
A Tour of Gallifrey,
a Language for Geodistributed Programming
Matthew Milano
Cornell University, Ithaca NY
www.cs.cornell.edu/~milano
mpmilano@cs.cornell.edu

Rolph Recto
Cornell University, Ithaca NY
www.cs.cornell.edu/~rector
rector@cs.cornell.edu

Tom Magrino
Cornell University, Ithaca NY
www.cs.cornell.edu/~tmagrino
tmagrino@cs.cornell.edu

Andrew C. Myers
Cornell University, Ithaca NY
www.cs.cornell.edu/andru
andru@cs.cornell.edu

Abstract
Programming efficient distributed, concurrent systems requires new abstractions that go beyond

traditional sequential programming. But programmers already have trouble getting sequential code
right, so simplicity is essential. The core problem is that low-latency, high-availability access to data
requires replication of mutable state. Keeping replicas fully consistent is expensive, so the question
is how to expose asynchronously replicated objects to programmers in a way that allows them to
reason simply about their code. We propose an answer to this question in our ongoing work designing
a new language, Gallifrey, which provides orthogonal replication through restrictions with merge
strategies, contingencies for conflicts arising from concurrency, and branches, a novel concurrency
control construct inspired by version control, to contain provisional behavior.

2012 ACM Subject Classification Software and its engineering → Cooperating communicating pro-
cesses; Software and its engineering → Massively parallel systems; Software and its engineering →
Distributed programming languages

Keywords and phrases programming languages, distributed systems, weak consistency, linear types

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2019.11

Funding This work was supported by NSF grants 1717554 and 1704788.
Matthew Milano: This research was conducted with Government support under and awarded by DoD,
Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG)
Fellowship, Grant number 32 CFR 168a

Acknowledgments We would like to thank Fabian Muehlboeck, Andrew Hirsch, the members of the
Applied Programming Languages Group at Cornell University, and our anonymous SNAPL reviewers
for their helpful feedback on drafts of this paper.

© Matthew Milano, Rolph Recto, Tom Magrino, and Andrew C. Myers;
licensed under Creative Commons License CC-BY

3rd Summit on Advances in Programming Languages (SNAPL 2019).
Editors: Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

www.cs.cornell.edu/~milano
mailto:mpmilano@cs.cornell.edu
www.cs.cornell.edu/~rector
mailto:rector@cs.cornell.edu
www.cs.cornell.edu/~tmagrino
mailto:tmagrino@cs.cornell.edu
www.cs.cornell.edu/andru
mailto:andru@cs.cornell.edu
https://doi.org/10.4230/LIPIcs.SNAPL.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 A Tour of Gallifrey, a Language for Geodistributed Programming

1 Introduction

The modern internet landscape is filled with geodistributed programs: single logical applications
split among thousands of machines across the globe. These programs present the illusion of
a single available object—be it a Twitter feed, a Facebook timeline, or a Gmail inbox—which
is implemented as a constellation of copies, loosely synchronized across perhaps dozens of data
centers. This weakly consistent replication became popular due to its performance benefits, but
at a significant cost: where objects were once stored on databases offering strong consistency,
consistency must now be recovered through the careful effort of application programmers.

Needless to say, it is hard to correctly synchronize replicated objects in this setting. And
while past work (Section 6) has created an excellent foundation, existing solutions lack modu-
larity and compositionality. Typically, they either fail to provide whole-program guarantees or
rigidly constrain what can be replicated and how it should be replicated. Few systems provide
consistency guarantees without forcing the entire program into a single consistency model.

This paper proposes Gallifrey, a general-purpose language for distributed programming,
whose guiding principles are extensibility, modularity, and flexible consistency. Gallifrey’s
design encourages extensibility and modularity through the principle of orthogonal replication.1
Under orthogonal replication, the conflict-handling strategy for a replicated object is separated
from the implementation of the object itself. Any object can be replicated, yet no object must
be replicated.

Gallifrey embodies this principle through a language mechanism, restrictions. Restrictions
refine the interface of a sequential object and provide a merge function to resolve concurrent use
of allowed methods. Crucially, objects are not tied to a single restriction: programmers may
implement many restrictions for a given interface, and may use these restrictions on any object
which satisfies this interface. Further, the restrictions on an object may change over time.

Gallifrey combines restrictions with a strong type system to ensure strong consistency and
race freedom by default. Objects in Gallifrey are subject to an ownership-based linear type sys-
tem to ensure that at most a single thread has access to any given object at a time, and that fields
of replicated objects can only be accessed via a correct restriction. Further, restrictions are stat-
ically checked to ensure all permitted operations commute, allowing programs to safely operate
against replicated state asynchronously, without needing to coordinate during normal execution.

But strong consistency without coordination does not constitute a sufficiently powerful
programming model. Gallifrey goes further by introducing the idea that restrictions can specify
provisional operations that are not required to commute and are therefore, in general, unsafe to
use without coordination. Provisional operations can be used only fromwithin explicit branches,
a new primitive inspired by distributed version control. Branches represent explicit forking of
state and serve as the basis for threads, transactions, and speculative execution. Branches and
provisional operations combine to allow speculative execution; provisional methods executed
within a branch remain isolated in that branch until it is explicitly merged, either synchronously
or asynchronously. When merged synchronously, branches have the semantics of optimistic
transactions, and thus sacrifice no consistency; when merged asynchronously, branches have a
weakly consistent semantics, as provisional operations contained within a branch may conflict
with other concurrent operations. To compensate for such conflicts, programmers provide a
callback as a contingency to be executed if a conflict does occur.

We are working toward a formalization and implementation of Gallifrey, and we hope that
it adds to the recent resurgence in designing language abstractions for distributed systems.

1 The name is inspired by orthogonal persistence [6].

M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:3

1 interface Library {
2 int numItems ();
3
4 unique Set[Item] getItems (unique String col)
5 requires collection (col);
6
7 void addCollection (unique String col)
8 ensures collection (col);
9

10 void addItem (unique Item i, local String col)
11 requires collection (col)
12 ensures next(numItems ()) >= numItems ();
13
14 // also moves items in col to a default collection
15 void removeCollection (local String col)
16 ensures ! collection (col) && (next(numItems ()) == numItems ());
17 }

Figure 1 Library interface. requires and ensures refer to pre- and postconditions respectively.
collection is an abstract predicate indicating the presence of a collection in the library

2 A running example

To better understand the difficulties of programming with replicated objects and how Gallifrey
makes this task easier, we introduce a running example. Consider a “library” object (Figure 1)
that maintains a set of items grouped by collections—for example, a set of books collected
under “Programming Languages” might include Structure and Interpretation of Computer
Programs [1] and Types and Programming Languages [46]. Alice and Bob use this library
object to keep citations for a paper they are writing together. Like many academics, Alice
and Bob find themselves frequently traveling to conferences, working on their bibliography on
the go—including in places with limited internet connectivity. Their bibliography application
must allow them to continue working while disconnected. Now, suppose Alice adds a book
to the collection, How to Design Programs [27], while at the same time Bob removes the
“Programming Languages” collection itself, adding its orphaned contents to a default collection.
To what state of the library should Alice and Bob’s devices both eventually converge?

