
OPEN PROBLEMS IN WAVELET THEORY

MARCIN BOWNIK

Abstract. We present a collection of easily stated open problems in wavelet theory and
we survey the current status of answering them. This includes a problem of Larson [44]
on minimally supported frequency wavelets. We show that it has an affirmative answer for
MRA wavelets.

1. Introduction

The goal of this paper is twofold. The first goal is to present a collection of open problems
on wavelets which have simple formulations. Many of these problems are well-known, such as
connectivity of the set of wavelets. Others are less known, but nevertheless deserve a wider
dissemination. At the same time we present the current state of knowledge about these
problems. These include several results giving a partial progress, which indicate inherent
difficulties in answering them. One of such problems was formulated by Larson [44] and asks
about frequency supports of orthonormal wavelets. Must they contain a wavelet set? The
second goal of the paper is to give an affirmative answer to this problem for the class of
MRA wavelets.

2. One dimensional wavelets
S2

In this section we discuss problems in wavelet theory that remain unanswered even in the
classical setting of one dimensional dyadic wavelets. Many of these problems have higher
dimensional analogues which also remain open.

wavelet Definition 2.1. We say that ψ ∈ L2(R) is an o.n. wavelet if the collection of translates and
dyadic dilates

wavelet5wavelet5 (2.1) ψj,k(x) := 2j/2ψ(2jx− k), j, k ∈ Z

forms an o.n. basis of L2(R).

2.1. Connectivity of wavelets. One of the fundamental areas in the theory of wavelets
is the investigation of properties of the collection of all wavelets as a subset of L2(R). The
most prominent problem in this area was formulated independently by D. Larson and G.
Weiss around the year 1995.

con Problem 2.1. Is the collection of all orthonormal wavelets (as a subset of the unit sphere
in L2(R)) path connected in L2(R) norm?
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Despite several attempts and significant initial progress Problem 2.1 remains open. In
addition, variants of Problem 2.1 for Parseval wavelets and Riesz wavelets are also open. A
strong initial thrust toward answering this problem was given by a joint work by a group
of authors from Texas A&M University and Washington University led by D. Larson and
G. Weiss, respectively. The paper [61] written by the Wutam consortium gave a positive
answer to Problem 2.1 for the class of MRA wavelets. A concept of a multiresolution analysis
(MRA) is one of the most fundamental in the wavelet theory. It was introduced by Mallat
and Meyer [47, 48].

MRA Definition 2.2. A sequence {Vj : j ∈ Z} of closed subspaces of L2(R) is called a multireso-
lution analysis (MRA) if

(M1) Vj ⊂ Vj+1,
(M2) f(·) ∈ Vj ⇐⇒ f(2·) ∈ Vj+1,
(M3)

⋂

j∈Z Vj = {0},
(M4)

⋃

j∈Z Vj = L2(R),

(M5) There exists ϕ ∈ V0 such that its integer translates (ϕ(· − k))k∈Z form an o.n. basis
of V0.

We say that an o.n. wavelet ψ ∈ L2(R) is associated with an MRA {Vj : j ∈ Z} if ψ belongs
to the orthogonal complement V1 	 V0 of V0 inside V1.

There is a simple characterization of MRA wavelets in terms of the wavelet dimension
function, see [39, Theorem 7.3.2].

MRA2 Theorem 2.1. Let ψ ∈ L2(R) be an orthonormal wavelet. Then ψ is an MRA wavelet if
and only if

Dψ(ξ) :=
∞
∑

j=1

∑

k∈Z

|ψ̂(2j(ξ + k))|2 = 1 for a.e. ξ ∈ R.

The main theorem of the Wutam consortium [61, Theorem 4] shows that the collection of
all MRA wavelets is path connected.

con1 Theorem 2.2. Let ψ0 and ψ1 be two MRA wavelets which are not necessarily associated
with the same MRA. Then, there exists a continuous map Ψ : [0, 1] → L2(R) such that
Ψ(0) = ψ0, Ψ(1) = ψ1, and Ψ(t) is an MRA wavelet for all t ∈ [0, 1].

Another fundamental connectivity result for the class of minimally supported frequency
(MSF) wavelets was obtained by Speegle [57]. A Fourier transform defined initially for
ψ ∈ L1(R) ∩ L2(R) is given by

ψ̂(ξ) =

∫

R

ψ(x)e−2πixξdx ξ ∈ R.

Definition 2.3. Let ψ ∈ L2(R) be an o.n. wavelet. We say that ψ is an MSF wavelet if its
frequency support

supp ψ̂ = {ξ ∈ R : ψ̂(ξ) 6= 0}
has minimal Lebesgue measure (equal 1).

