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ABSTRACT
A large fraction of users in developing regions use relatively
inexpensive low-end smartphones. However, the impact of
device capabilities on the performance of mobile Internet ap-
plications has not been explored. In order to bridge this gap
we study the QoE of three popular applications: Web brows-
ing, video streaming, and telephony, for different device pa-
rameters. Our results demonstrate that the Web applications
are much more sensitive to low-end hardware compared to
video applications, especially video streaming. This is be-
cause the video applications exploit specialized coproces-
sors/accelerators and thread level parallelism on multi-core
mobile devices. Even low-end devices are equipped with
coprocessors and multiple cores. Whereas, Web browsing
is largely influenced by clock frequency and uses no more
than 2 cores. This makes Web browsing more vulnerable to
performance on low-end smartphones. Based on the lessons
learnt from studying video applications, we explore offload-
ing Web computation to a co-processor. Specifically, we ex-
plore offloading of regular expression computation to a DSP
coprocessor and show an improvement of 18% in page load
time while saving the energy by a factor of 4.

1. INTRODUCTION
Mobile smartphones have now penetrated a significant frac-

tion of world population. They vary widely in terms of cost
and performance. For example, the costs of smartphones
currently on the market range between $50 – $1000 [1, 7].
The cost largely depends on the hardware specifications. A
$600 phone such as OnePlus5 has 8 cores, running up to
2.4 GHz clock frequency and 6 GB RAM, while a cheaper
$60 phone (e.g., Dell Venue Pro) only has 2 cores with up to
1 GHz clock frequency and 512 MB RAM.

A natural question arises: how much of an application’s
QoE depends on the phone’s hardware specs given that widely
different phones with very different price points are available
in the market. This question is specifically important given
that it is well known that compute is a key performance bot-
tleneck for mobile applications such as browsing [19, 29].
However, it is not clear which aspect of compute/hardware
specification is significant to performance. Knowing which
hardware component has the most impact on end-user per-

formance is crucial to designing better phones under a bud-
get.

The problem is more acute among low-end phones. As
an example, our results show that mobile Web page loads
on two popular phones in India, Intex Amaze 4 (≈$60) and
Gionee (≈$150) are 5× to 3×worse, respectively, compared
to Web page loads on Google Pixel2 (≈$700) under the same
network conditions (§2).

To address the question posed, we characterize the QoE of
common mobile applications under four different hardware
components: (1) clock frequency, (2) memory, (3) number
of cores, and (4) Android governors. (The governors con-
trol the CPU frequency to achieve a good trade off between
application performance and power consumption.) Our goal
is to understand how each of these device parameters affect
QoE of three of the most popular mobile applications: Web
browsing, video streaming, and video telephony.

We find that Web and video applications have very dif-
ferent architectures—as a result, different hardware spec-
ifications affect the two classes of applications differently.
For example, Web applications are significantly affected by
clock speeds, but video applications are virtually unaffected.
On the other hand, changing the number of cores affect video
applications but has no significant impact on Web applica-
tions. To dig deeper, we isolate the effect of the hardware
parameter on the different aspects of the applications, to shed
light only not only how the hardware component affects ap-
plication QoE but also why.

Our key finding is the Web performance is affected by
low-end phones. As a first step, Web browsing is signifi-
cantly affected by slower clock speeds. Web page loads slow
down by 5× when clock frequency reduces from 1512 MHz
to 384 MHz. Interestingly, video applications are largely un-
affected by slowing the clock even though video processing
is a compute-intensive operation. This is because video de-
coding uses dedicated hardware decoders, available even on
low-end phones.

Further, video applications use parallel operations among
multiple CPU cores for post-processing (such as muxing and
demuxing of audio/video). Web applications do not use mul-
tiple cores effectively. The result is that the performance of
video applications are less affected by low-end phones, but
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(c) Video Telephony
Figure 1: Mobile application performance across diverse devices: (a) Web Browsing, (b)Video Streaming, (c) Video Telephony. The
horizontal axis shows the device type; their corresponding specifications are tabulated in Table 1.

