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Abstract
The advances of Machine Learning (ML) have sparked a

growing demand of ML-as-a-Service: developers train ML

models and publish them in the cloud as online services to

provide low-latency inference at scale. The key challenge of

ML model serving is to meet the response-time Service-Level

Objectives (SLOs) of inference workloads while minimizing

the serving cost. In this paper, we tackle the dual challenge of

SLO compliance and cost effectiveness with MArk (Model

Ark), a general-purpose inference serving system built in

Amazon Web Services (AWS). MArk employs three design

choices tailor-made for inference workload. First, MArk dy-

namically batches requests and opportunistically serves them

using expensive hardware accelerators (e.g., GPU) for im-

proved performance-cost ratio. Second, instead of relying on

feedback control scaling or over-provisioning to serve dy-

namic workload, which can be too slow or too expensive for

inference serving, MArk employs predictive autoscaling to

hide the provisioning latency at low cost. Third, given the

stateless nature of inference serving, MArk exploits the flex-

ible, yet costly serverless instances to cover the occasional

load spikes that are hard to predict. We evaluated the per-

formance of MArk using several state-of-the-art ML models

trained in popular frameworks including TensorFlow, MXNet,

and Keras. Compared with the premier industrial ML serving

platform SageMaker, MArk reduces the serving cost up to

7.8× while achieving even better latency performance.

1 Introduction

Driven by the sustained advances of Machine Learning (ML),

the past few years have seen a surging demand of ML-as-

a-Service (MLaaS). A typical workflow of MLaaS covers

the two phases of ML in the cloud: training and inference.

In the training phase, developers build ML models from the

training dataset using an array of ML frameworks. Efficient

training in cloud environments has been well explored in the

recent work [43, 56, 75]. In the inference phase, the trained

models are published as online services in data center or cloud

and can be queried by end users with new input. The service

makes prediction decisions (inference) for a given input using

the trained model [30] (e.g., recognizing human faces in a

given photo), and returns the inference results to the querier.

Unlike training which runs offline and may take hours to

days to complete, inference must be performed in real-time
on dynamic queries with stringent latency requirements (e.g.,

tens to hundreds of milliseconds per query). These require-

ments are often specified as the response-time Service-Level
Objectives (SLOs) [41], such as at least 98% of inference

queries must be served in 200 ms. Failing to comply with the

SLOs results in compromised quality of service or even finan-

cial loss, e.g., end users will not be charged for queries not

responded in time. Therefore, an ML model serving system

should strive to meet the target SLOs while minimizing the

cost of provisioning the serving instances in the cloud.

However, achieving these two objectives can be challeng-

ing. Cloud providers like Amazon [11], Google [37], and

Microsoft [52] offer a rich selection of service provisioning

options, ranging from VMs and containers to the emerging

serverless functions. For each provisioning option, there is a

large configuration space (e.g., CPU, memory, and hardware

accelerators) coupled with diverse pricing models offering

tradeoffs between service guarantees and cost savings (e.g.,

on-demand and spot instances [17]). A key challenge of pro-

visioning model serving in the cloud is: how should a serving

system choose from a bewildering array of cloud services to

provide low-latency, cost-effective inference at scale?

Unfortunately, there is no general guideline given by

the cloud providers, nor has it been studied in the prior

work [10, 25, 42, 45, 58, 59, 63, 70] which mainly targets

at general workload. To bridge this gap, we perform exten-

sive measurement studies of inference serving in AWS [11]

and Google Cloud [37] by means of VMs (IaaS), containers

(CaaS), and serverless functions (FaaS). We briefly summa-

rize three key findings as follows.

First, our measurements suggest that among the three op-

tions, IaaS offers the best performance-cost ratio for inference

serving, but it incurs long instance provisioning latency and

is hence unable to quickly adapt to the changing workload.

CaaS suffers from a similar problem as IaaS (though less



severe) with worse performance-cost ratio. Compared to IaaS

and CaaS, FaaS scales much faster but is the most expensive.

Second, inference serving can gain significant benefits from

batching when performed using costly hardware accelerators

(e.g., GPU and TPU). Nevertheless, the benefits are not always

guaranteed but critically depend on the batch size control

knobs and their interactions with query arrivals: when there is

not enough load, serving inference queries using GPUs is not

economically justified. Therefore, a serving system should

judiciously determine when to scale up from CPU to GPU

instances and how to perform batching over GPUs.

Third, ML inference usually performs stateless compu-

tations. This opens up an opportunity of using serverless

functions as a handover service when the system is provi-

sioning new instances for scaling up/out. Also, many ML

models, especially deep learning, have deterministic infer-
ence time [41, 74]—they take fixed-size input vectors and

have input-independent control flows. This also brings an

opportunity for better resource planing and latency control.