Equivalently, ψ ∈ L2(R) is an MSF wavelet if and only if |ψ̂| = 1W for some measurable
set W ⊂ R, known as wavelet set, which satisfies simultaneous translation and dilation tiling
of R. That is,
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• {W + k}k∈Z is a partition of R modulo null sets, and
• {2jW}j∈Z is a partition of R modulo null sets.

Speegle [57, Theorem 2.5 and Corollary 2.6] has shown the following result.

con2 Theorem 2.3. The wavelet sets are path-connected in the symmetric difference metric.
Consequently, the collection of MSF wavelets forms a path connected subset of L2(R).

Besides the last two results, little is known about the connectivity problem for general o.n.
wavelets. However, there is a partial evidence that the answer to Problem 2.1 is affirmative.
Rzeszotnik, Speegle, and the author [18] have the shown the following result characterizing
wavelet dimension functions.

dim Theorem 2.4. Let ψ ∈ L2(R) be an orthonormal wavelet. Then its wavelet dimension
function

dim1dim1 (2.2) D(ξ) = Dψ(ξ) =
∞
∑

j=1

∑

k∈Z

|ψ̂(2j(ξ + k))|2 ξ ∈ R,

satisfies the following 4 conditions:

(D1) D : R → N ∪ {0} is a measurable 1-periodic function,
(D2) D(ξ) +D(ξ + 1/2) = D(2ξ) + 1 for a.e. ξ ∈ R,
(D3)

∑

k∈Z 1∆(ξ + k) ≥ D(ξ) for a.e. ξ ∈ R, where

∆ = {ξ ∈ R : D(2−jξ) ≥ 1 for j ∈ N ∪ {0}},
(D4) lim infj→∞ D(2−jξ) ≥ 1 for a.e. ξ ∈ R.

Conversely, for any function D satisfying the above 4 conditions, there exists an orthonormal
MSF wavelet ψ such that (2.2) holds for a.e. ξ ∈ R.

In light of Theorems 2.3 and 2.4 the affirmative answer to Problem 2.1 would follow of
the following conjecture proposed by Rzeszotnik. Author’s joint work with Rzeszotnik [17]
was meant as an initial step toward this conjecture.

Conjecture 2.1. Let D be any wavelet dimension function, i.e., D satisfies (D1)–(D4).
Then, the collection of o.n. wavelets with the dimension function D

{ψ ∈ L2(R) : ψ is an o.n. wavelet and Dψ = D}.
is a path connected subset of L2(R).

Variants of Problem 2.1 have been studied for other classes of wavelets such as Parseval
wavelets. We say that ψ ∈ L2(R) is a Parseval wavelet if its wavelet system is a Parseval
frame. That is,

∑

j,k∈Z

|〈f, ψj,k〉|2 = ||f ||2 for all f ∈ L2(R).

This problem also remains open in its full generality. Paluszyński, Šikić, Weiss, and Xiao
showed the connectivity for the class of MRA Parseval wavelets [49, 50], which is an extension
of Theorem 2.2. Moreover, Garrigós, Hernández, Šikić, Soria, Weiss, and Wilson showed the
class of Parseval wavelets satisfying very mild conditions on their spectrum is also connected
[33, 34]. Likewise, a variant of Problem 2.1 for Riesz wavelets, which was posed by Larson
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[43, 44], is also open. However, the same problem for frame wavelets was solved by the
author [10].

A frame wavelet, or in short a framelet, is a function ψ ∈ L2(R) such that the wavelet
system (3.1) forms a frame for L2(R). Hence, we require the existence of constants 0 < c ≤
d <∞ such that

frfr (2.3) c||f ||2 ≤
∑

j,k∈Z

|〈f, ψj,k〉|2 ≤ d||f ||2 for all f ∈ L2(R).

We say that a wavelet system is Bessel if only the upper bound holds in (2.3). Then we have
the following result [10, Theorem 3.1].

con3 Theorem 2.5. The collection of all framelets

Wf = {ψ ∈ L2(R) : ψ is a framelet}.
is path connected in L2(R).

2.2. Wavelets for H2(R). Auscher in his influential work [2] has solved two problems on
wavelets. He has shown that all biorthogonal wavelets satisfying mild regularity conditions
come from biorthogonal MRAs. In particular, we have the following result [2, Theorem 1.2].

au1 Theorem 2.6. Let ψ ∈ L2(R) be an o.n. wavelet such that:

• ψ̂ is continuous on R,
• |ψ̂(ξ)| = O((1 + |ξ|)−α−1/2) as |ξ| → ∞ for some α > 0.