Device Application Number OS Clock GPU RAM Release
Name Processor of Cores Version Min-Max (MHz) Type Size (GB) Cost

Intex Amaze+ Spreadtrum SC9832A 4 6.0 300-1300 Mali-400 1 $60
Gionee F103 MediaTek MT6735 4 5.0 300-1300 Mali-T720 2 $150

Nexus4 Snapdragon S4 Pro 4 5.1.1 384-1512 Adreno 320 2 $200
SG S2-Tab Exynos 5433 8 5.0.2 400-1300 Mali-T760 3 $450
Pixel-Tab Tegra X1 4 8.0.0 204-1912 Maxwell 3 $600

Pixel2 Snapdragon 835 8 8.0.0 300-2457 Adreno 540 4 $700
SG S6-edge Exynos 7420 8 6.0.1 400-2100 Mali-T760 3 $880

Table 1: Mobile devices used in our experiments and their corresponding specifications including cost, CPU and memory capacity.

the performance of Web applications are severely affected.
Finally, we find that leveraging hardware offloading is a

promising alternative to improving Web performance under
slow CPU clock. Our preliminary analysis with offloading
only regular expression evaluations shows an improvement
of 18% in page load time along with a 4× reduction in en-
ergy consumption.

2. QOE ACROSS LOW AND HIGH-END DE-
VICES

As a first step, we study the performance of the three In-
ternet applications—Web browsing, Video streaming, and
Video telephony across 7 different smartphones. The phones
are chosen so that there is a significant diversity in terms of
hardware/OS and cost (Table 1). The cost ranges from $60 to
$880, and the maximum CPU clock frequencies range from
1.3 GHz to 2.4 GHz. We first describe default experimental
setup before going over to the results.

2.1 Measurement Setup
Web Browsing: We measure browsing performance over
Chrome 63.0.3239.111 in terms of Page Load Time (PLT).
PLT is the time elapsed between when the URL is sent to
the server and when the DOMLoad event is fired [33]. We
load the top 50 Web pages from Alexa [35], clear the cache
and estimate the average PLT. We use the WProf tool [33] to
analyze the critical path of the page load process and break
down the critical path into compute and network activities.
Compute activities include HTML parsing, Javascript evalu-
ation, and rendering. Network activities refer to loading the
objects. We automate the page loads for repeatability using
Chrome remote debugging protocol [32] over Android De-
bug Bridge (ADB) [2].
Video Streaming: We use YouTube to measure video stream-
ing performance using two QoE metrics: start-up latency

(network-centric) and stall ratio (device-centric). Start-up
latency is the time from when the request was issued to when
the the application starts displaying frames. Stall ratio is
the amount of time the video stalls during the playback ex-
pressed as a fraction of playback time. Both of these metrics
can be measured using YouTube player APIs [3]. The per-
formance is measured over a 5 minute FullHD (1080p) video
clip. We use ADB [2] to programmatically request the video
content for repeatability.
Video Telephony: We use Skype to measure performance
of video telephony. We measure QoE in terms of call setup
delay (network-centric) and frame rate (device-centric) met-
rics. Frame rate is measured as the number of frames shown
per second and call setup delay is time it took for the client
to get the response once the receiver answers the call. As
Skype does not provide APIs to extract the QoE, we screen
record [24] the Skype technical information and extract the
frame rate using an OCR tool [31].

Since Skype is an interactive application, it requires an ac-
tive participant on both ends. When the Skype call is placed
from the mobile to a laptop, the laptop runs a virtual We-
bcam [17] that plays a video file in Skype instead of cam-
era feed; at the mobile end, the video can be viewed during
the Skype call. To automate (starting and ending) the Skype
calls, we use the AndroidViewClient (AVC) library [4].
Network Setup: As the focus of this work is to measure the
impact of the device hardware, the experiments are set up
to minimize the impact of the network and the Web/Video
servers. We host the video and pages on a desktop on our
LAN created using an Aruba Access Point (AP) with 72 Mbps
link speed, 10 ms RTT and 0% loss. The mobile device con-
nects to the server over our LAN. For each workload, we
repeat the experiment 20 times and present the average and
standard deviation.

