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Abstract—In this paper, a novel hierarchical signal processing
methodology is proposed for generator condition monitoring
and fault diagnosis based on raw electrical waveform data in
power networks, which can often be measured by strategically-
located waveform sensors. The impact of generator short circuit
faults on strategically located electrical waveform sensors in
power networks are firstly investigated and validated in Matlab
Simulink. Based on the large set of electrical waveform data
produced by Matlab Simulink, a hierarchical algorithm is then
designed to locate fault site location and monitor the condition of
generators in power networks. Finally, the proposed methodology
is validated in 14-bus IEEE standard power network under
different scenarios (e.g, one generator fault, two-generator-fault,
various aging levels, etc). Our results show that we can locate
fault site location and monitor the aging condition of generators
in power networks. Compared to traditional condition monitoring
and fault diagnosis based on generator sensors, our proposed
methodology can monitor a large number of generators based
on a limited number of waveform sensors, which promises to
reduce the cost of the maintenance and improve the reliability
of the power grid.

Index Terms—Synchronous Generators, Power Networks, Con-
dition Monitoring, Fault Diagnosis, Short Circuit Faults, Ad-
vanced Signal Processing

I. INTRODUCTION

Generators are playing a vital role in electrical power
generation. Synchronous generators have been major means
to generate electric power over a century. In recent years,
due to the increased penetration of wind energy, the number
of asynchronous generators have risen rapidly. Condition
monitoring and fault diagnosis of large generators in power
networks are gaining more interest since generator faults can
lead to a catastrophic failure and then outages if not detected
in the early stage. Due to aging or severe operating conditions,
generators are subject to many different types of faults including
stator faults, rotor electrical faults and rotor mechanical faults.
Among these faults, stator winding inter-turn short fault due to
the aging of winding insulation is the most dominant, which
account for over 25% of faults in generators. When the inter-
turn short fault is progressing, the condition of stator windings
deteriorates and it can lead to catastrophic failures (e.g., phase-
to-ground short circuit).
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In the past decade, many condition monitoring and fault
diagnosis methods for generators, including signal-based,
model-based and data-driven, have been investigated [1]–
[4]. Motor current signature analysis (MCSA) based on the
frequency analysis of the stator currents has been one of the
most popular noninvasive condition monitoring and diagnosis
methods. MCSA technique is mostly used to identify both rotor
faults (e.g., bearing damage, broken rotor bar, eccentricity,
end ring breakage, etc) and stator faults (e.g., short circuit
fault, etc) based on slots related harmonics [5], [6], third
harmonic [7], the sideband frequency components [8], and
the other [9]. The frequency analysis of stator voltages is
also used to detect stator winding inter-turn short faults in
some operating conditions [10], [11]. Symmetrical component
analysis, which decomposes stator current or voltage to positive-
sequence, negative-sequence, and zero-sequence components, is
one of the alternative condition monitoring and fault diagnosis
methods due to symmetry of stator windings under the healthy
condition [12], [13]. Therefore, condition monitoring and fault
diagnosis techniques based on generator sensors (e.g, voltage,
current, vibration, etc) have been widely used and promise to
reduce unscheduled downtime, and maintenance costs.

When generators are connected in power networks, cur-
rent/voltage signature signals of faulty electric machines will
propagate through the power networks [14]. The raw electrical
waveform and signals (e.g., voltage, current, harmonics, power
factor, etc) in power networks will likely change, which contain
rich information about condition of generators. In [15], [16],
some waveform information (magnitude or phase) were used
to identify parameters of generators, however, they were not
yet used to monitor the aging condition of the generators for
scheduled maintenance. In addition, for condition monitoring
and fault diagnosis of generators, raw electrical waveforms at
higher sampling rate besides magnitude and phase mentioned
above might be needed as fault/deteriorating condition of
generators will produce unusual harmonics.

To the best of our knowledge, there are no existing works in
condition monitoring/fault diagnosis of generators by analyzing
raw electrical waveforms in power networks, which can be
measured by strategically located electrical waveform sensors.

In this paper, we propose to develop advanced signal
processing methodology for generator condition monitoring
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and fault diagnosis based on strategically located waveform
senors in power networks with the goal to reduce the cost
of the maintenance and improve the reliability of the power
grid. Firstly, we build the the equivalent model of synchronous
generators under short circuit faults. Secondly, we analyze
the impact of generator short circuit faults on strategically
located electric waveform sensors in power networks. Thirdly,
we build 14-bus IEEE standard power network model in Matlab
Simulink and different scenarios (e.g, one generator fault, two-
generator-fault, various aging levels, etc) to produce a large set
of electric waveform data for condition monitoring and fault
diagnosis. Finally, based on the electrical waveform data in
power networks, we will develop data-driven signal analysis
approach to locate fault sources and estimate the aging levels
of generators in power networks.