Then, ψ is an MRA wavelet.

The original formulation in [2] has one more condition, |ψ̂(ξ)| = O(|ξ|α) as ξ → 0, which is
not essential. The proof of Theorem 2.6 is actually not that difficult in light of Theorem 2.1.
It suffices to observe that the regularity conditions implies that series defining the wavelet
dimension function (2.2) is uniformly convergent on compact subsets of R \ Z. Since D is
integer-valued and periodic, it must be a constant function (equal to 1).

The other problem solved by Auscher deals with the Hardy space

H2(R) = {f ∈ L2(R) : f̂(ξ) = 0 for ξ ≤ 0}.
Meyer [48] has shown the existence of o.n. wavelets in the Schwartz class. His famous

construction produces a band-limited wavelet ψ such that ψ̂ ∈ C∞ has compact support. He
has asked if it is possible to such nice wavelets also in the Hardy space H2(R). Auscher [2,
Theorem 1.1] has shown that this is not possible, see also [39, Theorem 7.6.20].

Theorem 2.7. There is no o.n. wavelet ψ ∈ H2(R) satisfying the regularity assumptions as
in Theorem 2.6. In particular, there is no ψ in the Schwartz class such that {ψj,k}j,k∈Z is an
o.n. basis of H2(R).

This leaves open the problem of existence of Riesz wavelets which was posed by Seip [56].
We say that ψ is a Riesz wavelet for H = H2(R) or L2(R) if the wavelet system is a Riesz
basis of H. A Riesz basis in a Hilbert space H can be defined as an image of an orthonormal
basis under an invertible operator on H. Every Riesz basis has a dual Riesz basis. However,
the dual of Riesz wavelet system might not be a wavelet system. If it is, then we say that ψ
is a biorthogonal (Riesz) wavelet.
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seip Problem 2.2. Does there exist a Riesz wavelet ψ in H2(R) such that ψ belongs to the
Schwartz class?

Auscher [2] has shown that the answer is negative for biorthogonal Riesz wavelets. How-
ever, Auscher’s result does not preclude the existence of more general types of Riesz wavelets
for which wavelet dimension techniques are not applicable.

2.3. Minimality of MSF wavelets. Larson [44] has posed an interesting problem about
frequency supports of wavelets. Must the support of the Fourier transform of a wavelet
contain a wavelet set? This problem stems from the observation that there are two ways of
describing minimality of frequency support. The first one is that supp ψ̂ has the smallest
possible Lebesgue measure (equal to 1), which is used in the actual definition of an MSF
wavelet. The second possibility is to insist that the support is minimal with respect to the
inclusion partial order. It is not known whether these two natural definitions of minimality
of frequency supports are the same. This is the essence of the following problem posed by
Larson in late 1990’s although its official formulation appeared only in [44].

larson Problem 2.3. Is it true that for any orthonormal wavelet ψ ∈ L2(R), there exists a wavelet

set W such that such that W ⊂ supp ψ̂?

A positive answer to this problem was given by Rzeszotnik [53] for the class of MRA
wavelets. A special case of Theorem 2.8 for band-limited MRA wavelets was shown in [62].

rze Theorem 2.8. Suppose that ψ ∈ L2(R) is an MRA wavelet. Then there exists a wavelet set

W such that W ⊂ supp ψ̂.

Despite this initial progress, little is known about frequency supports of non-MRA wavelets
where Problem 2.3 remains wide open.

2.4. Density of Riesz wavelets. Another fundamental problem posed by Larson [44] asks
about density of Riesz wavelets.

riesz Problem 2.4. Is the collection of all Riesz wavelets dense in L2(R)?

Larson in [44] gives several pieces of evidence why the answer to Problem 2.4 might be
affirmative. For example, if ψ0 and ψ1 are o.n. wavelet, then their convex combination
(1− t)ψ0+ tψ1 is a Riesz wavelet for all t ∈ R possibly with the exception of t = 1/2. Hence,
a line connecting any two o.n. wavelets is in the norm closure of the set of Riesz wavelets. In
the case of frame wavelets the author has shown the following positive result [10, Theorem
2.1]. A similar density result was independently obtained by Cabrelli and Molter [22].

den3 Theorem 2.9. The collection of all framelets

Wf = {ψ ∈ L2(R) : ψ is a framelet}.
is dense in L2(R).

