for X # 1, i.e.,
S(&, F, G) is transversal to A. O

Remark 4.2. Under the conditions of Theorem 4.1, we have B = & K F (as a fusion

category) and the corresponding braiding ¢ is given by

- —1
Cx1RY:, XRYs = Cxyp,x, MGy

for all X1 XY, XoXY; in B.

Corollary 4.3. Let (€, F, G) be a subcategory datum for BX B™". Then
(11) 8(5, 5, G)/ = @ (81)¢ X (‘/—"1);571,
pe@

where the @—gmdmgs on & and F, are defined as in Proposition 2.4.

Proof. For all objects V, W let us denote Sy := cwv o cyw.
Let X XY be an object of BX B and let X, XY, be an object of S(&, F, G),, g € G.
Then

Bxwy,x,my, = Bx,x, ¥ Byy,
and so X WY centralizes X, XY, if and only if 8x x, and By,y, are mutually inverse scalars.
This means that X projectively centralizes £ and centralizes £; (respectively, Y projectively
centralizes F and centralizes F7). Thus,
S(E F, G) = & WG Fi = P (€D B (F)mr,
el
as required. U

Let B(F, £, G) denote the braided fusion category (with underlying fusion category )
corresponding to the datum (£, F, G) from Theorem 4.1.

Corollary 4.4. We have B(E, F, G)™ = B(&], F, @), where the fiber product of & and
Fiis as in (11).
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Corollary 4.5. The symmetric center of B(F, £, G) has a (not necessarily faithful) grading

Zym(B(F, €,G) = B Zum(B(F, &, Q)
(9,0)€GXC
where Zgym (B(F, €, G))(g,0) = (EgN(E1))BR(FyN(F1)yy-1). In particular, Zsy(B(F, €, G))

1S pointed.

Proof. The formula for homogeneous components follows from Corollary 4.3. The trivial
component of the grading of Z,,,(B(F, £, G)) is contained in & K F; and so it is equivalent
to Vec. Hence, Z,,,(B(F, £, G)) is pointed. O

Remark 4.6. Corollary 4.5 means that if B has a non-degenerate braiding then other braid-
ings on B cannot be “too symmetric” as the symmetric center remains pointed. Conversely,
if B has a braiding such that Z;,,,(B) is not pointed, then no non-degenerate braidings on
B can exist. In particular, Rep(G) for a non-abelian G does not admit any non-degenerate

braidings (equivalently, there are no modular category structures on Rep(G)).

Proposition 4.7. Let B be a fusion category that admits a non-degenerate braiding. Then

all non-degenerate braidings on B correspond to data (€, F, G) such that

Vec ifg=1,¢0=1
12 BN ((E,NFy) R (F,NEy-1)) =
(12) (( I o) B(FyNEs 1)) {0 otherwise,
where we use identification B =& Rg F C EX F.
Proof. Follows Corollary 4.5. O

4.2. Braidings on unpointed categories. Let B be a fusion category with non-degenerate
braiding. Suppose that B, = Vec, i.e., B is unpoitned. It was shown in [Mu] that in this

case there is factorization of B into a direct product of prime subcategories:
(13) B=BX---XKB,,

which is unique up to a permutation of factors.

Corollary 4.8. Let B be a fusion category such that B, = Vec. Suppose that B admits a
non-degenerate braiding. Let (13) be the prime factorization of B. Then all braidings on
B are non-degenerate and there are precisely 2" such braidings. The corresponding braided

fusion categories are
(14) B=BK---KB;,

where B = B; and B; = B* fori=1,...,n.
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Proof. Since, B is unpointed, according to Remark 4.2 we have B = £ X F as a fusion
category. We claim that £ and F centralize each other with respect to the original braiding
of B. Indeed, for all X € O(€) and X € O(F) the object X XY is simple and, therefore,

: X
cy,x ©Cxy = Axyidxmy, Axy € k™.