There are two strategies for responding to such irreconcilable conflicts. One is prevention:
restrict concurrent execution of operations that might conflict. For example, Alice and Bob
might agree to not remove collections from the library so that either of them can add books
safely. The second is restoration: provide a way to safely merge conflicting operations.2 Alice
and Bob can agree on a restorative strategy by allowing book additions and provisionally
allowing collection removals (with contents moved to a default collection), understanding
that in the case of a concurrent addition and removal, the removal will be invalidated. If Bob
removes a collection under this restorative strategy, he needs to understand that his removal
could be invalidated, and likely wants to be notified if the invalidation happens.

Now suppose Alice gets on a plane and wants to see what books are in the library. Without
being connected to Bob, Alice can’t be sure that the list of books she’s seeing contains all the
books in the library; after all, Bob could have added more books while Alice wasn’t looking.

2 Indigo [10] makes a similar distinction between conflict avoidance and conflict resolution.

SNAPL 2019

11:4 A Tour of Gallifrey, a Language for Geodistributed Programming

1 class RemoveCollectionLost {
2 local String collection ;
3 RemoveCollectionLost (unique String col) { collection = col; }
4 }
5
6 restriction AddOnly for Library {
7 allows addItem ;
8 }
9

10 restriction AddWins for Library {
11 allows addItem ;
12 allows removeCollection contingent RemoveCollectionLost ;
13 test sizeAtLeast (int n) { return numItems () >= n; }
14
15 merge (op1 , op2)
16 where op1 = addItem (_,c) && op2 = removeCollection (c) {
17 delete op2 with RemoveCollectionLost (c);
18 }
19 }

Figure 2 Restrictions for Library interface

Alice might be fine with this. She might just want an estimate of the state of the library—with
the option to receive a notification later if her estimate was inaccurate. Or perhaps she was
only interested in checking if the library if at least a certain size. This she can do safely even
without Bob, since Alice and Bob both agreed not to remove items from the library.

Gallifrey’s programming model is designed for this challenging setting.

3 Restrictions for shared objects

The primary purpose of Gallifrey—safely sharing objects via asynchronous replication—is
enabled by restrictions. Restrictions represent the conflict-handling strategies for replicated
objects. Restrictions are a part of the type of a replicated object, and Gallifrey uses them at
compile time to ensure that all replicas agree on a conflict-handling strategy. Syntactically,
an object declared with type shared[R] T is of class T and is shared under a restriction R.

Restrictions are defined against a specific interface. For example, Figure 2 shows two
possible restrictions for library objects: AddOnly, which only allows addItem operations, and
AddWins, which allows addItem and removeCollection but invalidates removeCollection
in case of conflicts. These correspond to the two conflict-handling strategies in Section 2. A
restriction consists of the following parts:

Interface refinements. Restrictions specify exactly which operations of an interface
are allowed under them. Any operation not specified in a restriction cannot be executed
under it, thus allowing for preventative conflict-handling strategies. For example, in Figure 2
AddOnly prohibits collection removals. Allowed operations in a restriction can also be marked
contingent, indicating that they are a provisional operation; this operation may need to be
rolled back due to conflicts. Client code that executes such provisional actions can register
contingency callbacks3 for such cases of invalidation (Section 5.1). For example, in Figure 2,

3 Helland and Campbell call these “apologies.” [34].

M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:5

the AddWins restriction allows for both adding items and removing collections; the latter is
provisional and can be later invalidated with a RemoveCollectionLost contingency. In the
scenario from Section 2, this contingency could be used to send Bob a message if he attempted
to remove a collection while Alice was concurrently adding items to it.

Merge functions. Restrictions include merge functions to handle any conflicts that may
arise when two operations execute concurrently, thus allowing for restorative conflict-handling
strategies. Merge functions pattern-match over pairs of operations and their arguments, and
then dictate whether to edit the operations, delete them, or synthesize new ones. Merge func-
tions can also call contingencies of provisional operations as needed. For example, in Figure 2,
the merge function for AddWins invalidates collection-removal operations concurrent with
operations that add an item to the same collection, and then calls the RemoveCollectionLost
contingency of the invalidated remove operations.

Monotonic tests. Because updates to replicated objects can be reordered, reads of the
object’s state before convergence can vary across replicas. Thus, reading a replicated object’s
state directly is usually eschewed: instead, a special class of reads, found in programming
models such as LVars (threshold reads) and Lasp (monotonic reads), is defined [36, 41]. Re-
strictions provide a similar functionality with monotonic tests: boolean expressions whose
value is guaranteed to remain true once it becomes true, no matter what further operations
are received by the replica. With this property, monotonic tests can be used for triggers, code
whose execution is blocked until a monotonic test becomes true. For example, in Figure 2
the AddWins restriction has a sizeAtLeast test that returns whether the number of items in
the library has passed some threshold. If Alice (from Section 2) is worried that the library is
getting too big, then this test can be used to inform her that the library is bigger than some
threshold size. This test cannot be invalidated because collection removals do not remove
items, but rather move them to a default collection.

3.1 Safety guarantees
Importantly, restrictions are intended to offer the following type-safety guarantees:

No object can perform an operation forbidden by the restriction under which it is shared.
Merge functions are exhaustive: all possible conflicts between operations allowed under
a restriction are handled by a merge function declared in the restriction.
Monotonic tests cannot be invalidated: once their value is true, their value will always be
true afterward until replicas explicitly coordinate.

Taken together, these three guarantees provide a strong safety result: a programwith correct
merge functions, correct precondition and postcondition annotations, and no contingencies,
always enjoys strong consistency.

To support these guarantees, we take inspiration from Indigo [10] and annotate interfaces of
shared objects with pre- and postconditions, which are written as logical formulas over abstract
predicates and read operations defined in the interface. Abstract predicates do not have a
concrete definition; they are asserted directly in pre- or postconditions in order to describe the
assumptions and effects of an operation over an object’s state. Including read operations in
the language of postconditions allows us to connect these postconditions with the state of the
object, describing how subsequent reads will be affected by an operation. These annotations
allow the detection of conflicts that arise from concurrent operations—for example, when the
postcondition of one operation violates the precondition of another, or when two operations
have conflicting postconditions. Thus the type checker can determine whether all such conflicts
are handled by the merge function. The annotations can also be used to determine whether

SNAPL 2019

11:6 A Tour of Gallifrey, a Language for Geodistributed Programming

operations can violate the monotonicity of tests. Like Indigo, we plan to use an SMT solver
to verify that the pre- and postcondition annotations on operations are consistent with our
desired safety guarantees [10].