In addition, Han and Larson [37] has shown that any f ∈ L2(R) can be approximated in
L2(R)-norm by a sequence {ψk}k∈N ⊂ Wf of asymptotically tight frame wavelets. Namely,
if 0 < ck ≤ dk < ∞ denote the lower and the upper frame bounds of ψk, then dk/ck → 1
as k → ∞. However, the situation changes drastically if we restrict ourselves to the class
of tight frame wavelets. These are functions ψ ∈ L2(R) satisfying (2.3) with equal bounds
c = d. Then the answer becomes negative by [12, Corollary 2.1].
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den5 Theorem 2.10. The collection of all tight frame wavelets

Wtf = {ψ ∈ L2(R) : ψ is a tight framelet}.
is not dense in L2(R).

A partial positive result related to Problem 2.4 was obtained by Cabrelli and Molter [22],
where the authors proved that any f ∈ L2(Rn) can be approximated in L2(Rn) norm by
Riesz wavelets associated to expansive dilation matrices A and lattices of translates Γ; for
definitions see Section 3. However, both dilations A and lattices Γ vary with the accuracy
of approximation. Hence, Problem 2.4 remains open, since it asks about density of Riesz
wavelets for a fixed (dyadic) dilation and a fixed lattice of translates (integers).

2.5. Intersection of negative dilates. Yet another the fundamental problem in the the-
ory of wavelets is a problem posed by Baggett in 1999. Baggett’s problem asks whether
every Parseval wavelet ψ must necessarily come from a generalized multiresolution analysis
(GMRA). A concept of GMRA was introduced by Baggett, Medina, Merrill [4] as a natural
generalization of MRA.

Definition 2.4. A sequence {Vj : j ∈ Z} of closed subspaces of L2(R) is called a multireso-
lution analysis (MRA) if (M1)–(M4) in Definition 2.2 hold and the space V0 is shift-invariant

(M5’) f(·) ∈ V0 =⇒ f(· − k) for all k ∈ Z.

To formulate Baggett’s problem we also need a concept of space of negative dilates.

Definition 2.5. Let ψ ∈ L2(R) be a frame wavelet. A space of negative dilates of ψ is
defined as

(2.4) V (ψ) = span{ψj,k : j < 0, k ∈ Z}.
We say that ψ is associated with a GMRA {Vj : j ∈ Z} if V (ψ) = V0.

Suppose that ψ ∈ L2(Rn) is a Parseval wavelet. Then, we can define spaces

Vj = Dj(V (ψ)) j ∈ Z,

where Df(x) =
√
2f(x) is a dilation operator. Baggett has shown that a sequence {Vj :

j ∈ Z} satisfies all properties of GMRA (M1), (M2), (M4), and (M5’) possibly with the
exception of (M3).

bagg Problem 2.5. Let ψ be a Parseval wavelet with the space of negative dilates V = V (ψ). Is
it true that

⋂

j∈Z

Dj(V (ψ)) = {0}?

Despite its simplicity Problem 2.5 is a difficult open problem and only partial results
are known. Rzeszotnik and the author proved in [16] that if the dimension function (also
called multiplicity function) of V (ψ) is not identically ∞, then the answer to Problem 2.5
is affirmative. A generalization of this result was shown in [12]. Problem 2.5 is not only
interesting for its own sake, but it also has several implications for other aspects of the
wavelet theory. For example, it was shown in [16] that a positive answer would imply that all
compactly supported Parseval wavelets come from a MRA, thus generalizing the well-known
result of Lemarié-Rieusset [2, 45] for compactly supported (orthonormal) wavelets. However,
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there is some evidence that the answer to Problem 2.5 might be negative. Rzeszotnik and
the author in [16] have shown examples of (non-tight) frame wavelet ψ such that its space
of negative dilates is the largest possible V (ψ) = L2(R). In fact, the following theorem was
shown in [11, Theorem 8.20].

mains Theorem 2.11. For any δ > 0, there exists a frame wavelet ψ ∈ L2(R) such that:

(i) the frame bounds of a wavelet system {ψj,k : j, k ∈ Z} are 1 and 1 + δ,
(ii) the space V of negative dilates of ψ satisfies V (ψ) = L2(R),

(iii) ψ̂ is C∞ and all its derivatives have exponential decay,
(iv) ψ has a dual frame wavelet.

2.6. Extension of wavelet frames. A more recent problem was proposed by Christensen
and his collaborators [24, 25].

chr Problem 2.6. Suppose ψ is Bessel wavelet with bound < 1. Does there exist ψ′ such that
the combined wavelet system

{ψj,k : j, k ∈ Z} ∪ {ψ′
j,k : j, k ∈ Z}.

generated by ψ and ψ′ is a Parseval frame?