II. ANALYSIS OF THREE-PHASE SHORT FAULT

When the short circuit faults happens in synchronous gener-
ators, the current could be multiple times of the rating current
of the generator, which could bring catastrophic damages to the
power grid. In this section, the short-circuit fault of synchronous
generators is analyzed.

Assume the generator operates at speed ω, then the flux
linkage will be: ψ = Ψ0 cos(α0 + ωt). And the fault happens
at t = 0, the induced current will produce ∆ψ to maintain the
initial flux linkage ψ0, so ∆ψ = ψ0 −Ψ0 cos(α0 + ωt).

According to the flux linkage analysis above, stator current
includes two parts: one is the DC component iap generating
the initial flux linkage ψ0; the other one is the AC component
i′at the synchronous frequency (f = ω

2π ), which generates the
rotating field to offset the rotor exciting field.

For the salient pole machine, to compensate the difference
in magnetic resistance of d- and q- axis, there will be one
additional AC component, the frequency of which is twice the
synchronous frequency of the stator current. Therefore, three
types of magnetic field will be induced by the stator. And these
three magnetic fields will then change the flux linkage in the
rotor winding. Therefore, to maintain its flux linkage in the
rotor, the rotor will have similar armature reaction and induce
three types of currents. Since the rotor is rotating at angular
speed ω, frequencies of these currents will be: ω, 0 and −ω. It
should be noted that −ω means the field rotates in the opposite
direction.

The current components which will attenuate are refereed
to as free current ∆i, while others are refereed to as forced
current i∞. The classification is shown in Table I.

TABLE I: Short Current Classification.
forced current i∞ free current ∆i

stator i∞ ∆i′ = i′ − i∞ iap, i2ω
rotor if [0] ∆ifa ∆ifω

According to the synchronous generator model and constant-
linkage theorem, the short circuit current of generators with
damping windings could be deducted by:
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Similarly, the rotor current can be obtained by:
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III. IMPACT OF GENERATOR FAULTS ON ELECTRIC
WAVEFORMS IN POWER NETWORKS

To simplify the analysis of short circuit fault, the method of
symmetrical components is used in this section to analyze
the impact of generator short circuit faults on the power
networks. A according to symmetrical components, any types of
asymmetrical three-phase phasor could be decomposed to three
symmetrical three-phase phasors. Take current for example, (3)
shows the relationship between currents in two coordinates.
Phase b and phase c currents could be derived by similar
equations.  İa(1)

İa(2)
İa(0)

 =
1

3

 1 a a2

1 a2 a
1 1 1

 İa
İb
İc

 (3)

where a = ej120
◦
, a2 = ej240

◦
; İa(1), İa(2), İa(0) are the pos-

itive, negative and zero sequence of phase currents, respectively.
Then sequence impedance is introduced to describe relationship
between voltage and current in symmetrical components coor-
dinate. Thevenin’s equivalent circuit for sequence impedance
is shown in figure1. It should be noted that the asymmetrical
components in sequence impedance are eliminated by adopting
the asymmetrical voltage source and the transmission line
reactances are modeled in Zff . For generality, the equivalent
circuit equation could be derived by:

Ėeq − Zff(1)İfa(1) = U̇fa(1)

0 − Zff(2)İfa(2) = U̇fa(2)

0 − Zff(0)İfa(0) = U̇fa(0)

(4)

Three more equations are needed to solve the equations
with 6 unknown variables, which are derived from the fault
conditions. And common faults in power system include two
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Fig. 1: Equivalent circuit of each phase sequence

TABLE II: Common Fault Condition in Power System.

fault category fault condition
single phase short U̇fa = 0 İfb = 0 İfc = 0

two phases short İfa = 0 İfb + İfc = 0 U̇fb = U̇fc
two phases grounded İfa = 0 U̇fb = 0 U̇fc = 0

phase short fault, two phase grounded short fault, etc. The
related fault conditions are listed in Table II.

Therefore, common asymmetric short faults could be solved
by (4) and the related fault equations listed in Table II. Other
bus voltage and branch current in the normal condition could
also be solved similarly. However, this method requires the
detailed grid topology information and the accurate fault
location, which may not be easy to acquire. In addition,
to simulate multiple fault cases, this method is based on a
strong assumption that the whole system is linear, which is
hardly applicable in the real power system. Therefore, in the
following section, an advanced signal processing technique will
be proposed to locate the fault source for condition monitoring
and fault diagnosis.