Consider the annotated Library interface in Figure 1 and its restrictions in Figure 2.
Here, addItem adds an item to an existing collection if it is not already in the collection,
so its postcondition says that the return value of numItems after invocation of addItem (i.e.
next(numItems())) is at least the return value of numItems before invocation—the number
of items in the library remains the same or it increases by one. Meanwhile, removeCollection
removes a collection from the library without removing the items in it from the library, instead
moving orphaned items (those not in any other collection) to a default collection. Since the
postcondition of removeCollection violates the precondition of addItemwhen their arguments
reference the same collection, the concurrent operations conflict, which is handled by the merge
function for AddWins — otherwise, if the merge function does not handle this conflict, AddWins
will be rejected at compile time because its merge function is not exhaustive. Note that the
sizeAtLeast test in AddWins is verified to be monotonic at compile time because the allowable
operations under AddWins have postconditions that do not decrease the value of numItems().

3.2 Transitioning between restrictions
One might find shared object restrictions too restrictive: since they are essentially static
contracts, they might appear to ban certain operations throughout the entire lifetime of a
shared object. Prior work [40,48,57] has shown that loosely synchronized replicas can eschew
coordination for most operations, and then coordinate only to safely change established invari-
ants. Taking a cue from this work, we propose the ability to transition shared objects across
restrictions. The strict separation of object implementations and conflict resolution strategies
allows programs to dynamically transition between restrictions, changing the conflict-handling
strategy of shared objects over time. Coordination between replicas during transition points
ensure that replicas always agree on the conflict-handling strategy for an object. We introduce
new language constructs to support this feature.

Union restrictions. First, we introduce a new kind of restriction, a union restriction,
which is composed of a set of restrictions. Replicated objects shared under a union restriction
always are associated with a concrete restriction, which must be a member of the union, at
runtime. Like regular restrictions, union restrictions are part of the type of a shared object:
syntactically, an object declared with type shared[U] T is of class T and is shared under a
union restriction U. For example, Figure 3 defines a union restriction Threshold defined for
the Library interface at line 5, ranging over the AddWins and ReadOnly restrictions, and the
field library is declared as a shared[Threshold] Library.

Matching restrictions. Objects shared under union restrictions can at run time be in
any of the restrictions specified; but all replicas must agree on which concrete restriction they
are under. To determine the current restriction of an object shared under a union restriction,
Gallifrey provides a match_restriction construct, which allows the programmer to exhaus-
tively match over all the constituent restrictions of the union restriction. For example, at
Figure 3 line 23, the addItem method uses this construct to test whether the library currently
allows modification. Gallifrey may synchronize before this match_restriction to ensure that
all replicas of the shared object agree on the shared object’s current restriction.

Transitioning restrictions. Next, we introduce the ability to transition between restric-
tions. The primitive operation transition() creates a request to transition an object shared
under a union restriction to one of its constituent restrictions. After any replica requests a
transition, Gallifrey’s runtime asynchronously initiates a transition at all replicas. A reference

M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:7

1 restriction ReadOnly for Library {
2 allows getItems ;
3 }
4
5 restriction Threshold = AddWins | ReadOnly
6
7 class LibraryClient {
8 shared [Threshold] Library library ;
9 shared [Messaging] User user;

10
11 public LibraryClient (shared [Threshold] Library lib ,
12 shared [Messaging] User u) {
13 library = lib;
14 user = u;
15 match_restriction library with
16 | shared [AddWins] Library awlib {
17 changeRestriction (awlib);
18 }
19 | shared [ReadOnly] Library rolib { }
20 }
21
22 void addItem (unique Item item , unique String collection) {
23 match_restriction library with
24 | shared [AddWins] Library awlib {
25 awlib. addItem (item , collection);
26 }
27 | shared [ReadOnly] Library rolib {
28 throw ClientException (" Library is read only!");
29 }
30 }
31
32 void removeCollection (unique String collection) {
33 match_restriction library with
34 | shared [AddWins] Library awlib {
35 provisionallyRemove (awlib , collection);
36 }
37 | shared [ReadOnly] Library rolib {
38 throw ClientException (" Library is read only!");
39 }
40 }
41
42 unique Set[Item] getItems (unique String collection) {
43 match_restriction library with
44 | shared [AddWins] Library awlib {
45 throw ClientException (" Library must be read only!");
46 }
47 | shared [ReadOnly] Library rolib {
48 return rolib. getItems (collection);
49 }
50 }
51
52 void changeRestriction (shared [AddWins] Library awlib) {...}
53
54 void provisionallyRemove (shared [AddWins] Library awlib ,
55 unique String collection){...}
56 }

Figure 3 Client that uses a shared library object.
SNAPL 2019

11:8 A Tour of Gallifrey, a Language for Geodistributed Programming

1 void changeRestriction (shared [AddWins] Library awlib){
2 thread (awlib , user) {
3 when (awlib. sizeAtLeast (100)) {
4 user. sendMessage (" Library is too big!");
5 transition (library , ReadOnly);
6 }
7 }
8 }

Figure 4 Using a trigger to transition restrictions

shared with a union restriction allows transitioning only among its constituent restrictions,
ensuring a statically known bound on the possible restrictions on referenced shared objects.
A transition induces coordination among nodes that hold a reference to the shared object to
establish consensus on the new restriction for the shared object. This process is asynchronous;
the transition does not necessarily take place immediately, so to use the shared object under
the new restriction, one must match over the union restriction. When a transition is in progress,
match_restriction may block until it is complete, after which the arm for the new restriction
is executed. Note that transition() is a request: it does not guarantee that the restriction
occurs, since it can fail for various reasons (e.g., coordination times out, or there is a concurrent
transition to another restriction that overrides the request). Thus, match_restriction is
needed to check if the transition actually succeeds.

For an example of transitions between restrictions, consider Figure 4. The LibraryClient
constructor calls changeRestriction, which creates a thread with a new replica of the li-
brary object that adds a trigger to transition its library object to ReadOnly when the library
reaches a certain size using the sizeAtLeast test defined in AddWins. The addItem and
removeCollection methods match on the current restriction of the library to ensure it is
AddWins; otherwise the methods throw an exception. The getItems method does something
similar for the ReadOnly restriction.

4 Tracking aliasing and replication

Restrictions are an answer to how objects are shared—but not all objects need to be shared, and
we do not want to pay the cost and complexity of sharing unnecessarily. Therefore Gallifreymust
support both replicated and non-replicated objects. When these replicated and non-replicated
objects interact, Gallifrey needs to guarantee restriction safety: all fields of a replicated object, if
not explicitly shared under their own restriction, can only be accessed via the object’s restriction.

To see why this rule is important, consider the following example: an implementation of the
Library interface (Figure 1) which internally uses a Set to store its contents. When an instance
of this Library is shared under some restriction, Gallifrey relies on the fact that all mutations
to the internal state of this shared library occur via operations on its restricted interface. If the
internal Set is accessed via an alias outside of the shared library’s restriction, then there is no
guarantee any mutations made via this outside alias adhere to the restriction’s requirements.