It follows that the map
O(g&f)—)k’x ZX&Y'—))\XA/
is a grading of EXF . But U(EXF) = O((@)pt) is trivial, and so Ax y = 1 for all X, Y,

which proves the claim. It follows that £ and F must be non-degenerate subcategories of
B. By [DMNO, Section 2.2] there is a subset J C {1, ...,n} such that £ = @,.; B; and
F = €D,z; Bi- This implies the statement. O

4.3. Gauging. Let B be a non-degenerate braided fusion category with a braiding cxy :
X®Y ->Y®X. A gauging of B is the following procedure of changing the braiding by a
bilinear form b : U(B) x U(B) — k*. A new braiding ¢xy : X ® Y — Y ® X is defined by

cxy = b(deg(X), deg(Y)) ex.y,

for all X,Y € O(B), where deg denotes the degree of a simple object with respect to the
universal grading. By definition, gaugings of a given braiding form a torsor over the group
of bilinear forms on U(B).

The corresponding embedding B — Z(B) = BX B is given by X — (X ® Vx) XKV for
all X € O(B), where Vx € O(B,;) is determined by the condition

(Vx, y) = b(deg(X), y), forally e U(B).

Here (, ) : O(By) x U(B) — k* denotes the canonical pairing (8).

In this situation & = B, F; = Vec (so that F C B,;), and G C O(B,) is the image of the
homomorphism U(B) — O(B,) : X — Vx.

Conversely, if a datum (£, F, G) from Theorem 4.1 is such that &€ = B and F; = Vec
(respectively, F = B and & = Vec) then the corresponding braiding is a gauging of the
original braiding of B (respectively, of the reverse braiding).

In the next two examples for a finite group G we denote by Z(G) the center of Vecg.

Example 4.9. (This result was independently obtained by Costel-Gabriel Bontea using
different techniques). Let B := Z(S,), n > 3, where S,, denotes the symmetric group on
n symbols. Observe that B has a unique maximal fusion subcategory B,4, which is the
subcategory of vector bundles supported on the alternating subgroup A,. Thus, in any
presentation B = € K F either £ = B or F = B. Since U(B) = Zy we must have G = {1}
or G = Zy. If &€ = B then F = Vec or F = By, (note that FPdim(B,;) = 2). The first
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possibility gives the standard braiding of B, while the second gives its gauging with respect
to the Zy-grading of B. The situation when F = B is completely similar.

Hence, B has 4 different braidings: the usual braiding of the center, its reverse, and their
gaugings with respect to the Zs-grading of Z(.S,). The corresponding data are: (B, Vec, 1),
(Vec, B, 1), (B, By, Zs), and (B, B, Z2), respectively.

Example 4.10. Let G be a non-abelian group of order 8, i.e., GG is either the dihedral
group or the quaternion group. Let B = Z(G). We claim that every braiding of B is a
gauging of either its standard braiding or its reverse. The structure of Z(G) was studied
in detail by various authors including [GMN, MN]. One has U(B) = Z3 (so in particular,
the standard braiding of B has 2° = 512 different gaugings!) The trivial component of the
universal grading is By = Bgq, this is a pointed Lagrangian subcategory of the Frobenius-
Perron dimension 8. Furthermore, for any non-pointed fusion subcategory £ C B its adjoint
subcategory &£,4 contains at least 4 invertible objects. In any presentation B = & Kg F
satisfying the conditions of Theorem 4.1 one of the subcategories £, F must be non-pointed
and and another must be pointed. Indeed, if both are pointed then so is B, a contradiction.
If both are non-pointed then FPdim(&; N Fy) > 2, a contradiction.

Suppose that £ is non-pointed. Then F is a pointed fusion subcategory of B with
FPdim(B) =1, 2, 4 or 8.

If FPdim(F) = 1 then we get the standard braiding of B.

If FPdim(F) = 2 then either G = Z, and the corresponding braiding is a gauging of
the standard one, or G = {1} and B = £ X F. The latter is impossible since in this case
FPdim(€) = 32 and & contains B, and, hence, F.

If FPdim(F) = 4 then either G = Z, the corresponding braiding is a gauging of the
standard one, or G = Zy and so FPdim(£) = 32 and FPdim(&; N F;) = 2, a contradiction,
or G ={1} and B =& X F which is impossible.

Finally, if FPdim(F) = 8 then we must have G = Z3 since otherwise we again have
FPdim(& N Fy) > 2, which contradicts conditions of Theorem 4.1. So in this case F; = Vec
and the grading of B is a gauging of the standard one.