The original formulation of Problem 2.6 asked for an extension of a pair of Bessel wavelets
to a pair of dual frames. Hence, Problem 2.6 is a simplified version of a problem proposed
in [24]. Despite partial progress in a subsequent work of Christensen et al. [25], either
formulation of this problem remains open. It is worth adding that an analogue of Problem
2.6 for Gabor Bessel sequences has been proven in [24, Theorem 3.1].

2.7. Simple question that nobody has bothered to answer. The last problem il-
lustrates the difficulty of determining whether a function is a frame wavelet or not. The
following problem was proposed by Weber and the author [21].

Problem 2.7. For 0 < b < 1 define ψb ∈ L2(R) by ψ̂b = 1(−1,−b)∪(b,1). For what values of
1/8 < b ≤ 1/6, is ψb a frame wavelet?

The above range of parameter b seems to be the hardest in determining a frame wavelet
property of ψb. Outside of this range, the following table lists properties of ψb which were
shown in [21].

Range of b Property of ψb Dual frame wavelets of ψb

b = 0 not a frame wavelet no duals exist

0 < b ≤ 1/8 frame wavelet (not Riesz) no duals exist

1/6 < b < 1/3 not a frame wavelet no duals exist

1/3 ≤ b < 1/2 biorthogonal Riesz wavelet a unique dual exists

b = 1/2 orthonormal wavelet a unique dual exists

1/2 < b < 1 not a frame wavelet no duals exist
7



3. Higher dimensional wavelets
S3

In this section we concentrate on problems involving higher dimensional wavelets. Most
of the one dimensional problems discussed in Section 2 have higher dimensional analogues.
Rather surprisingly, their higher dimensional analogues have definitive answers for certain
classes of dilation matrices. Subsequently, we shall focus on problems which have been
resolved in one dimension and remain open in higher dimensions.
We start by a higher dimensional analogue of Definition 2.1.

wavh Definition 3.1. Let A ∈ GLn(R) be n × n invertible matrix. Let Γ ⊂ Rn be a full rank
lattice. We say that ψ ∈ L2(Rn) is an o.n. wavelet associated with a pair (A,Γ) if the
collection of translates and dilates

wavelet0wavelet0 (3.1) ψj,k(x) := | detA|j/2ψ(Ajx− k), j ∈ Z, k ∈ Γ,

forms an o.n. basis of L2(R).

A typical choice for Γ is a standard lattice Zn. Moreover, we can often reduce to this case
by making a linear change of variables. Indeed, suppose that Γ = PZn for some P ∈ GLn(R).
Then, ψ ∈ L2(Rn) is an o.n. wavelet associated with (A,Γ) if and only if | detP |1/2ψ(P ·) is
an o.n. wavelet associated with (P−1AP,Zn). Hence, the choice of a standard lattice Γ = Zn

is not an essential restriction.
For some of the problems discussed in this section, it is imperative that we allow more

than one function generating a wavelet system. Hence, more generally a (A,Γ) wavelet is a
finite collection {ψ1, . . . , ψL} ⊂ L2(Rn), so that the corresponding wavelet system

{ψlj,k : l = 1, . . . , L, j ∈ Z, k ∈ Zn}
is an o.n. basis of L2(Rn).

3.1. Known results. A typical assumption about a dilation A is that it is expansive or
expanding. That is, all of eigenvalues λ of A satisfy |λ| > 1. This is the class of dilations for
which most of the higher dimensional wavelet theory has been developed. In addition, it is
often assumed that a dilation A has integer entries, or equivalently

invinv (3.2) AZn ⊂ Zn.

The latter condition assures that higher dimensional analogue of the classical dyadic
wavelet system has nested translation structure across all its scales. Indeed, a wavelet system
at scale j ∈ Z is invariant under translates by vectors in A−jZn. It is often desirable that a
wavelet system at j + 1 scale, which is invariant under A−j−1Zn, includes all translations at
j scale. This is the main reason for imposing the invariance condition (3.2). For such class
of expansive dilations Problems 2.1, 2.3, and 2.5 all remain open.

On the antipodes lie dilations A farthest from preserving the lattice Zn, satisfying

ccw0ccw0 (3.3) Zn ∩ (AT )j(Zn) = {0} for all j ∈ Z \ {0},
where AT is the transpose of A. Somewhat surprisingly, more is known about wavelets
associated with such dilations than those satisfying (3.2).

Theorem 3.1. Assume that A ∈ GLn(R) is an expansive matrix satisfying (3.3). Then, the
following hold:
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(i) The collection of all o.n. wavelets associated to (A,Zn) is path connected in L2(R)
norm.