Gallifrey captures the interactions between replicated and non-replicated objects via three
reference qualifications: shared, unique, and local. The shared qualifier indicates that
objects of the qualified type are replicated. When a shared reference is passed to a new branch
or thread (Section 5.1), it implicitly constructs a new replica owned by that thread. These
shared references can be created by combining an existing unique reference with a restriction,

M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:9

after which the original unique reference is destroyed. Due to the implications of orthogonal
replication, the implementation of a shared object need not know it is shared; an object sealed
under a restriction and shared reference still has unrestricted access to itself. We see shared
references in use in Figure 3.

Handling non-replicated references is somewhat more complex. Our type system for unique
and local (collectively, unshared) references must provide two core guarantees: that at most a
single thread has access to an unshared reference at a time (race freedom) and that no references
to the unshared fields of shared objects exist outside of those shared objects (restriction safety).
To enforce these guarantees, we propose to combine a linear type system with a notion of owner-
ship (as has been done previously [29]). Unshared references in Gallifrey are always ultimately
owned by a thread or shared object. We treat unique references linearly, while local references,
which can be aliased within an owner, must be externally reachable via only their owner.

The unique reference qualification denotes transferable ownership. A unique reference is
an affine resource; its use is tracked by the type system and it cannot be aliased. A unique
reference dominates its object graph: all references transitively reachable via a unique reference
are reachable via no other external references. This provides an isolation guarantee: a unique
reference is the only way to access the object graph to which it refers. This guarantee in turn
allows Gallifrey to send unique references across concurrency boundaries without inviting race
conditions or requiring costly run-time techniques. Similar unique references have received a
great deal of support in recent language designs, including Rust [49], C++-11 [18], Wyvern [43],
and Pony [22]. Unlike many of these languages, Gallifrey does not propose to use linearity to
track memory usage, but rather only to prevent concurrent access. Because of their ability to
cross concurrency boundaries, unique references are the correct reference to use when sending
messages to shared objects, as we see in Figure 3.

The local reference qualification denotes non-transferable ownership. A local reference
statically knows its direct owner but is not linearly tracked. Direct owners of local references
are inferred at creation time based on the context in which the local reference is created; for
example, a local reference created in a constructor which received only unique references as
parameters is directly owned by the object under construction. We see a use of local references
in Figure 2. Local references cannot escape their owner without destroying it; in exchange
for this restriction, local references enjoy relaxed aliasing rules. Local references can be freely
aliased so long as all aliases share the same owner. For example, a set of local references
owned by a single object are allowed to form cycles to each other. Like unique references,
local references are inspired by a long history of language design [3, 14,15,21].

5 Revisiting provisionality: branches and contingencies

Section 3 discussed Gallifrey’s use of restrictions to guarantee strong consistency and whole-
program convergence in the absence of provisional methods. But without provisional methods,
only very limited sets of operations may appear in a restriction—for example, commutative
writes and tests, or exclusively reads. These limitations are impractical for many common
programs; sometimes programs may need to read and write a shared object, without stopping
for consensus between operations.

This is exactly the role of provisional methods. Provisional methods leave open the pos-
sibility of conflicts; in exchange, there are no limitations on what a provisional method can
do. These methods are executed optimistically, allowing users to continue operating against
replicated state without stopping for consensus.

But one cannot simply execute potentially conflicting actions without acknowledging the

SNAPL 2019

11:10 A Tour of Gallifrey, a Language for Geodistributed Programming

1 void provisionallyRemove (shared [AddWins] Library awlib ,
2 unique String collection){
3 Branch tok = branch (awlib , collection) {
4 awlib. removeCollection (collection);
5 };
6 tok.pull(RemoveCollectionLost rclost => {
7 user. sendMsg (" Cannot remove collection " + rclost . collection);
8 }, Success succ => {
9 user. sendMsg (" Removed collection " + succ. collection);

10 });
11 }

Figure 5 Using branches for a provisional operation with contingency

significant inconsistency invited by doing so. To partially recover from this, Gallifrey pairs every
provisional method with a contingency: a named callback intended to recover from—or at least
apologize for—any consistency error resulting from using a provisional method. Contingencies
are invoked directly from themerge function for the associated restriction, and so can receive any
necessary information from the merge. As a simple example of the use of these features, recall
the running example introduced in Section 2. In this example, we considered allowing Bob to
provisionally remove a collection from the library, while leaving open the possibility that amerge
function would reject this operation. To compensate, Bob registers a contingency callback,
which sends an error message indicating the removal did not take place (Figure 5, line 7).

5.1 Branches
Using provisional methods and contingencies raises important semantic questions. After
the invocation of a provisional method on a shared object, are all subsequent uses of this
object also provisional? If a provisional observation from an object flows to other values in the
program, should those values also be considered provisional? What if that flow reaches different,
unrelated shared objects? And precisely where is the right place to register a contingency
callback—close to the provisional invocation, or close to the eventual visible use of its result?

In Gallifrey, the key to answering all these questions is a new mechanism called branches.
Branches exist to contain provisionality; like their namesake in the world of version control,
every branch possesses its own fork of state, isolated from external mutations until it is merged
back into its parent. Programmers may enter and exit (“check out”) in-progress branches,
spawn sub-branches, and freely choose to discard or merge branches. When a provisional
operation occurs within a branch, then the entire branch is considered provisional; any code
that executes after a provisional operation may be tainted by that provisional operation, and
so inherits all of its potential for conflict. Helpfully, branches also allow deferring the point at
which contingencies are required. Because branches are strongly isolated from the remainder
of the system, any potential conflicts are safely contained within the branch; the only point
at which these conflicts become visible is when the branch attempts to merge with the outside
world. It is precisely this point at which we require programmers to supply contingencies.

Syntactically, branches are created by the syntax branch(args...){body}, as in Figure 5.
The args... is a list of shared or unique objects that the branch now owns, and which are
available within the branch’s body. When a unique object passes into a branch, its ownership
is moved; thus past references to these objects are no longer valid. When a shared reference
first passes into a branch, a new replica is made for the branch. The branch’s body is executed

M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:11

1 void atm_withdraw (shared [All] Account acct , unique Integer amnt) {
2 Branch tok = branch (acct ,amnt){
3 unique Integer withdrawn_amnt = acct. withdraw (amnt);
4 unique Double percent = withdrawn_amnt / acct. balance ();
5 };
6 if (tok.peek[percent] <= 0.25){
7 tok.pull(Overdraft amnt => { charge_overdraft (acct) },
8 UpdatedBalance => { /* ignore */ });
9 } else tok. commit ();

10 }

Figure 6 More advanced features of branches

immediately, after which control proceeds with the statement immediately following the branch.
The branch construct also returns a token via which programmers can interact with the branch.
This token is linear; it cannot be aliased, and it must be either merged or aborted before it
goes out of scope.