Thus, if £ is non-pointed then the corresponding grading is always a gauging of the stan-

dard one. Switching & and F will give gaugings of the reverse brading.

5. BRAIDINGS ON GROUP-THEORETICAL CATEGORIES

Let G be a finite group. Let us denote C(G) = Vecg and Z(G) := Z(Vecg) = C(G)°.

5.1. Lagrangian algebras in the center of Vecg. It is well known that Z(G) is identified

with the category of G-equivariant vector bundles on G. The isomorphism classes of simple
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objects of Z((G) are parameterized by pairs (K, ), where K C G is a conjugacy class and 7
is the isomorphism class an irreducible representation of the centralizer C(gx) of gk € K.
The corresponding object V (K, 7) = @gex V (K, ), is the vector bundle supported on K
whose equivariant structure restricted to Cg(gx) acts by m on V(K 7).

Recall that equivalence classes of indecomposable C(G)-module categories are parameter-
ized by conjugacy classes of pairs (H, i), where H is a subgroup of G and u € H?(G, k*).
The module category M(H, u) corresponding to (H, u) is the category of modules over
the twisted group algebra k,[H]| in C(G). It can be identified with a certain category of
H-invariant vector bundles on G.

Let Z(G; H) = Vech be the category of H-equivariant objects in Vecg. We have Z(H) C
Z(G; H). There is an obvious forgetful functor Fyy : Z(G) — Z(G; H). Let Iy : Z(G; H) —
Z(G) denote its adjoint.

The following construction was given in [D2]. The twisted group algebra k,[H] is a La-
grangian algebra in Z(H) with the obvious grading and the H-equivariant structure given
by

p(gzg", g)

(15) k. [H] — gk [H]g™" : 2 = g,(x)grg™", where g,(z) = TR g,x € H.

Here we abuse notation and identify the cohomology class p with a 2-cocycle representing
it. Note that

(16) S(0)ey) _ plorgove™) Ly
£q(7y) plr,y) o
In particular, €4, restricts to a linear character of Cs(gx). As an object of Z(H),
(17) ku[H] = @ VI(K, ggic)-
K

Let A(H, ) € Z(G) be the Lagrangian algebra corresponding to the C(G)-module category
M(H, p). It was shown in [D2, Section 3.4] that

(18) A(H, p) = Iy (k,[H]).

Here k,[H] € Z(H) is considered as an algebra in Z(G; H).

5.2. Transversality criterion and parameterization of braidings. Tensor subcate-
gories of Z(G) were classified in [NNW]. They are in bijection with triples (L, M, B), where

(T1) L and M are normal subgroups of G commuting with each other,
(T2) B: L x M — k* is a G-invariant bicharacter.

The corresponding subcategory S¢(L, M, B) consists of vector bundles supported on L and
such that the restriction of their G-equivariant structure on M is the scalar multiplication
by B(g, —) for all g € L. Equivalently, simple objects of Sg(L, M, B) are objects V (K, m),
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where K is a conjugacy class contained in L and 7 is contained in the induced representation
Ind{“) B(g, —). We have
(19) FPdim(Sq(L, M, B)) = |L|[G : M].

We denote by B: L — M the group homomorphism associated to B.
Let p be a 2-cocycle on G with values in £*. The map Alt(u) : Co(M) x M — k* defined
by

(20) Alt(u) (g, z) = 58 i; g€ Ca(M), z € M.

is bimultiplicative and G-invariant. We have

Alt()(g, 7) = 2(x)
forall g € Ce(M), v € M.

Lemma 5.1. The subcategory Sq(L, M, B) C Z(G) is transversal to the Lagrangian algebra
k,|G] if and only if ﬁ@) : L x M — k™ is non-degenerate in the second argument, i.e., for
all g € L, g # 1, there is x € M such that

B

(21) W (g, ZL’) 7é 1.

Proof. By (17) the transversality is equivalent to the condition
HomCG(gK)(€HK7 Indf/lc(gK) §(9K>> =0

for all non-identity conjugacy classes K C L. By the Frobenius reciprocity this is equivalent

to

~

HomM(ggK|Ma B(gK)) = 07 K C La K 7é {1}7

ie., egplm # B(gk) for all non-identity K. This condition means that for each gx with
K C L (K # {1}) there is x € M such that

T, gk

HE, 9) 2 By, ).