(ii) The collection of all Parseval wavelets associated to (A,Zn) is path connected in L2(R)
norm.

Proof. By [8, 26] any expansive dilation A satisfying (3.3) admits only minimally supported
frequency (MSF) wavelet. That is, any o.n. wavelet associated with A must necessarily be
MSF , see Theorem 3.6. Thus, Problem 2.1 for dilations A satisfying (3.3) is reduced to
the connectivity of MSF wavelets in the setting of real expansive dilations. Fortunately, the
one dimensional result of Speegle on the connectivity of MSF dyadic wavelets, Theorem 2.3,
also works in higher dimensional setting by [57, Theorem 3.3]. Combining these two results
yields part (i).

Part (ii) was shown in [13, Theorem 2.4]. Its proof relies on a fact characterizing L2 closure
of the set of all tight frame wavelets associated with a dilation A satisfying (3.3). A function

f ∈ L2(Rn) belong to this closure if and only if its frequency support W = supp f̂ satisfies

packpack (3.4) |W ∩ (k +W )| = 0 for all k ∈ Zn \ {0}.

This enables the reduction of the connectivity problem to the class of MSF Parseval wavelets.
This are wavelets of the form ψ̂ = 1W , such that:

• the translates {W + k}k∈Zn pack Rn, i.e., (3.4) holds, and
• {(AT )jW}j∈Z is a partition of Rn modulo null sets.

By the result of Paluszyński, Šikić, Weiss, and Xiao [50, Theorem 4.2], the collection of all
MSF Parseval wavelets is path connected. Although this result was shown in [50] only for
dyadic wavelets in one dimension, it can be generalized to higher dimensions as Speegle’s
generalizations [57] in the setting of expansive dilations. �

We finish by observing that Problem 2.3 has an immediate affirmative answer for dilations
satisfying (3.3). Likewise, Problem 2.5 also has an affirmative answer, for example, using
intersection results in [12]. However, it needs to be stressed out that the space of negative
dilates V (ψ) does not need to be shift-invariant, see [19].

3.2. Characterization of dilations. One of the most fundamental problems in wavelet
theory asks for a characterization of dilations for which o.n. wavelets exist. Although this
problem has been explicitly stated by Speegle [58] and Wang [60], it has been studied since
late 1990’s.

char Problem 3.1. For what dilations A ∈ GLn(R) and lattices Γ ⊂ Rn, there exist an orthonor-
mal wavelet associated with (A,Γ)?

A more concrete version of Problem 3.1 asks for a characterization of dilations admitting
MSF wavelets.

Definition 3.2. Let (A,Γ) be a dilation-lattice pair. We say that W ⊂ Rn is an (A,Γ)-
wavelet set if

(t) {W + γ}k∈Γ is a partition of Rn modulo null sets, and
(d) {AjW}j∈Z is a partition of Rn modulo null sets.
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In analogy to the one dimensional setting, frequency support of an MSF wavelet associated
with (A,Γ) is necessarily (AT ,Γ∗)-wavelet set, where Γ∗ is the dual lattice of Γ. Hence, we
have the following variant of Problem 3.1.

charm Problem 3.2. Characterize pairs of dilations A ∈ GLn(R) and lattices Γ ⊂ Rn for which
wavelet set exists.

Translation tiling (t) exists for any choice of a lattice Γ and is known as a fundamental
domain. The existence of dilation tiling (d) has been investigated by Larson, Schulz, Speegle,
and Taylor [46]. They have shown that there exists a measurable set W ⊂ Rn of finite
measure satisfying (d) if and only if | detA| 6= 1. Despite these two simple facts, the problem
of simultaneous dilation and translation tiling remains open.
The first positive result in this direction was obtained by Dai, Larson, and Speegle [29].

Theorem 3.2. If A is an expansive matrix and Γ is any lattice, then (A,Γ)-wavelet set
exists.

A significant progress toward resolving Problem 3.2 has been obtained by Speegle [58],
which was then carried by Ionescu and Wang [40], who have given a complete answer in two
dimensions. Here we present a simpler, yet equivalent, formulation of their main result [40,
Theorem 1.3].

siw Theorem 3.3. Suppose A ∈ GL2(R), | detA| > 1, and Γ ⊂ R2 is a full rank lattice. There
exists (A,Γ)-wavelet set ⇐⇒

eq:el-2deq:el-2d (3.5) V ∩ Γ = {0},
where V is the eigenspace corresponding to an eigenvalue λ of A satisfying |λ| < 1. In
particular, if all eigenvalues |λ| ≥ 1, then V = {0} and (3.5) holds automatically.

As an illustration of subtetly of Theorem 3.3 we give the following example.

