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Abstract

Many popular large-scale cloud applications are increas-

ingly using containerization for high resource efficiency and

lightweight isolation. In parallel, many data-intensive appli-

cations (e.g., data analytics and deep learning frameworks)

are adopting or looking to adopt RDMA for high network-

ing performance. Industry trends suggest that these two ap-

proaches are on an inevitable collision course. In this paper,

we present FreeFlow, a software-based RDMA virtualiza-

tion framework designed for containerized clouds. FreeFlow

realizes virtual RDMA networking purely with a software-

based approach using commodity RDMA NICs. Unlike ex-

isting RDMA virtualization solutions, FreeFlow fully sat-

isfies the requirements from cloud environments, such as

isolation for multi-tenancy, portability for container migra-

tions, and controllability for control and data plane policies.

FreeFlow is also transparent to applications and provides

networking performance close to bare-metal RDMA with

low CPU overhead. In our evaluations with TensorFlow and

Spark, FreeFlow provides almost the same application per-

formance as bare-metal RDMA.

1 Introduction

Developers of large-scale cloud applications constantly seek

better performance, lower management cost, and higher re-

source efficiency. This has lead to growing adoption of two

technologies, namely, Containerization and Remote Direct

Memory Access (RDMA) networking.

Containers [7, 11, 6] offer lightweight isolation and porta-

bility, which lowers the complexity (and hence cost) of de-

ploying and managing cloud applications. Thus, containers

are now the de facto way of managing and deploying large

cloud applications.

RDMA networking offers significantly higher throughput,

lower latency and lower CPU utilization than the standard

TCP/IP based networking. Thus, many data-intensive appli-

cations, e.g., deep learning and data analytics frameworks,

are adopting RDMA [24, 5, 18, 17].

Unfortunately, the two trends are fundamentally at odds

with each other in clouds. The core value of containerization

is to provide an efficient and flexible management to applica-

tions. For this purpose, containerized clouds need containers

to have three properties in networking:

• Isolation. Each container should have its dedicated net-

work namespace (including port space, routing table, in-

terfaces, etc.) to eliminate conflicts with other containers

on the same host machine.

• Portability. A container should use virtual networks to

communicate with other containers, and its virtual IP

sticks with it regardless which host machine it is placed

in or migrated to.

• Controllability. Orchestrators can easily enforce control

plane policies (e.g., admission control, routing) and data

plane policies (e.g., QoS, metering). This property is par-

ticularly required in (multi-tenant) cloud environments.

These properties are necessary for clouds to freely place and

migrate containers and control the resources each container

can use. To this end, in TCP/IP-based operations, network-

ing is fully virtualized via a software (virtual) switch [15].

However, it is hard to fully virtualize RDMA-based net-

working. RDMA achieves high networking performance by

offloading network processing to hardware NICs, bypassing

kernel software stacks. It is difficult to modify the control

plane states (e.g., routes) in hardware in shared cloud envi-

ronments, while it is also hard to control the data path since

traffic directly goes between RAM and NIC via PCIe bus.

As a result, several data-intensive applications (e.g., Ten-

sorFlow [24], CNTK [5], Spark [18], Hadoop [17]) that

have adopted both these technologies, use RDMA only when

running in dedicated bare-metal clusters; when they run in

shared clouds, they have to fundamentally eschew the per-

formance benefits afforded by RDMA. Naturally, using ded-

icated clusters to run an application is, however, not cost ef-

ficient both for providers or for customers.

Thus, our goal in this paper is simple: we want cloud-

based, containerized applications to be able to use RDMA as
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Property Native SR-IOV [21] HyV [39] SoftRoCE [36]

Isolation 7 X X X

Portability 7 7 X X

Controllability 7 7 7 X

Performance X X X 7

Table 1: RDMA networking solutions that can be potentially used

for containers.

efficiently as they would in a dedicated bare-metal cluster;

while at the same time achieving the isolation, portability

and controllability requirements in containerized clouds. 1

Currently, there is no mature RDMA virtualization solu-

tions for containers.2 Table 1 summarizes some important

options that can potentially be extended to support contain-

ers, although they fail to achieve the key requirements or

have to do so at a substantial performance cost.

For instance, hardware-based I/O virtualization tech-

niques like SR-IOV [21] have fundamental portability lim-

itations [39, 28], since they require reconfiguration of hard-

ware NICs and switches to support migrations of contain-

ers. Control path virtualization solutions, such as HyV [39],

only manipulate the control plane commands for isolation

and portability, and they do not have the visibility or con-

trol of the data traffic. Because of this, they cannot flexi-

bly support data plane policies needed by cloud providers.

Software-emulated RDMA, e.g., SoftRoCE [36], can easily

achieve isolation, portability, and controllability by running

RDMA on top of the UDP networking stack and use existing

virtual IP networking solutions, but its performance will be

limited by UDP.