:u(gKv SL’)
Using the G-invariance of B and Alt(u) we get the result. O

Theorem 5.2. Braidings on C(G)jw(H’u) are in bijection with triples (L, M, B) satisfying
(T1), (T2) and the following conditions:
(i) LH = MH =G,

(ii) the restriction of on (LN H) x (M N H) is non-degenerate.

B
Alt(p)

Proof. By Theorem 3.2 braidings on C (G)jw( , ) are parameterized by fusion subcategories
Sa(L, M, B) C Z(G) of the Frobenius-Perron dimension |G| transversal to A(H, ).
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The above dimension condition is equivalent to |L| = | M| by (19). Note that this condition
follows from (i) and (ii).

In view of (18) we see that a necessary condition for the above transversality is that
the restriction of the forgetful functor Fly : Z(G) — Z(G; H) to Sg(L, M, B) is injective.
The latter condition is equivalent to transversality of Rep(G/M) and the function algebra
Fun(G/H, k) in Rep(G), in other words, to Homg(Ind$, %, Ind% k%) = k. Here k* denotes
the trivial module. By the Mackey restriction formula the latter is equivalent to M H = G.

If the above condition is satisfied, the transversality of S¢(L, M, B) and A(H, p) in Z(G)
is equivalent to the transversality of Fi(Sq(L, M, B)) and k,[H] in Z(G; H).

In this case we have

Fr(Sq(L,M,B))NZ(H) = Sug(LNH, M N H, Bl(Lam)xMnH))-
Now we can apply Lemma 5.1 (with G replaced by H). The transversality of the subcategory
Su(LNH, M N H, Bl(tamr)xmnm)) and the algebra k,[H] is equivalent to the injectivity of
the corresponding homomorphism LNH — MNH , whence |[LNH| < |MNH]|. This implies
\LIH| _ |M][H]
|[LNH| — |[MNH|
so that LH = G, |LN H| = |M N H| and, hence, %@‘(L”H)X(M”H) is non-degenerate. [

|LH| = = |MH| = |G|,

Example 5.3. Let G be a non-abelian group and let H C G be a subgroup such that the
only normal subgroup N of G such that HN = G is G itself. Then C(G)j,y, ) does not
admit a braiding. In particular, if G is simple non-abelian and H # G then C(G)} g, ) does

not admit a braiding.

Remark 5.4. (i) Masuoka [Ma] showed that that certain self-dual non-commutative
and non-cocommutative semisimple Hopf algebras of dimension p?®, where p is an odd
prime, admit no quasi-triangular structures, thus giving examples of group-theoretical
fusion categories that do not admit any braiding. These examples, however, are not of
the form considered in Theorem 5.2 (to obtain them one has to generalize Theorem 5.2
by replacing Vecg with Vecg, for a non-trivial 3-cocycle w).

(ii) An absence of braidings on certain group-theoretical categories associated to exact

factorizations of almost simple groups was established by Natale [N].

Example 5.5. The category C(G)) s, 1) is equivalent to Rep(G). In this case Theorem 5.2
says that braidings on Rep(G) are in bijections of triples (L, M, B), where L and M are
normal subgroups of G commuting with each other and B : L x M — k* is a non-degenerate
G-invariant bilinear form (note that these conditions on B imply that L and M must be
Abelian). This classification was obtained by Davydov [D1].
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Example 5.6. The category Z(G) is equivalent to C(G x GP)}p 1), Where G°? is the group
with the opposite multiplication and D = {(g, ¢7!) | ¢ € G}. Braidings on this category
are parameterized by triples (L, M, B), where L, M are normal subgroups of G x G°? and
B:LxM — k*is a G x G°-invariant bilinear form such that the following conditions are
satisfied:

(i) L and M commute with each other,
(i) LD = MD = G x G, and
(iii) the restriction of B on (L N D) x (M N D) is non-degenerate.

The standard braiding of Z(G) corresponds to L = G x 1, M =1 x G, and trivial B.
This parameterization is an alternative to the description of quasitriangular structures on
the Drinfeld double of G given by Keilberg [K].
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