Example 3.1. Let Γ = Z2 and α ∈ R. Then, the following holds true:

• MSF wavelet does not exist for A =

[

3 0
α 1/2

]

for any α ∈ R.

• MSF wavelet exists for AT =

[

3 α
0 1/2

]

⇐⇒ α ∈ R \Q.

Lemvig and the author [14] have shown the following result on the ubiquity of MSF
wavelets. For any choice of dilation A ∈ GLn(R) with | detA| 6= 1, there exists (A,Γ)-
wavelet set for almost every full rank lattice Γ. In fact, a slightly stronger result holds.

umsf Theorem 3.4. Let A be any matrix in GLn(R) with | detA| 6= 1. Let Γ ⊂ Rn be any full
rank lattice. Then there exists (A,UΓ)-wavelet set for almost every (in the sense of Haar
measure) orthogonal matrix U ∈ O(n).

The proof of Theorem 3.4 relies on techniques from geometry of numbers and involves
estimates on a number of lattice points in dilates of the unit ball of the form Aj(B(0, 1)),
where j ∈ Z. Since Aj(B(0, 1)) is a convex symmetric body, this number is at least its volume
up to a proportionality constant depending solely on the choice of Γ. If the corresponding
upper bound holds

lcelce (3.6) #|Γ ∩ Aj(B(0, 1))| ≤ Cmax(1, | detA|j) for all j ∈ Z,
10



then many results in wavelet theory, such as characterizing equations, hold. The main result
in [14] shows that (3.6) holds for almost every choice of a lattice Γ, which is then used to
prove Theorem 3.4.

The expectation is that the answers to Problems 3.1 and 3.2 are actually the same. In
other words, if there exists an o.n. wavelet associated with (A,Γ), then there also exists
an MSF wavelet associated with (A,Γ). However, this is unknown since even more basic
problem involving Calderón’s formula remains open.

3.3. Calderón’s formula. Problem 3.3 was implicitly raised by Speegle [57] and explicitly
formulated in [14].

cal Problem 3.3. Does Calderón’s formula

cal0cal0 (3.7)
∑

j∈Z

|ψ̂((AT )jξ)|2 = 1 for a.e. ξ ∈ Rn

hold for any orthonormal (or Parseval) wavelet ψ associated with (A,Γ)?

By [14] Problem 3.3 has affirmative answer for pairs (A,Γ) such that its dual pair (AT ,Γ∗)
satisfies the lattice counting estimate (3.6). Indeed, (3.7) is the first of two equations char-
acterizing Parseval wavelets, which has been studied by a large number of authors both for
expansive [6, 23, 26, 31, 51] and non-expansive dilations [36, 38]. The second equation states
that for all α ∈ Γ∗

tqtq (3.8)
∑

j∈Z,(AT )−jα∈Γ∗

ψ((AT )−jξ)ψ̂((AT )−j(ξ + α)) = δα,0 for a.e. ξ ∈ Rn.

The expectation is that the equations (3.7) and (3.8) characterize Parseval wavelets for all
possible pairs (A,Γ). This has been shown for expansive dilations [26], dilations expanding
on a subspace [36, 38], and more generally satisfying the lattice counting estimate (3.6).
However, Problem 3.3 remains as a formidable obstacle toward this goal. An example in [15,
Example 3.1] and more recent work [32] are an evidence of looming difficulties.

3.4. Well-localized wavelets. A variant of Problem 3.1 asks for a characterization of di-
lations for which well-localized o.n. wavelets exist. We say that a function ψ ∈ L2(Rn) is

well-localized if both ψ and ψ̂ have polynomial decay. That is, for some large N > 0, we
have

ψ(x) = O(|x|−N) as |x| → ∞ and ψ̂(ξ) = O(|ξ|−N) as |ξ| → ∞.

dau Problem 3.4. Let Γ = Zn be the lattice of translates. For what expansive dilations A do
there exist well-localized wavelets (possibly with multiple generators)?

Note that in Problem 3.4 it is imperative that we allow multiple generators of a wavelet
system. Indeed, suppose that A is an integer expansive matrix, i.e., (3.2) holds. If Ψ =
{ψ1, . . . , ψL} ⊂ L2(Rn) is a well-localized o.n. wavelet associated with an integer dilation,
then the number L of generators must be divisible by | detA| − 1. This is a consequence of
the fact that the wavelet dimension function defined as

DΨ(ξ) :=
L
∑

l=1

∞
∑

j=1

∑

k∈Zn

|ψ̂l((AT )j(ξ + k))|2

11



satisfies a higher dimensional analogue of Theorem 2.4. In particular, DΨ is integer-valued
and satisfies

∫

[0,1]n
DΨ(ξ)dξ =

L

| detA| − 1
.