In this paper, we present FreeFlow, a software-based vir-

tual RDMA networking framework for containerized clouds,

which simultaneously achieves isolation, portability and

controllability and offers performance close to bare-metal

RDMA. At the heart of FreeFlow is a software virtual switch

running on each server to virtualize RDMA on commodity

RDMA NICs. FreeFlow does not require any specialized

hardware or hardware-based I/O virtualization. The software

virtual switch has the full access to both control path (e.g.,

address, routing) and data path (e.g., data traffic) of the com-

munications among containers. This design philosophy is

similar to existing software virtual switches used for TCP/IP

networking in the containerized cloud, e.g., Open vSwitch

(OvS) [15] although FreeFlow’s actual design is dramati-

cally different from OvS due to RDMA’s characteristics.

The design of FreeFlow addresses two key challenges.

First, we want FreeFlow to be completely transparent to the

application. This is challenging because RDMA requires

a NIC to manipulate memory buffers and file descriptors,

while applications inside containers do not directly inter-

1Indeed, our primary motivation to start this work is to enable a large-

scale AI application at a leading cloud provider to be migrated from a dedi-

cated cluster to clouds, and yet continue to use RDMA.
2 There are some recent proposals from industry [35, 26] but these have

limitations as we discuss in §9.

act with the NIC due to network virtualization. Our key

insight to address this challenge is that containers are es-

sentially processes, and they can easily share resources like

memory and file descriptors with FreeFlow . If FreeFlow and

a container share the same memory (§4.3) and file descrip-

tor (§4.4), any operations on the underlying physical RDMA

NIC will automatically take effect inside the container. A

further problem is that sharing resources transparently to ap-

plications is not straightforward, given that applications do

not cooperatively create resources that are shareable. We

design methods to convert resource from non-shareable to

shareable with no or minimal modifications on application

code.

Second, FreeFlow must offer throughput and latency that

is comparable to bare-metal RDMA. We identify the per-

formance bottlenecks in throughput and latency as mem-

ory copy and inter-process communication respectively. We

leverage a zero-copy design for throughput (§4.3), and a

shared memory inter-process channel with CPU spinning for

latency (§5.2). We also optimize FreeFlow for bounding

CPU overhead.

We evaluate the performance of FreeFlow with standard

microbenchmarking tools and real-world data-intensive ap-

plications, Spark and TensorFlow without any or with min-

imal modification on them. FreeFlow achieves the per-

formance comparable to bare-metal RDMA without much

CPU overhead. We also show that FreeFlow significantly

boosts the performance of real-world applications by up to

14.6 times more in throughput and about 98% lower in la-

tency over using conventional TCP/IP virtual networking.

FreeFlow has drawn interests from multiple RDMA solution

providers, and is open sourced at https://github.com/

Microsoft/Freeflow.

2 Background
This section provides a brief background on container and

RDMA networking, to motivate the need for software-based

RDMA virtualization for containers.

Containers and container networking: Containers are be-

coming the de facto choice [30, 27, 25] to package and de-

ploy data center applications. A container bundles an ap-

plication’s executables and dependencies in an independent

namespace using mechanisms such as chroot [4]; thereby of-

fering a lightweight isolation and portability solution.

Most containerized applications use microservices archi-

tecture, and are composed of multiple containers. For exam-

ple, each mapper and reducer node in Spark [2] is an indi-

vidual container; each parameter server node or worker node

in TensorFlow [22] is also an individual container. The con-

tainers exchange data via a networking solution. The design

of the networking solution affects the degree of isolation and

portability.

For instance, in the host mode networking, containers use

their host’s IP and port space, and communicate like an or-

dinary process in the host OS. This mode has poor isolation
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Step 5: The application exchanges GID and QP-ID with the

remote end. Applications can exchange this information via

any channels such as TCP/IP or RDMA-CM.3

Step 6: The application pairs its local QP with the remote

container’s QP using the receiver’s GID. FFL forwards this

GID to FFR . FFR pairs QP′ with this GID.

Step 7: The application modifies the state of local QP to

Ready to Send/Receive state, while FFR modifies the state

of QP′ accordingly.

After Step 7, from the application’s point of view, it is

ready to send or receive data – it has created a QP and a CQ,

registered mem to the QP, paired with the remote QP and

established a connection with the remote QP.

From FreeFlow’s point of view, it has created QP′ and CQ′

which are associated with the QP and CQ in the application,

registered s-mem as the shadow memory of mem, and paired

with the QP′ in the remote FFR . It is also ready to get and

forward Verbs calls from the application.

FreeFlow may increase the latency for connection estab-

lishment due to the additional interactions between FFR and

FFL . However, it does not much affect the overall latency

of FreeFlow since it is a one-time cost; many RDMA appli-

cations re-use pre-established connections for communica-

tions.