A typical use of the branch’s token, as seen in Figure 5 on line 6, is to optimistically merge
the branch into the calling context via pull. This construct immediately merges everything
in the branch with pull’s calling context, leaving open the potential for conflict with other,
as-yet-unmerged branches. Because of this potential for future conflict, users must provide
a set of contingency callbacks covering all provisional behavior that occurred on this branch.
These callbacks are intended as a means to repair any damage done in the case of a consistency
violation caused by any conflict.

To avoid the possibility of conflict, Gallifrey’s branches also support a synchronous commit
operation. commit blocks until a consensus can be reached among replicas, deciding which
provisional operations are consistent with global state, and which, having been found in conflict
with already accepted operations, should be rejected by the system. After commit, all effects
from within the branch become visible to the wider system; operations rejected due to conflict
are re-executed against consistent state, with the new results replacing the old. With commit,
branches become a generalization of transactions. Branches operate on an isolated snapshot
of state, apply the effect of all their operations, verify that their snapshot remains consistent
with the system at large, and re-execute their operations if not.

This token can be used for more advanced features as well. With token.abort(), program-
mers can explicitly abandon the branch. With token.peek, programmers can steal a reference
to the branch’s state without first merging the branch, and without needing to supply contin-
gencies so long as the result of peek does not influence any visible actions outside the branch.

These features are illustrated in Figure 6. This figure introduces the example of withdrawing
from an ATM. Themethod takes a shared bank account which supports provisional withdraw()
and provisional balance(), with contingencies Overdraft and UpdatedBalance respectively.
The withdrawal is allowed to proceed provisionally if the chance for overdraft is low; if the
chance of overdraft is high then it instead chooses to synchronously commit the withdrawal.

5.2 Information flow in branches
Branches in general—and peek in particular—require fine-grained tracking of provisionality.
Gallifrey tracks provisionality using an information flow type system [50].

In an information flow type system, values are associated with labels drawn from a lattice.
Our lattice contains elements that are sets of provisional methods, ordered by subset inclusion.

SNAPL 2019

11:12 A Tour of Gallifrey, a Language for Geodistributed Programming

Each value is labeled with the set of provisional methods which have influenced it. Values
labeled with the empty set (indicating they have not been influenced by provisional behavior)
live at the bottom of the lattice (⊥), while values which have been influenced by all possible
provisional behavior live at the top (>). To prevent computation from depending on provisional
observations, information should be influenced only by information whose label is a subset
of that of the influenced information. Information flow handles both direct influence, like
assignment, and indirect influence, like control flow.

Every reference and variable in Gallifrey—including unique, local, shared, and even
branch tokens—is associated with one of these provisional labels. Branch tokens are somewhat
special; branches contain computation, and so their labels indicate the set of provisionalmethods
that have been called within them. Similarly, in order to call a provisional method on a shared
reference it must be possible to type that reference with an appropriate provisional label—which
in turn means it must reside within a branch that can be typed with the appropriate label.

Provisional labels define precisely where the effects of provisional behavior may be visible,
enabling the safe use of peek. With token.peek[ref], users can read a unique value from
a branch and use this value outside of the branch’s scope. This value’s label contains the
provisional operations from the branch which have influenced it. For example, a user can use a
peeked value to decide whether its branch should be synchronously commited or asynchronously
pulled (Figure 6 line 6).

Our information-flow types also delay the point at which contingency callbacks for peeked
values must be supplied. This is because contingencies are only necessary when provisional oper-
ations have influenced some visible action; in Gallifrey, visible actions can only be influenced by
values with the empty provisional label (⊥). Thus our information-flow type system will prevent
a peeked value from influencing a visible action unless the peeked value is endorsed, an operation
which downgrades its label so that it can be used in contexts that do not allow influence from
provisional operations. It is at this point of endorsement that the user must provide contingency
callbacks. For example, a user might peek a value from a branch, transform it, and print the
result; it is at the point of printing the result that the user must endorse the peek, making it
easy to supply callbacks which apologize for the observed effect of the peek—the printed value.

6 Related work

Handling conflicts in concurrent operations. A recent trend is to treat conflict-handling
strategies as part of a shared object’s implementation, as seen in the literature on conflict-free
replicated data types [52] (CRDTs) and as seen in programmingmodels such as Bloom [4], Cloud
Types [17], Lasp [41], and others [35,36,53]. Earlier systems—like Bayou [56], Dynamo [25],
and others [23,51]—often specify conflict handling separately from an object’s implementation.
But these systems do not ensure that conflict handling is sensible: they leave the job of merging
inconsistent state entirely to the user, inviting errors by allowing partial, incorrect, or even
inconsistent merge functions. Gallifrey takes this second approach, since restrictions are defined
separately from interfaces, and can be defined without access to implementation internals.
However, it aims to provide stronger guarantees that these systems by making restrictions part
of a shared object’s type, allowing unsafe use of the shared object to be rejected at compile
time (e.g. when prohibited operations are used, when a merge function is not exhaustive, when
the monotonicity of a test can be violated by an allowed operation).

Speculative operations. To provide higher availability in a geo-replicated setting, some
systems expose speculative operations in their programming model. Correctables [32] provides
a mechanism to speculate on preliminary values returned by weakly consistent operations.

M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:13

If the final values returned by strongly consistent operations do not match the preliminary
values, then Correctables allows programmers to recompute or discard the effects of the initial
speculation. PLANET [45] provides callbacks that fire depending on what stage a transaction is
in before a specified timeout, also allowing users to specify a stage when it speculatively commits
(i.e., will commit “if all goes well”, with some explicit probability that all will go well). It also
provides callbacks that fire when the final status of the transaction is known, allowing users to
execute apologies [34] when it was speculated to have committed but was ultimately aborted.
In a different setting, Concurrent Revisions [16] provides an intuitive programming model for
parallel programs by allowing “revisions” to fork off the state of objects and then to join revisions
back into their parents bymerge functions specified using revision types. Gallifrey takes a similar
approach, allowing programmers to speculate at the language level within explicit branches
(Section 5.1) that fork off the state of shared objects. Branches can be used without coordination
among replicas, in which case Gallifrey requires our own notion of “apologies” via contingency
callbacks; with coordination, branches enjoy strong consistency—no apologies needed.