If Ψ consists of well-localized functions, then the series defining DΨ converges uniformly and
hence it must be constant. Thus, L is divisible by | detA| − 1.

Daubechies [30, Chapter 1] asked whether “there exist orthonormal wavelet bases (neces-
sarily not associated with a multiresolution analysis), with good time-frequency localization,
and with irrational a.” A partial answer was given by Chui and Shi [27] who showed that
all wavelets associated with dilation factors a such that aj is irrational for all j ≥ 1 must be
minimally supported frequency (MSF). A complete answer was given by the the author [9]
who proved the following result.

daub Theorem 3.5. Suppose a is an irrational dilation factor, a > 1. If Ψ = {ψ1, . . . , ψL} is
an orthonormal wavelet associated with a, then at least one of ψl is poorly localized in time.
More precisely, there exists l = 1, . . . , L such that for any δ > 0,

lim sup
|x|→∞

|ψl(x)||x|1+δ = ∞.

On the other hand, Auscher [1] proved that there exist Meyer wavelets (smooth and
compactly supported in the Fourier domain) for every rational dilation factor. Combining
Auscher’s result with Theorem 3.5 gives a complete answer to Problem 3.4 in one dimensional
case. Well-localized orthonormal wavelets can only exist for rational dilation factors and they
are non-existent for irrational dilations.

In higher dimensions Problem 3.4 remains a challenging open problem. A partial answer
was given by the author in [8].

air Theorem 3.6. Suppose A is an expanding matrix such that (3.3) holds. If Ψ = {ψ1, . . . , ψL}
is an o.n. wavelet associated with A, then Ψ is combined MSF, i.e.,

⋃L
l=1 supp ψ̂

l has a
minimal possible measure (equal to L).

Since any combined MSF wavelet must satisfy
L
∑

l=1

|ψ̂l(ξ)|2 = χW (ξ) for a.e. ξ,

for some measurable set W ⊂ Rn, at least one ψl is not be well-localized in time. Moreover,
Speegle and the author [19] showed that Theorem 3.6 is sharp, in the sense that it has a
converse. The converse result states that if all wavelets associated with an expanding dilation
A are MSF, then A must necessarily satisfy (3.3).

To obtain a satisfactory (even partial) answer to Problem 3.4, it is also necessary to
construct well-localized wavelets for large classes of expansive dilations. A natural class of
well-localized wavelets are r-regular wavelets introduced by Meyer [48]. We recall that a
function ψ is r-regular, where r = 0, 1, 2, . . ., or ∞, if ψ is Cr with polynomially decaying
partial derivatives of orders ≤ r,

∂αψ(x) = O(|x|−N) as |x| → ∞ for all |α| ≤ r, N > 0.

For any integer dilation A, which supports a self-similar tiling of Rn, Strichartz [59] con-
structed r-regular wavelets for all r ∈ N. However, there are examples in R4 of dilation

12



matrices without self-similar tiling [41, 42]. In [7] the author has shown that for every in-
teger dilation and r ∈ N, there is an r-regular wavelet basis with an associated r-regular
multiresolution analysis. However, the question of existence of ∞-regular wavelets in higher
dimensions is still open.

3.5. Meyer wavelets for integer dilations. Schwartz class is defined as a collection of
all ∞-regular functions on Rn.

meyer Problem 3.5. Do Schwartz class wavelets exist for integer expansive dilations A and lattice
Γ = Zn?

One dimensional wavelet in the Schwartz class is a famous example of Meyer [48], which
can be adapted to any integer dilation factor a ≥ 2. In two dimensions an affirmative answer
to Problem 3.5 was given by Speegle and the author [20].

Theorem 3.7. For every expansive 2 × 2 integer dilation A, there exists an o.n. wavelet
consisting of (| detA| − 1) band-limited Schwartz class functions.

Hence Problem 3.5 needs to be answered only in dimensions ≥ 3. It is valid to ask the
same question for a larger class of dilations with rational entries. Auscher’s result [1] on
Meyer wavelets for rational dilations indicates that this might be a valid expectation.

3.6. Schwartz class wavelets. We end by stating not that serious, yet curious problem.
The only known construction of wavelets in the Schwartz class is a Meyer wavelet which is
a band-limited function. Hence, it is natural ask the following question.

Problem 3.6. Suppose ψ is an orthonormal wavelet such that ψ belongs to the Schwartz
class. Is ψ̂ necessarily compactly supported?
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