Motivated by these observations, in this paper, we propose

MArk (Model Ark), a low-latency, cost-effective inference

serving system in the public cloud. MArk takes use of the

unique characteristics of ML model serving while also ad-

dressing the distinctive challenges posed by it. In particular,

MArk allows developers to specify the target SLOs through

common APIs. To attain high performance-cost ratio, it uses

IaaS as the primary means of provisioning while employing

FaaS to quickly fill the service gap when the system is un-

dergoing horizontal/vertical scaling. MArk uses predictive
scaling to hide the instance provisioning latency in IaaS. Un-

predicted load spikes are covered by serverless functions to

reduce over-provisioning. Based on the predicted workload,

MArk opportunistically uses costly GPU instances to serve

batched queries for improved performance-cost ratio. To fur-

ther bring down the cost, MArk also supports the use of the

discounted, yet interruptible instances (e.g., spot instances)

with an interruption-tolerant mechanism that uses transient

servers to handle instance interruptions at low cost.

We have prototyped MArk as a general-purpose serving

platform in AWS [11] with pluggable backend model servers

supporting a range of ML frameworks such as Tensorflow

Serving [55], MXNet Model Server [24], and customized

Keras [29] server with Theano [26] backend. We have evalu-

ated MArk on AWS using several state-of-the-art ML mod-

els for image recognition, language modeling, and machine

translation: Inception-V3 [67], NASNet [76], LSTM-ptb [51],

and OpenNMT [47]. The results show that MArk yields up

to 7.8× cost reduction while achieving comparable or even

better latency compared to the state-of-the-practice solution

SageMaker [13], and also comply with the predefined SLO

requirements. MArk is open-sourced for public access.1

1https://github.com/marcoszh/MArk-Project

2 Background and Related Work

In this section, we survey related work on model serving sys-

tems and autoscaling techniques. We also provide background

information on cloud services and their pricing models.

2.1 Machine Learning Model Serving

A wide array of ML inference serving systems have been

proposed to facilitate model deployment [7, 8, 24, 30, 55, 72].

These systems place the trained models in containers and han-

dle model inference requests through REST APIs. For exam-

ple, systems like Clipper [30], Rafiki [72], and MXNet Model

Server [24] host each model in a separate Docker [4] con-

tainer to ensure process isolation; TensorFlow Serving [55]

deploy models as servables, which are executed as black box

containers and can also be used for version management. In

order to provide low-latency inference, these systems employ

a number of model-agnostic optimizations such as batching,

buffering, and caching [30]. The recently proposed white box
model serving [49] enables model-specific optimizations with

fine-grained resource sharing and parameter re-use.

However, existing inference serving systems mainly focus

on streamlining model deployment in server machines, with-

out addressing the scalability and cost minimization issues for

model serving on the public cloud. Microsoft’s Swayam [41]

is among a few inference serving systems that focus on in-

frastructure scalability and resource efficiency. Yet, Swayam

is a proprietary system for model deployment in Microsoft’s

private MLaaS clusters, where the cloud provisioning options

(e.g., IaaS, CaaS, FaaS) and their pricing models are not rele-

vant. Amazon’s SageMaker [13] offers scalable model serving

over EC2 [1] instances. However, it only supports IaaS provi-

sioning and requires manual specification of the provisioning

instances. SageMaker is also agnostic to the response-time

SLOs and serves inference queries in a best-effort manner. In

contrast, MArk meets SLOs at low cost by choosing from a

complex selection of provisioning services in AWS [11].

2.2 Autoscaling Dynamic Workload in Cloud

There is a large body of work on autoscaling dynamic work-

load for general web services hosted in the cloud. We refer

to [59] for an extensive survey of this topic and compare some

related work with MArk in Table 1. In general, there are two

scaling approaches used to serve dynamic workload.

Feedback control scaling. This approach monitors hosted

applications and reactively adjusts resource provisioning

based on the monitored metrics (e.g., utilization, throughput,

and latency). Feedback control scaling is adopted in many

industrial serving platforms to autoscale dynamic workload,

e.g., SageMaker in AWS [12, 13] and Kubernetes in Google

Cloud [38, 39]. These systems perform scaling following

some customized rules such as “adding 2 instances if CPU



Table 1: A comparison of MArk and existing work on autoscaling dynamic workload in the cloud.

Autoscaler Scaling approach Means of Provisioning SLO-aware Heterogeneous
instances

Interruptible
instances

Hardware
accelerators

MBRP [33] Feedback control Private cluster � � × ×
Ali-Eldin et al. [9] Predictive IaaS × × × ×
Barrett et al. [25] Predictive IaaS × × × ×
Urgaonkar et al. [70] Predictive IaaS � × × ×
Han et al. [42] Predictive IaaS � × × ×
Qu et al. [58] Feedback control IaaS × � � ×
SpotCheck [63] – IaaS × � � ×
He et al. [45] – IaaS × � � ×
Swayam [41] Predictive Private cluster � × – ×
SageMaker [13] Feedback control IaaS × × × �
MArk Predictive IaaS and FaaS � � � �

utilization reaches 70%,” or tracking a target such as “main-

taining 100 queries per minute per instance” [15].