2.2 QoE Across Devices
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(e) Clock Frequency
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(f) Memory
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(h) Governors
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Figure 2: Impact of device parameters on Web browsing (a-d), video streaming (e-h) and telephony (i-l).

Fig. 1 shows the performance of the three applications
across the devices. Based on the device model, there is a
significant difference in performance even though all exper-
iments are done in the same network conditions.

For Web page loads (Fig. 1a), there is a 7 seconds dif-
ference in average PLT between the low-end Intex Amaze+
phone and the high-end Google Pixel2. The standard devi-
ation in PLT is also higher (>3 seconds) in Intex Amaze+
compared to Pixel 2. This must stem from the device itself,
since the network condition remain unchanged.

In the case of YouTube (Fig. 1b), there is a linear increase
in start-up latency from 2 to 5 seconds from the high-end to
low-end devices. However, after the start-up latency, there is
zero impact on the stall ratio. In effect, once the user waits
for the video to start, there is practically no difference in QoE
between the low-end and the high-end device. For Skype
(Fig. 1c), frame rate decreases from 30fps to 18fps between
the high- and low-end devices.

For the most part, application QoE is correlated with the
device cost. A cheaper device provides poorer performance.
The only outlier is Pixel2 which outperforms SG S6-edge
despite being less expensive. The underlying reason for this
difference is how these two phones uses big and little cores
in the big.LITTLE architecture to trade between performance
and power consumption.

Based on this study our goal is to (i) Understand why
video applications are not affected by low-end phones and

transfer the lessons learnt to the Web, and (ii) Study which
hardware component has the most effect on performance
both for Web and video applications, to inform future hard-
ware design.

3. IMPACT OF DEVICE PARAMETERS
Four device parameters related to available resources (Ta-

ble 1) can potentially impact application performance – CPU
clock, memory capacity, number of cores and Android gov-
ernor. The first three parameters are self explanatory. The
Android governor is a set of scaling algorithms used by An-
droid to change the clock frequency based on the CPU uti-
lization and battery life. We observed four common fre-
quency governors used by most of Android phones: On-
demand, Powersave, Interactive and Performance governors
each with a different trade-off between power and perfor-
mance. More details of Android governors can be found at
[10].
Experiment set up: The effect of a given resource is iso-
lated by changing its value while keeping the remaining set
up constant. We change the clock, number of cores and gov-
ernors using ADB commands on a rooted phone. We change
memory capacity by creating RAM disks [16] from available
memory and assigning these RAM disks to the application.
The experiments are repeated over three phones—Nexus 4,
Intex Amaze+, and Pixel 2. These three phones were chosen
to represent a high-end, low-end, and medium-end phone.
We present the results from Nexus 4 in detail, and summa-
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rize the results from the other two for brevity.
Fig. 2 shows the impact of these parameters —CPU clock,

memory, number of cores and governors on Google Chrome,
YouTube and Skype. The measurement setup is identical to
§2.1.

3.1 QoE of Web Browsing
The PLT increases by 4× when the CPU clock frequency

drops from 1512 MHz to 384 MHz (Fig. 2a). The trend is
similar to Fig. 1a where the page loads much slower on low-
end devices compared to higher-end devices. This perfor-
mance degradation is because of two reasons: slower clock
results in (1) slower page processing activities (e.g., parsing,
scripting, rendering and painting) and (2) slower packet pro-
cessing (§4.2) in turn slowing down downloading of objects.

We estimate the time on the critical path involving com-
pute and network activities using WProf tool [33, 19]. The
network time on the critical path increases from an average
of 2 seconds when the clock speed is 1512 MHz to 6 sec-
onds when the clock speed is increased to 384 MHz – a 66%
increase. The compute time increases by 76% for the same
CPU slow down.