4.2 Two-sided Operations
Each sender or receiver needs to go through two steps to per-

form a data transfer. The first step is to use QP to start send-

ing or receiving data, and the second step is to use CQ to get

completion notifications. Steps 8–9 in Figure 5 shows this

process.

Step 8: The application invokes the SEND call, and sup-

plies pointer to mem. FFL first copies data from mem to

s-mem, and FFR then invokes its own SEND call to send s-

mem to the remote FFR . We avoid the memory copies from

mem and s-mem by applying our zero-copying mechanism

described in §4.3. Note that the remote router would have

posted a corresponding RECV call by this time.

Step 9: The application either polls the CQ or waits for a

notification that indicates the completion of the send. FFR

also polls/waits-on CQ′ associated with QP′ and forwards it

to FFL .

For subsequent SEND operations on the same QP, the ap-

plication only needs to invoke Step 8 and 9 repeatedly. The

workflow of a RECV operation is similar, except that at Step

9, FFL will copy data from s-mem to mem after the QP′ fin-

ishes receiving data, which is the opposite of Step 8 in SEND

operation.

The presence of FFL and FFR is completely transparent

to the application. To the application, it appears that it is per-

forming normal verbs operations on its vNIC. The steps in

Figure 5 are standard way of writing Verbs programs. The

3
FreeFlow also has an extension to support RDMA-CM with similar a

design to support IB Verbs, while we omit the details due to space limit.

FreeFlow behavior illustrated here is sufficient to fully sup-

port SEND and RECV operations.

4.3 One-sided Operations
In one-sided operations, a client needs not only the GID of a

server, but also the address of the remote memory buffer, and

the security key for accessing the memory. This information

is exchanged in Step 5 in Figure 5 and becomes available to

FreeFlow in Step 8 (where WRITE or READ can be called).

Compared to two-sided operations, it is more challenging

to transparently support one-sided operations. There are two

problems to support one-sided operations in FreeFlow .

First, the target memory address mem is in the virtual

memory of the remote container. However, the local FFR

does not know the corresponding s-mem on the other side.

For example, in Figure 6(a), when the sender tries to write

data in mem-1 to remote memory mem-2, it fails at stage 3)

because the target memory address mem-2 is not accessible

for FFR on the receiver side.

To solve this problem, FreeFlow builds a central key-value

store in FFO for all FFRs to learn the mapping between

mem’s pointer in application’s virtual memory space and

the corresponding s-mem’s pointer in FFR ’s virtual mem-

ory space. Updating this table adds latency to Step 3 in

Figure 5, when applications register memory to their virtual

NIC. However, data plane performance is not impacted be-

cause FFR can cache the mappings locally.

Second, even if we know the memory mapping on the re-

mote side, WRITE and READ can remotely modify or copy

data without notifying the remote side’s CPU, so that FFR

does not know when to copy to or from application’s mem-

ory. For instance, in Figure 6(b), the sender finds the correct

address of s-mem-2 and send the data to it. However, after

the data is available in s-mem-2, there is no notification for

the FFR in the receiver side to know when to copy s-mem-2

to mem-2. One way to solve this is to continuously synchro-

nize s-mem-2 and mem-2. This would consume a lot of CPU

and memory bus bandwidth.

To address this, in FreeFlow, we design a zero-copy based

mechanism to efficiently support one-side operations. The

high-level idea is to make mem and s-mem the same physi-

cal memory, so that FFR does not need to do any copy, and

the data will be naturally presented to the application. Fig-

ure 6(c) illustrates this design. By getting rid of memory

copies, we can also improve FreeFlow performance.

The key here is to make applications directly allocate and

use shared memory with FFR for data transfers. For this,

FreeFlow provides two options:

Option 1—Allocating shared buffers with new APIs: We

create two new Verbs functions, ibv malloc and ibv free,

to let applications delegate the memory creation and dele-

tion to FreeFlow. This allows FFL to directly allocate these

buffers in the shared memory region (shared with FFR ), and

thus avoid the copy. The drawback of this option is the need
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ment a simple token-bucket data structure in FFR . When an

application creates a new QP, we check the policies that are

stored in FFO , and associate a token-bucket with pre-set rate

limit to the QP. Upon every application’s send request, the

router checks whether the QP has enough tokens to send out

the requested message size. If so, the send request is for-

warded to the real NIC immediately. Otherwise, FFR will

notify FFL and delay it until there are enough tokens. Note

that it is only an example of implementing QoS policies.

FreeFlow provides flexible APIs for implementing sophis-

ticated QoS algorithms in FFR , while we omit the details

due to space limit.