IV. FAULT IDENTIFICATION AND LOCATION
In this section, we use the measured waveform data to

identify and locate generator faults. Algorithm 1 shows how
the whole process works. The waveforms of voltage and
current signals V = [V1, V2, . . . , VN ]T , I = [I1, I2, . . . , IN ]T

are measured from a network with size N the nodal, where
depending on the number of phases at node i, Vi and Ii can
be row vectors of size 1, 2 or 3. In order to characterize the
waveform properties, we adopt instantaneous properties from:

sc(t) = s(t) + jH{s(t)} = A(t)ejψ(t), (5)
where s(t) is the real signal, sc(t) is the complex expression,
A(t) is the instantaneous amplitude (IA) (envelope), ψ(t) is
the instantaneous phase(IP), H is the Hilbert transform as:

H{s(t)} =
1

π

∞∫
−∞

s(τ)

t− τ
dτ. (6)

Thus, for a three phase current In = [InA, InB , InC ]T ,
where InA = AInA

ejψInA
(t). (Vn can be expressed in the

same way.)

A. Event Detection

Before identifying the location of an event, we must first
become aware of the occurrence of such event. Thanks to
the data-driven time series anomaly detection techniques, the
presence of the event can be detected continuously. The changes
of the nodal voltages and branch currents can be expressed as:

∆Vn = Vn(t) − Vn(t− w), ∆Inp = Inp(t) − Inp(t− w), (7)

Algorithm 1 Waveform based Generator Fault Identification and
Location Algorithm

1: Input: Waveforms of voltage and current.
2: Output: Fault properties and location.
3: Event detection based on time series anomaly detection tech-

niques;
4: Unbalance detection to distinguish single phase, double phase or

three phase fault;
5: Event source region determination based on measurement changes;

where, w is the analysis window size, n and p denote two
arbitrary neighboring nodes. If abnormal changes happen to
∆Vn and ∆Inp, which indicate the difference between the pre-
and post-event, an event can be detected. Once the occurrence
of an event is detected, the next step is to identify the types
of the event and location of the root cause of the event.

B. Phase Unbalance Characterization

Simulating the generator aging faults, we could meet single,
two or even three phase issues, which means the short circuit as
shown in Figure 2. The waveforms of Phases A,B, and C allow
a relatively straightforward phase unbalance characterization
based on direct comparisons of phase signal attributes.

Based on the IA, we define the current unbalance character-
ization functions Iα, Iβ , and Iγ as:

Inα =
1

3

i,j∈{A,B,C}∑
i6=j

(AIni
−AInj

)2. (8)

Inβ =
Imax − Imin

Imax
× 100%, (9)

Inγ =

i,j∈{A,B,C}∑
i6=j

Γ(AIni
, AInj

), (10)

where, In,max = max{AInA
, AInB

, AInC
} and In,min =

min{AInA
, AInB

, AInC
}, Γ denotes a thresholding function

to measure the difference. Similarly, we can also get Vα, Vβ
and Vγ . If Iβ and Vβ is not zero, there exists unbalance among
the three phases. Then we use Iγ and Vγ to determine the how
many phases are affected. In addition, Iα and Vα are used to
measure the absolute changes.

C. Identifying the Event Source Region

Assuming there are two waveform sets from two nodes, if
it happens, an event may occur in three regions: upstream of
node n, downstream of node p, and between nodes n and p.
The measurements can be expressed as Mn and Mp. Since we
not only have the voltage and current, but also the unbalance
measurements, Mn can be defined as

Mn = [InA, InB , InC , VnA, VnB , VnC , Iα, Iβ , Iγ , Vα, Vβ , Vγ ]T .
(11)

Then, event location can determined by the comparison
between ∆Mn and ∆Mp. For example, if the change patterns
of ∆Mn and ∆Mp are the same, the event happens either on
the upstream or downstream, but if those are different, the
event happens between nodes n and p.
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V. SIMULATION AND EVALUATION

Fig. 2: IEEE 14 Bus Power Network
For evaluation, a 14-bus IEEE standard power network

(Figure 2) is built to investigate the impact of the generator
faults on electrical waveforms in power networks, which is
also used to generate a large set of waveform data needed in
the proposed algorithms. In the simulation model, generators
are simplified as non-ideal three-phase voltage sources, and
the loads are modeled as constant power loads. Meanwhile,
the transmission line reactances are modeled by Simulink
block ’Three-Phase PI Section Line’. And the parameters are
calculated from the IEEE standard 14-bus testbed datasheet.
Specifically, the level of the short fault or the aging degree is
modeled as a short circuit resistance, Rf , as shown in figure 2
(only depict the single phase grounded short fault for example).
Rf is modeled as Rf = 10(5−10∗κaging), where κaging denotes
the generator condition aging level.