We find that the compute time increases even more com-
pared to network time for more complex Webpages. We
further dissect the compute activities to find the root cause
of compute bottleneck at the application. We observe that
scripting times increase the most as the CPU clock slows
down; it accounts for 51% of the overall compute times at
high CPU frequencies, and 60% at slower CPU frequencies.
The layout and painting only account for 4% of the com-
pute time on the critical path. To confirm the impact of
slower Javascript execution, we experiment different cate-
gories of webpages (e.g., business, health, shopping, news,
and sports) and find that news and sports webpages are af-
fected the most (about 6×) which have more scripting than
the other categories.

Apart from the clock frequency, the PLT is not affected
by other parameters significantly. For example, the PLT in-
creases by about 2× when memory is reduced from 2GB to
512MB. The PLT roughly increases by 50% when the pow-
ersave governor is used relative to the others. This is because
this governor prefers the slowest clock to trade-off perfor-
mance for power savings.

PLT only changes modestly when the number of cores is
reduced from 4 to 1. This is because the browser does not
exploit the thread level parallelism on multi-core mobile de-
vices. We confirm this observation by measuring the CPU
utilization across cores and find that during Web page loads,
only two of the cores are utilized irrespective of the number
of cores available.
Takeaway1: Web browsing underutilizes the multi-cores
and suffers significantly at slower CPU clock. A key compo-
nent for improving Web page loads, especially at slow CPU
clock, is to improve the efficiency of scripting.

3.2 QoE of Video Streaming
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Figure 3: Impact of clock frequency on network.

Fig. 2(e-h) shows the startup latency (network-centric) and
stall ratio (device-centric) metrics of YouTube for the four
device parameters on Nexus 4. The startup latency increases
from 1.2 to 3.5 seconds as the clock speed decreases, how-
ever there is no impact on the stall ratio. This trend is similar
to the one observed in Fig. 1b across low-end and high-end
phones. Experiments on Intex Amaze+ and Pixel 2 show
quantitatively similar trends (not shown here).

In practice, the stall ratio is a more important QoE metric,
since the startup latency is only a one-time effect. The stall
ratio is not affected under slow CPU, even though network
throughput drops when the CPU is slow. The reasons for
this are several video-specific optimizations: i) Most of the
smartphones (even low-end phones) support hardware-based
video coding. The video coding is offloaded to dedicated
hardware accelerators and are not bottlenecked by a slow
CPU. Moreover, YouTube serves device specific video con-
tent (e.g., it does not stream FullHD video on Intex phone).
ii) After video decoding, the post processing such as muxing
and demuxing of audio and video indeed happen on the CPU
which could potentially be impacted under slower clocks.
But, the Android multimedia framework is highly parallelized
and exploits multi-cores unlike Web browsing and thus the
impact of the slower clock is not prominent. We confirm
this observation by measuring the CPU utilization during the
video experiments across cores. Figure 2g further shows that
performance of video applications degrade as the number of
cores decreases. There is an increase of 4 seconds in start-
up latency as well as 15% of stall ratio under single core.
iii) YouTube and other streaming services [20, 8] prefetch
video content; YouTube prefetches 120 seconds (called read-
ahead time) worth of content. Therefore, even under slower
clocks, the read-ahead time is reached within 40 seconds of
the video start-up resulting in zero stalls.

For memory and governors, YouTube has a similar trend
in start-up latency as Web browsing does, with zero stalls.
Takeaway2: Specialized coprocessors reduce the role of
general purpose CPU for video streaming. To the extent that
CPU is used, multiple cores can be exploited. Thus, the im-
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pact of low-end phones is largely masked for the QoE of
video streaming since even low-end phones have at least 2
cores and specialized co-processors.

3.3 QoE of Video Telephony
The key difference between streaming and telephony is

that telephony is interactive. This means that unlike stream-
ing, video frames cannot be prefetched by the application.
We measure the QoE with call setup delay (network-centric)
and frame rate (device-centric) metrics as described in §2.1.
Fig. 2 (i-l) shows the effect of device parameters on QoE
during the Skype video call.