Memory management in Fastpath: In Fastpath imple-

mentation, we use assembly codes to explicitly force the

cache lines of requests and responses written by FFL and

FFR to be flushed into main memory immediately. This is

necessary because otherwise, the CPU will keep the newly

written lines in cache for a while to wait more written lines,

slowing down the message exchanging speed on Fastpath.

Supporting parallelism: Since applications can create

multiple QPs and use multiple threads to transfer data in par-

allel, each Unix domain socket between the FFL and FFR

needs a lock. To improve performance, we create multiple

Unix domain sockets between the FFL and FFR . We avoid

“head of the line blocking” by dedicating more of these sock-

ets to data plane operations and event notifications and only

a few of sockets to creation, setups and delete operations.

On FFR , we use a dedicated thread for each incoming Unix

domain socket connection. We also create a dedicated data

structures for each container and a dedicated shared memory

region for each registered memory buffer to keep the data

path lock free.

7 Discussion
In this section, we discuss about some primary concerns and

potential extensions in the current design of FreeFlow.

CPU overhead: Similar to software-based TCP/IP vir-

tual networking solutions, FreeFlow incurs CPU overhead.

In particular, FreeFlow uses a CPU core for polling con-

trol messages between FFL and FFR to support low latency

IPC channel (§5.2). We admit that this is a cost for net-

work virtualization on top of current commodity hardwares.

One possible approach to address this is to utilize hardwares

that support offloading CPU tasks, such as FPGA, ARM co-

processor, or RDMA NICs [1]. We leave it as a future work

to eliminate the CPU overhead in Fastpath.

Security: One concern is that since FFR shares its memory

with containers, whether one container can read the commu-

nications of other containers on the same host by scanning

the IPC space. This is not a concern for FreeFlow because

FFR creates a dedicated shared memory buffer for each indi-

vidual QP. Only those shared memory buffers that belong to

a container will be mapped into the container’s virtual mem-

ory space. Another concern is the security of the memory

keys. If one can see the keys by wiretapping, subsequent

communications can be compromised. This problem is in-

herent in the way one-sided operations in raw RDMA work,

and is not made worse by FreeFlow .

Working with external legacy peers: Containers in

FreeFlow can naturally communicate with external RDMA

peers, since each FFR works independently. FFR does not

distinguish whether the remote peer is another FFR or an

external RDMA peer.

Container migration: FreeFlow supports offline migra-

tions naturally. If a container is captured, shutdown, moved

and rebooted in another host machine, its IP address is not

changed, so that its peers re-establish RDMA connections

with it as if it is just got rebooted. Nowadays, offline migra-

tions are commonly used in container clusters for resource

packing or fail-over. FreeFlow does not support live migra-

tion, since RDMA has poor mobility nowadays [39].

VM host: Our prototype (and evaluation) is based on con-

tainers running on bare-metal host machines. But FreeFlow

can be directly used on containers deployed inside VMs if

the VMs use SR-IOV to access the physical NIC.

Congestion control: RDMA NICs already have congestion

control mechanisms, and FreeFlow relies on them.

8 Evaluation
We evaluate the performance and overhead of FreeFlow. We

start from microbenchmarks (§8.1) and then the performance

of real-world applications on FreeFlow (§8.2).

8.1 Microbenchmarks
Setup: We run microbenchmarks on two testbeds.

One testbed runs InfiniBand, which is a traditional RDMA-

dedicated fabric. The servers are equipped with two In-

tel Xeon E5-2620 2.10GHz 8-core CPU, 64GB RAM, and

56Gbps Mellanox FDR CX3 NIC. The OS is Ubuntu 14.04

with the kernel version 3.13.0-129-generic.

The other testbed runs RoCE (RDMA over Converged

Ethernet). As the name indicates, RoCE only requires con-

ventional Ethernet switches (in our case, Arista 7050QX as

the ToR switch). The servers in this testbed cluster have Intel

Xeon E5-2609 2.40GHz 4-core CPU, 64GB RAM, 40Gbps

Mellanox CX3 NIC and Ubuntu 14.04 with the kernel ver-

sion 4.4.0-31-generic.

We run containers using Docker (v1.13.0) [7] and set up

a basic TCP/IP virtual network using Weave (v1.8.0) [23]

with Open vSwitch kernel module enabled. Unless other-

wise specified, we run Fastpath (§5.2) enabled FreeFlow.

We mainly compare FreeFlow with bare-metal RDMA,

which is a stand-in for the “optimal” performance. We will

show that FreeFlow enables virtual RDMA networking for

containers with minimal performance penalty. In §8.1.4, we

will also demonstrate the performance of translating TCP

socket calls into RDMA on top of FreeFlow, so that con-

ventional TCP applications can also benefit from FreeFlow.

There we also compare FreeFlow with bare-metal TCP and

Weave which supports virtual TCP/IP virtual networks for

containers.
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