Coordination avoidance. Work on coordination avoidance in distributed databases has
shown that nodes need to coordinate only when they would otherwise execute operations which
violate specified invariants [7, 10, 40, 47, 48, 57]. Gallifrey’s restrictions (Section 3) embody
this principle by refining the interface of a shared object such that only specific operations are
available at every replica. Restrictions are a type-safe mechanism for coordination avoidance,
rejecting programs that violate invariants at compile time. In particular, Indigo presents a
framework for users to develop replicated objects which allow commutative operations [10].
Indigo allows the programmer to specify pre- and postconditions, used to statically determine
which pairs of operations may conflict. When operations are determined to conflict, Indigo’s
compiler inserts appropriate code to use reservations [47] in a way that is analogous to Gal-
lifrey’s restrictions. We similarly use pre- and postcondition annotations to determine when
operations conflict in checking for the exhaustiveness of merge functions. Additionally, we use
these annotations to check that the monotonicity of tests are not violated by allowed operations
in the restriction. Unlike Gallifrey Indigo does not support orthogonal replication; its analysis
is performed on the object interface, while ours is performed on the restrictions.

Linear and ownership types. Linear and ownership type systems have been long studied
as mechanisms to avoid races in concurrent code. Linear type systems were identified as a
mechanism by which ownership, or alias restriction, could be tracked at least as early as
Clarke’s work in 1998 [21]. Using ownership and linearity to allow for safe concurrency has been
explored several times, but was first investigated by Flanagan and Abadi [28]. Ownership types
without linearity have been used to avoid races in several previous works [12–15,20, 24, 33, 54];
linear type systems for concurrency safety have been similarly well-studied [26, 30, 31]. By
ensuring that all owners are linear, Gallifrey can combine the concurrency protections of linear
references and ownership references. This combination is reminiscent of linear regions [29].

7 Future work

We now give a high-level description of open questions, potential challenges, and possible
solutions as we flesh out Gallifrey’s design and implementation.

7.1 Extensions to the language design
Bootstrapping. Our language as described to this point works well for objects which require
symmetric replication across a potentially unbounded group of nodes. It is mute on the question
of bootstrapping: how does a newly-started node initially receive a replicated object to use?

SNAPL 2019

11:14 A Tour of Gallifrey, a Language for Geodistributed Programming

For this, we take inspiration from Fabric [38] and provide syntax by which a program can name
a global variable located on some other Gallifrey node. Concretely, we plan to support the
syntax gal://hostname.tld/TypeName/Restriction/instance_name to name the global
object instance_name of type shared[Restriction] TypeName located on the machine at
hostname.tld.

Typestate and reopening branches. Earlier in this paper, we mentioned that Gallifrey
programmers can enter and exit in-progress branches.
With the syntax token.open(args...){body} programmers can re-enter a branch, passing it
new references to own and giving it a new body to execute. The body here has access to all the
objects the branch already owns in addition to the ones newly passed in via open. To further
refine our information-flow type information and to enable the token.open feature, Gallifrey
employs typestate on branch tokens and unique references. With typestate, linear items can
acquire additional labels on their types as the program evolves. Combining information flow
with typestate yields a novel variant of statically tracked, flow-sensitive information flow.
For token.open, this means that provisional behavior introduced during open’s body does
not require a provisional label on the token before the point of open. Using this we can also
extend abort and pull, allowing programmers to recover (via peek) unique objects owned
by branches even after they have completed.

Actors. Gallifrey’s replicated objects are best suited to a setting where all replicas are
peers; we cannot comfortably capture concepts like “all nodes may perform some operations
and a designated owner node may perform some additional operations”. To support explicitly
centralized objects, Gallifrey should include a native notion of actors [2]. We have not yet
explored how actors fit into the design of Gallifrey.

Subtyping on restrictions. We desire subtyping on restrictions for two reasons. First,
we would like to make it easy for users to write parametric code. It should not be an error to
pass a more permissive restriction (i.e., more operations allowed) to a function that expects a
less permissive restriction. The second is for encapsulation: a programmer may wish to expose
a reference to a shared object via a restriction that permits fewer operations on that object,
retaining the more permissive restriction for themselves. To implement subtyping, we plan to
view restrictions as records of their allowed operations (with contingencies) and use standard
width subtyping on records.

Borrowing unshared values. Gallifrey’s type system guarantees race-freedom in the
presence of replicated objects, but relies on a strong set of linear types in order to do so.
Using these types is restrictive; writing something as simple as a print function involves one
print that takes and returns unique values, and another print which only works with local
values. Most linear or ownership type systems avoid this problem with an explicit notion of
borrowing—taking ownership of a resource temporarily, and returning it to the user afterwards.
We need to create a notion of borrowing that works with both local and unique objects.

Extensions to monotonic tests. Monotonic tests are used with when blocks to set up
a trigger. When the condition in the when block becomes true, then the body of the block
executes. We believe the language of conditions within the when block’s condition could be
enriched. In general, it should be safe to use any function on tests as part of a when’s condition
so long as those functions are monotonic with respect to boolean ordering. For example,
conjunctions of monotonic tests is also monotonic: it becomes true when its conjuncts become
true, and since its conjuncts never become subsequently false, it never becomes subsequently
false either. We hope to take advantage of recent work by Clancy and Miller [19] to statically
prove such functions monotonic and thus safe for use in triggers.

M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:15

7.2 Implementation considerations
We envision Gallifrey as supporting the next generation of wide-area replicated applications.
It requires an efficient, correct implementation of a compiler and a runtime system.

Run-time consistency guarantees. In order to give our branches a fighting chance of
merging (without firing their contingencies) and to cut down on the number of distinct merge
events in the system, we expect to provide a baseline of at least causal+ consistency [39] or
even prefix consistency [55] for all objects within the system. As a result, there is a natural
tree-like ordering on all events for a given replicated object—in contrast to much of the related
work [5, 36,41], which do not assume causality.

Replicated object state. We expect to represent shared objects as a log of events,
containing both mutative operations (which determine the state of shared object) and read
or test operations (whose results must be respected by provisional mutations). A common
performance concern for systems that maintain and merge histories for replicated objects is
compaction—when can the system safely drop a prefix of the history that is guaranteed to be
stable? One possible solution is to use a vector clock to track the latest committed update
known by each replica of an object [42]. Prefixes of the history that have been committed to all
replicas, as determined by minimum of the vector clock values, can be safely garbage collected
by the system, avoiding extreme memory or storage overheads for long-living objects. Other
potential solutions include use existing designs for consistent replicated logs that perform
compaction [8, 9] or enforcing a more centralized approach to common global history [17].

Tracking active replicas and restrictions. In order to safely and consistently commit
potentially conflicting updates to a replicated object or transition the restrictions of shared
objects, Gallifrey must contact all other replicas and ensure they will behave consistently with
respect to the update. But in order to do this, the systemmust knowwho holds replicas of shared
objects and what restrictions are guaranteed by references to the replicas. Gallifrey applications
are intended to operate in settings with large numbers of nodes that go through periods of discon-
nection, making it difficult to determine if a disconnected replica intends to reconnect and con-
tinue making progress, has failed, or is simply no longer replicating a given object or referencing
it under a particular restriction. Existing systems solve this either by running an external mem-
bership service or having replicas manage the membership themselves as part of the protocol.