When two generators highlighted in Figure 2 have aging
stator windings both at 50% level, their voltage and current
signature will change and will likely impact raw electrical
waveforms and signals (e.g.,voltage, current, harmonics, power
factor) in power networks (e.g, voltage, current, etc) due to
waveform and signal propagation. As a result, the voltage and
current waveforms in bus 6 generator and bus from 6 to 11 are
significantly impacted as shown in Figure 3. The traditional
approaches based on machine sensors, for instance, sensors in
bus 6 generator, cannot distinguish whether bus 6 generator
is faulty or not. To address this challenges, we developed an
advanced signal processing approach based on strategically
located waveform senors. The proposed data-driven approach
utilizes waveforms as well as derived signal attributes to
characterize the dynamic relationships among limited sensors to
deduce the actual fault locations, which may not be monitored.

Based on the model shown in Figure 2, two generator faults
are simulated, which are located at G1 and G8 with 50% aging.
There are 14 nodes in the grid, and typically all generators
(5) and transformers (3) should have built-in sensors, so there

Fig. 3: Single Phase Short Fault Simulation Results.

could be 8 sensors in the traditional power networks. In our
experiment, we only use 4 sensors from Nodes 1, 6, 7, and 14,
to simulate the limited sensor situation.

Figure 4 shows the voltages and IAs from the 4 sensors.
Based on the Vγ function, we can know only Phase A has
the short circuit event. Although observations from Nodes 7
and 14 indicate differences between Phases B and C, the small
deviations should be caused be the unbalanced Phase A current
rather than more than one phase short circuit.

Fig. 4: Voltage waveforms and corresponding instantaneous
amplitudes at Nodes 1, 6, 7 and 14.

Next, let us locate the root source region. Figure 5 shows
the current waveforms measured at Node 6. From Table III,
Iβ is the largest for IG6, which means the major unbalance
source for Node 6 is from the Node 5 direction. (If Node 6
is the fault source, the current unbalance metrics between 6
and 11, 12, 13 would be similar.) So the fault source could be
Nodes 1, 2 or 3. However, if Node 2 or 3 is the fault source,
the current measured at Node 7 about Bus 4 would display
more obvious unbalances. While, Node 1 could be the source,
as both its voltage and current are not balanced.
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Furthermore, we need to check whether Node 1 is one
only fault source. If yes, the unbalanced current metrics from
Table III should show largest value from Bus 4 instead of
current between Nodes 7 and 8. Thus, for Node 7, the major
fault source is from Node 8, which is also a generator. So, we
decide Nodes 1 and 8 are two fault sources. Considering the
space limit, more discussions are omitted.

Fig. 5: Current waveforms and corresponding instantaneous
amplitudes at Node 6.

In addition, based on the current and voltage changes, we
estimate the R̂f 1 = 9.17Ω and R̂f 8 = 1.35Ω. According to the
relation between Rf and κaging in Section V, κG1

aging = 40.3%

and κG8
aging = 48.7%. The aging percentage estimation for Node

8 is close to the ground truth 50%, while there is still space
for improvement as κG1

aging is not accurate.
Note that the measurements from Node 14 are not useful in

our experiment, so we actually only use 3 nodes to locate the
event source. There are two remarks: (1) limited measurements
can be used to monitor the whole network; (2) the observation
selection (sensor location) should be considered carefully to
get the maximum information using minimum sensors and
avoid recording useless information.

TABLE III: Unbalance metrics of Nodes 1, 6, 7, 14.
Node # 1 6 7 14
Vβ 0.832 0.328 0.511 0.383

Iβ

(1-2) 0.922 (G6) 0.6865 (B4) 0.269 (B14) 0.390
(1-5) 0.825 (6-11) 0.359 (7-8) 0.887 N/A

N/A (6-12) 0.181 (7-9) 0.627 N/A
N/A (6-13) 0.366 N/A N/A

VI. CONCLUSION

In this paper, an advanced signal processing methodology for
generator condition monitoring and fault diagnosis has been
developed based on strategically located waveform sensors
in power networks. The impact of the generator short circuit
fault caused by winding aging and other severe operation
conditions are discussed, and then analyzed in a great detail.
Meanwhile, an IEEE 14-bus power network is built in the
MATLAB Simulink to produce a large set of waveform data in

different scenarios. A hierarchal signal processing technique has
been developed, which shows promise in locating fault location
and monitoring the condition, or more specifically identifying
the aging level. With the reduced number of strategically
located waveform sensors, the proposed methodology will
bring the advantages of reducing the cost of the maintenance
and improving the reliability of the power grid.
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