We observe a 18 second increase in call start-up delay
when the CPU clock reduces from 1512 MHz to 384 MHz.
This effect is due to the increase in network packet process-
ing caused by slow CPU speeds, since the external network
condition remains the same. The frame rate drops to 17
frames-per-second (fps) at slow CPU speeds from 30 fps at
high CPU speeds. The decreased frame rate is despite the
fact that video coding is offloaded to hardware similar to
video streaming. This descrepancy is due to two reasons:
first, unlike video streaming there is no prefetching. There-
fore, packet processing in the kernel stack is becoming bot-
tleneck. Second, video telephony is interactive as in it re-
quires both sending and receiving of the live video. During
this, it requires encoding, decoding, muxing and demuxing
of the audio and video (recall that video streaming has only
decoding and demuxing). Even though most of the coding
is offloaded, the post processing is limited by poor CPUs.
Apart from clock, Skype has similar trends as YouTube with
other device parameters — memory, number of cores and
governors.

Interestingly, the adaptive bitrate (ABR) algorithm used
by Skype is more aggressive than YouTube. The ABR algo-
rithm [28] used by Skype changes the video quality during
Skype call for slow CPUs (as it does for poor network con-
ditions) since the skype client perceives poor throughput. In
effect, the client often requests low resolution videos under
slower clock frequency.
Takeaway3: The key takeaway is that video telephony is
linearly affected by slower CPU speeds mainly due to the
packet processing overhead. This is different from video
streaming, where the effect of the network processing is masked
by prefetching.

4. DISCUSSIONS
In this section we discuss (a) the implications of clock on

network throughput and energy, and (b) a possible Web page
optimization for low-end devices based on our observations
in §3.

4.1 Impact of Clock Frequency on Network
One of our findings is that the clock frequency not only

affects application processing, but has a second-order effect
on network throughput because of slow packet processing.

This in turn impacts application performance as well. While
packet processing overheads in the transport layer are known
to cause performance bottlenecks and have been well-investigated
in the data center context, including use of kernel bypass and
specialized NIC-level processing (see, e.g., [18]), there has
been little attention to this aspect in the context of mobile
applications.

To demonstrate the impact, we do a study using the IPerf
tool [13] from a server to the Nexus4 smartphone. IPerf
generates continuous traffic, and we measure the average
throughput over 5 minutes duration. We repeat the experi-
ment 20 times for 12 clock frequencies. Fig. 3 shows the
effect of clock on network throughput. When the clock fre-
quency is reduced from 1512 MHz to 384 MHz, the aver-
age throughput drops from 48 Mbps to 32 Mbps. This de-
crease in throughput is entirely internal to the device. Recall
(§2.1) that in our set up, we host the content in our LAN.
The reason for the decreased TCP throughput is that packet
processing is compute intensive, and a slow CPU increases
the packet processing time.

This second-order effect has significant implications es-
pecially for Web and Video telephony applications. As we
discussed in §3 and Figures 2(a) and (i), these applications
perform poorly under slow CPU speeds partly because of the
TCP processing delays.
Takeaway4:A takeaway is that we require research in im-
proving TCP processing not only in the context of data cen-
ters, but also in the context of mobile applications.

4.2 Accelerating Web Page Load
Based on the lessons learnt from video applications, we

explore how offloading computation to a co-processor may
improve performance of Web page loads under slower clocks.
Many modern mobile phones include GPUs, DSPs, and other
specialized hardware accelerators. We study the effect of of-
floading Web computation to a DSP.

To this end, we examined the computation performed on
the CPU during Web page load and identify that Javascript
execution is a major time consuming component. We then
drilled down into the execution of the script functions for
the slowest set of Web pages in our study (news and sports
pages), and found that a significant fraction (20% of script-
ing time) of the page load time is spent in regular expression
evaluation (e.g., for URL matching and list operations). This
makes a case for exploring the possibility of offloading reg-
ular expression evaluation to the DSP.