Consistent synchronous branch merges. As mentioned in Section 5.1 branches with
provisional operations can be synchronously committed without risking provisional conflicts,
giving programmers access to the strong and expressive semantics of traditional transactions.
We must strive to make this transactional commit operation usable. In particular it must be
typically fast, for otherwise programmers will be tempted to fall back to asynchronous pulls,
inviting more provisional behavior than they may truly require. This can be solved with an
appropriate choice of an efficient commit protocol such as two-phase commit (2PC) [11] or
a consensus protocol such as Paxos [37] or Raft [44]. A key challenge introduced by Gallifrey
is its tendency toward disconnection; it will be necessary to carry out these commits with high
probability even in the presence of intermittent disconnection.

Efficient restriction matching and transitions. To ensure that matching does not
require blocking and coordinating on every use, the system can provide mechanisms for nodes
to acquire and reuse guarantees that an object will be operating under a specific restriction.
Thus, after coordinating and identifying the current restriction once, the restriction can be
reliably matched later in the application without coordinating again. Transitions, meanwhile,
need to perform a consistent commit to update the allowed restrictions for references to an
object. We believe this will be solved using a commit protocol, similar to merging branches.

Exposing flexibility to the user. There are many difficult tradeoffs and design decisions

SNAPL 2019

11:16 A Tour of Gallifrey, a Language for Geodistributed Programming

to be made in Gallifrey’s runtime. These tradeoffs are necessarily influenced by the particular
Gallifrey deployment in question: is the application running across data centers, or across
phones? Whatever mechanisms we ultimately create, we must always provide the Gallifrey user
with choices to better match Gallifrey’s runtime characteristics to the user’s deployment domain.

8 Conclusion

Our ideas for Gallifrey represent a new vision for handling concurrent, distributed programming.
With restrictions, Gallifrey separates what can be replicated from how it is shared, and provides
a statically enforced mechanism for ensuring consistent access to replicated objects. With
branches, Gallifrey unifies threads, transactions, and replicas into a single intuitive construct.
With contingencies, Gallifrey provides some sanity to working with weakly consistent state,
allowing explicitly scoped violations of isolation and consistency.

Taken together, these features represent a compelling answer to the question of how to write
distributed, concurrent, programs with replicated data. While we do not yet have an implemen-
tation of or formal results for this language, we hope that its ideas prove stimulating to readers.

M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:17

References
1 Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer Programs

- 2nd Edition (MIT Electrical Engineering and Computer Science). The MIT Press, jul 1996.
2 Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,

Cambridge, MA, USA, 1986.
3 Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations for program

understanding. In 17th ACM SIGPLAN Conf. on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 311–330, 2002.

4 Peter Alvaro, Peter Bailis, Neil Conway, and Joseph M. Hellerstein. Consistency without
borders. In ACM Symp. on Cloud Computing (SoCC), pages 23:1–23:10, 2013.

5 Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Marczak. Consistency analysis
in Bloom: a CALM and collected approach. In CIDR (Conference on Innovative Data Systems
Research), pages 249–260, 2011.

6 Malcolm Atkinson and Ronald Morrison. Orthogonally persistent object systems. The VLDB
Journal, 4(3):319–402, July 1995.

7 Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and Ion
Stoica. Coordination avoidance in database systems. Proceedings of the VLDB Endowment,
8(3):185–196, 2014.

8 Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler, Michael Wei, and
John D. Davis. CORFU: A shared log design for flash clusters. In 9th USENIX Symp. on
Networked Systems Design and Implementation (NSDI), pages 1–14, San Jose, CA, 2012.

9 Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, Michael
Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango: Distributed data structures
over a shared log. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, 24th ACM Symp. on Operating System Principles (SOSP), 2013.

10 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça, Mahsa
Najafzadeh, and Marc Shapiro. Putting consistency back into eventual consistency. In ACM
SIGOPS/EuroSys European Conference on Computer Systems, page 6, 2015.

11 Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Control and Recov-
ery in Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

12 Adrian Birka and Michael D. Ernst. A practical type system and language for reference
immutability. In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’04, pages 35–49, New York,
NY, USA, 2004.

13 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe
programming: Preventing data races and deadlocks. In Proceedings of the 17th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’02, pages 211–230, New York, NY, USA, 2002.

14 Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object
encapsulation. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’03, pages 213–223, New York, NY, USA, 2003.

15 Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for race-free Java
programs. In 16th ACM SIGPLAN Conf. on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), Tampa Bay, FL, October 2001.

16 Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent programming with
revisions and isolation types. In 25th ACM SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), OOPSLA ’10, pages 691–707, New York,
NY, USA, 2010.

17 Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P Wood. Cloud types for
eventual consistency. In European Conference on Object-Oriented Programming, pages 283–307.
Springer, 2012.

SNAPL 2019

https://www.xarg.org/ref/a/0262011530/
https://www.xarg.org/ref/a/0262011530/
http://dx.doi.org/10.1145/2523616.2523632
http://dx.doi.org/10.1145/2523616.2523632
http://dl.acm.org/citation.cfm?id=615224.615226
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan
http://dx.doi.org/10.1145/2517349.2522732
http://dx.doi.org/10.1145/2517349.2522732
http://dx.doi.org/10.1145/1028976.1028980
http://dx.doi.org/10.1145/1028976.1028980
http://dx.doi.org/10.1145/582419.582440
http://dx.doi.org/10.1145/582419.582440
http://dx.doi.org/10.1145/604131.604156
http://dx.doi.org/10.1145/604131.604156
http://dx.doi.org/10.1145/1869459.1869515
http://dx.doi.org/10.1145/1869459.1869515

11:18 A Tour of Gallifrey, a Language for Geodistributed Programming

18 Working draft, standard for programming language C++. http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf, 2011.

19 Kevin Clancy and Heather Miller. Monotonicity types for distributed dataflow. In Proceedings
of the 2nd Workshop on Programming Models and Languages for Distributed Computing, number
CONF, 2017.

20 Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen. Minimal ownership
for active objects. In Asian Symposium on Programming Languages and Systems, pages 139–154.
Springer, 2008.

21 David G Clarke, John M Potter, and James Noble. Ownership types for flexible alias protection.
In ACM SIGPLAN Notices, volume 33, pages 48–64, 1998.

22 Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny capabilities
for safe, fast actors. In 5th Int’l Workshop on Programming Based on Actors, Agents, and
Decentralized Control (AGERE!), pages 1–12, 2015.

23 Natacha Crooks, Youer Pu, Nancy Estrada, Trinabh Gupta, Lorenzo Alvisi, and Allen Clement.
Tardis: A branch-and-merge approach to weak consistency. In ACM SIGMOD Int’l Conf. on
Management of Data, pages 1615–1628, 2016.

24 David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Universes for race safety.
Verification and Analysis of Multi-threaded Java-like Programs (VAMP), pages 20–51, 2007.

25 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
Dynamo: Amazon’s highly available key–value store. In 21st ACM Symp. on Operating System
Principles (SOSP), 2007.

26 Manuel Fähndrich and Robert DeLine. Adoption and focus: Practical linear types for imperative
programming. In ACM SIGPLAN Conf. on Programming Language Design and Implementation
(PLDI), June 2002.

27 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. How to
Design Programs: An Introduction to Programming and Computing. The MIT Press, feb 2001.

28 Cormac Flanagan and Martin Abadi. Types for safe locking. In European Symposium on
Programming, pages 91–108. Springer, 1999.

29 Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are all you need. In European
Symposium on Programming, pages 7–21. Springer, 2006.

30 Colin S Gordon, Matthew J Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy.
Uniqueness and reference immutability for safe parallelism. In ACM SIGPLAN Notices,
volume 47, pages 21–40, 2012.

31 Dan Grossman. Type-safe multithreading in Cyclone. In ACM SIGPLAN Int’l Workshop on
Types in Languages Design and Implementation (TLDI), pages 13–25, 2003.

32 Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremental consistency
guarantees for replicated objects. In 12th USENIX Symp. on Operating Systems Design and
Implementation (OSDI), pages 169–184, 2016.

33 Philipp Haller and Martin Odersky. Capabilities for uniqueness and borrowing. In European
Conference on Object-Oriented Programming, pages 354–378. Springer, 2010.

34 Pat Helland and Dave Campbell. Building on Quicksand. CIDR (Conference on Innovative
Data Systems Research), 2009.

35 Farzin Houshmand and Mohsen Lesani. Hamsaz: replication coordination analysis and synthesis.
ACM on Programming Languages (PACM), 3(POPL):74, 2019.

36 Lindsey Kuper and Ryan R Newton. LVars: Lattice-based data structures for deterministic
parallelism. In Proceedings of the 2nd ACM SIGPLAN workshop on Functional high-performance
computing, pages 71–84, 2013.

37 Leslie Lamport. The part-time parliament. ACM Trans. on Computer Systems, 16(2):133–169,
May 1998.

http://dx.doi.org/10.1145/2824815.2824816
http://dx.doi.org/10.1145/2824815.2824816
https://www.xarg.org/ref/a/0262062186/
https://www.xarg.org/ref/a/0262062186/
http://dx.doi.org/10.1145/279227.279229

M. Milano, R. Recto, T. Magrino, and A. C. Myers 11:19

38 Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers. Fabric:
A platform for secure distributed computation and storage. In 22nd ACM Symp. on Operating
System Principles (SOSP), pages 321–334, October 2009.

39 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area storage with COPS. In 23rd ACM Symp. on
Operating System Principles (SOSP), 2011.

40 Tom Magrino, Jed Liu, Nate Foster, Johannes Gehrke, and Andrew C. Myers. Efficient,
consistent distributed computation with predictive treaties. In ACM SIGOPS/EuroSys
European Conference on Computer Systems, March 2019.

41 Christopher Meiklejohn and Peter Van Roy. Lasp, a language for distributed, coordination-free
programming. In Int’l Symp. on Principles and Practice of Declarative Programming, pages
184–195, 2015.

42 MatthewMilano and AndrewCMyers. Mixt: a language for mixing consistency in geodistributed
transactions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 226–241, 2018.

43 Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex Potanin, and Jonathan
Aldrich. Wyvern: A simple, typed, and pure object-oriented language. In 5th Workshop on
Mechanisms for Specialization, Generalization and Inheritance., July 2013.

44 Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
2014 USENIX Annual Technical Conference (USENIX ATC 14), pages 305–319, Philadelphia,
PA, 2014.

45 Gene Pang, Tim Kraska, Michael J. Franklin, and Alan Fekete. PLANET: making progress
with commit processing in unpredictable environments. pages 3–14, 2014.

46 Benjamin C. Pierce. Types and Programming Languages (The MIT Press). The MIT Press,
feb 2002.

47 Nuno Preguiça, J. Legatheaux Martins, Miguel Cunha, and Henrique Domingos. Reservations
for conflict avoidance in a mobile database system. In Proceedings of the 1st International
Conference on Mobile Systems, Applications and Services, MobiSys ’03, pages 43–56, New York,
NY, USA, 2003.

48 Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch, Nate Foster,
and Johannes Gehrke. The homeostasis protocol: Avoiding transaction coordination through
program analysis. In ACM SIGMOD Int’l Conf. on Management of Data, pages 1311–1326, 2015.

49 Rust programming language. http://doc.rust-lang.org/0.11.0/rust.html, 2014.
50 Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1):5–19, January 2003.
51 Hans-Jürgen Schönig. PostgreSQL Replication. Packt Publishing Ltd, 2015.
52 Marc Shapiro. A Comprehensive Study of Convergent and Commutative Replicated Data

Types. In Ling Liu and M. Tamer Özsu, editors, Encyclopedia of Database Systems, pages 1–5.
Springer New York, New York, NY, 2017.

53 Krishnamoorthy C Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative
programming over eventually consistent data stores. In ACM SIGPLAN Notices, volume 50,
pages 413–424, 2015.

54 Sriram Srinivasan and Alan Mycroft. Kilim: Isolation-typed actors for Java. In European
Conference on Object-Oriented Programming, pages 104–128. Springer, 2008.

55 Doug Terry. Replicated data consistency explained through baseball. Commun. ACM,
56(12):82–89, December 2013.

56 Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, and Mike J. Spreitzer.
Managing update conflicts in Bayou, a weakly connected replicated storage system. In 15th

ACM Symp. on Operating System Principles (SOSP), pages 172–183, December 1995.
57 Michael Whittaker and Joseph M Hellerstein. Interactive checks for coordination avoidance.

Proceedings of the VLDB Endowment, 12(1):14–27, 2018.

SNAPL 2019

http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://www.cs.cornell.edu/andru/papers/fabric-sosp09.html
http://dx.doi.org/10.1145/2790449.2790525
http://dx.doi.org/10.1145/2790449.2790525
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
http://dx.doi.org/10.1145/2588555.2588558
http://dx.doi.org/10.1145/2588555.2588558
https://www.xarg.org/ref/a/0262162091/
http://dx.doi.org/10.1145/1066116.1189038
http://dx.doi.org/10.1145/1066116.1189038
http://doc.rust-lang.org/0.11.0/rust.html
http://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://dx.doi.org/10.1007/978-1-4899-7993-3_80813-1
http://dx.doi.org/10.1007/978-1-4899-7993-3_80813-1
http://dx.doi.org/10.1145/2500500

	Introduction
	A running example
	Restrictions for shared objects
	Safety guarantees
	Transitioning between restrictions

	Tracking aliasing and replication
	Revisiting provisionality: branches and contingencies
	Branches
	Information flow in branches

	Related work
	Future work
	Extensions to the language design
	Implementation considerations

	Conclusion