We conducted our analysis by offloading Javascript reg-
ular expression functions with the help of the Qualcomm
Hexagon SDK [23]. We converted the regular expression
functions from Javascript into direct C-language calls and
ported the functions to the aDSP processor of the Google
Pixel 2 phone (which has the Snapdragon 835 Application
processor). The communication between the CPU and DSP
was performed using FastRPC remote procedure calls.

We used nodejs to measure the runtime performance of
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Figure 4: Evaluations for DSP offloading of Javascript functions

the offloaded functions and analyzed their impact on the Web
page load times. To do this, we extracted the page depen-
dency graphs with WProf [33], which preserves the depen-
dency and computation timing information of the entire Web
page load process. We then derived the emulated page load
time (ePLT) by re-evaluating the WProf dependency graphs
after replacing the execution time of all functions that con-
tain the offloaded regular expressions with their measured
run times on the DSP.

Fig. 4 shows the impact of offloading regular expression
evaluation for the top 20 sports Web pages. We find that of-
floading just these functions to the DSP already provides a
noticeable improvement in the Web page load times when
the mobile device is run with the default frequency gover-
nors, where the CPU frequency is set by the OS (Fig. 4a).
Moreover, we observe an even greater improvement—almost
4× reduction—in median power consumption (Fig. 4b). As
expected, the page load time improvements due to offload
are largest (up to 25%) when the Web page is loaded at
slower CPU frequencies (Fig. 4c).
Takeaway5: Our initial results suggest that offloading of
the compute intensive parts of Web browsing to co-processors
has potential, especially for low-end phones, and should be
further explored.

5. RELATED WORK
Web performance: There is extensive literature on charac-
terizing and improving Web performance. WProf [33] and
WProf-M [19] characterize the bottleneck of desktop and
mobile browsing respectively using page-load dependencies.
The key observation in these works is that the network is the
bottleneck in desktop browsing while compute is the bot-
tleneck in mobile browsing. Klotski [6], Polaris [21], and
Vroom [25] are all designed to improve Web performance by
prioritizing network object loads taking into account depen-
dencies. Shandian [34], Prophecy [22], Nutshell [26], and
Parcel [27] use a Web proxy to improve page load perfor-
mance. While these methods optimize network activities to
improve page load, recent works including as Webcore [37]
and GreenDroid [9] optimize the mobile hardware architec-
ture to improve PLT and minimize energy consumption.
Video Performance: Similar to Web browsing, there has
been considerable work in improving video QoE focussing
on network resource provisioning [11, 36]. Pytheas [15] and
CS2P [30] propose data-driven approaches to study the im-
pact of different parameters that impact QoE. They show that

the QoE can be largely improved by adapting bitrate using
data-driven throughput prediction. Huang et.al. [12] con-
sider client playback buffer occupancy rate adaptation unlike
network-only solutions [5, 14].

Different from these works, our studies focus on under-
standing the impact of device parameters on Web and video
applications.

6. CONCLUSIONS
In this work, we analyze the impact of the device hard-

ware on key mobile Internet applications – Web browsing
(Google Chrome), video streaming (YouTube), and video
telephony (Skype). Our study is motivated by a survey of 7
diverse smartphone devices, ranging from $60 to $800. We
find that Web applications are adversely affected by low-end
device hardware but video applications, especially stream-
ing, is only modestly affected by low-end hardware. This
is largely because video applications offload video decod-
ing to a hardware accelerator, and do not rely on the CPU.
The hardware accelerators are even available on low-end
phone. Video applications also parallelize their task across
multiple cores available in low-end phones, and therefore
the application is not significantly affected under slow clock
speeds. Based on the lessons learnt from studying video
QoE, we explore the usefulness of offloading Web tasks to a
co-processor. Our preliminary analysis with offloading reg-
ular expression evaluations in Javascript to a low-power DSP
shows an improvement of 18% in page load time along with
a 4× reduction in energy consumption.
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