Feedback control scaling makes no prediction about the

future and is easy to implement. However, owing to its reac-

tive nature, it incurs long instance provisioning delay when

used to serve changing workload [59]. Over-provisioning is

therefore needed in case of load spikes. For example, Sage-

Maker recommends to start with 100% over-provisioning and

adjust thereafter [16]. As ML model serving is often compute-

intensive and requires costly CPU/GPU instances, solely rely-

ing on over-provisioning is economically not viable.

Predictive scaling. This approach makes predictions about

the future workload, based on which it proactively autoscales

the serving instances to reduce over-provisioning. Predictive

scaling has been widely employed to serve general work-

load (e.g., web services and VM demands) using a number

of time-series based prediction algorithms, such as linear

regression [27], autoregressive models [34, 61], and neural

networks [19, 53, 57, 65]. Predictive scaling is often com-

plemented with feedback control scaling, where the two ap-

proaches operate at different time scales [42,70]. For example,

predictive scaling can be used for resource planning at the

time scale of hours or days, while reactive provisioning op-

erates in minutes to respond to flash crowds or unexpected

deviations from long-term behaviors [70].

However, due to the mismatch of target workload, existing

predictive autoscalers do not work well for ML model serving.

As summarized in Table 1, they only consider provisioning

over homogeneous instances in IaaS [9, 25, 42, 70]. They

also do not support hardware accelerators (e.g., GPUs) and

cheaper, yet interruptible instances (e.g., spot servers), hence

missing opportunities of cutting provisioning cost. In addition,

many predictive autoscalers are unaware of the response-time

SLOs and only provide best-effort services [9, 25].

2.3 Cloud Provisioning Services
Compared with private clusters, model serving in public

clouds is more complex. Leading cloud platforms such as

AWS [11], Google Cloud [37], and Microsoft Azure [52] of-

fer a variety of provisioning services that can be used for

model serving. We briefly review these services, with a main

focus on AWS.

Infrastructure-as-a-Service (IaaS). With IaaS, cloud cus-

tomers run virtual instances (VMs) of various configurations

in terms of vCPUs, memory, storage, network, and accelera-

tors (e.g., GPU, TPU, and FPGA). Customers can then con-

figure and deploy ML model serving softwares [24,30,68] on

running instances to serve model inference requests.

IaaS cloud provides flexible pricing options to allow cus-

tomers to choose between service guarantees and cost savings.

Taking Amazon EC2 [1] as an example, customers can run in-

stances on-demand and pay for compute capacity by per hour

or per second depending on the instance types. Alternatively,

customers can run spot instances at steep discounts compared

to the on-demand price, under the condition that a running

spot instance can be interrupted indefinitely [17]. EC2 also

allows customers to reserve an instance in a long term by mak-

ing an upfront payment [21]. During the reservation period,

the instance usage is subject to a heavy discount compared to

the on-demand price. All three IaaS pricing options are also

available in Google Cloud [37].

Container-as-a-Service (CaaS). With CaaS, customers en-

capsulate services and implementations in containers (e.g.,

Docker images [4]), and run containers with specified resource

configurations in the cloud, e.g., Amazon ECS [2] and Google

Kubernetes Engine [6]. Compared with IaaS, CaaS simplifies

software configurations and deployment without the complex-

ity of maintaining the server infrastructure. In Amazon ECS,

users pay for the container capacity by per second, where the

pricing is based on requested vCPU cores and memory.

Function-as-a-Service (FaaS). With FaaS, customers run

applications as serverless functions in the cloud without pro-

visioning or managing servers, e.g., AWS Lambda [3] and

Google Cloud Functions [5]. In Lambda, customers can only

specify the memory allocation for an instance, and pay for the

total number of requests and the duration of compute time [3].

FaaS is particularly suitable for stateless computations and



Table 2: Cost ($) and average latency (t) of serving 1 million

requests of three ML models in AWS. We choose c5.large
EC2 instance (2 vCPUs and 4GB memory) as it is the most

cost-effective. Each ECS container is allocated the same vC-

PUs and memory as c5.large; each Lambda instance has

3GB memory to achieve comparable latency with c5.large.

ML Model
EC2 ECS Lambda

$ t (ms) $ t (ms) $ t (ms)

Inception-v3 5.0 210 9.17 217 19.0 380

Inception-ResNet 9.3 398 16.4 411 39.3 785

OpenNMT-ende 51.5 2180 96.3 2280 155 3100

has recently been used to provision ML model serving [69].

Given a complex selection of provisioning options in the

public cloud, which one should be used for ML model serv-

ing? We answer this question in the next section.

3 Characterizing Model Serving in the Cloud

In this section, we characterize ML serving performance with

IaaS, CaaS, and FaaS as well as their configuration space. Our

characterizations are mainly based on AWS [11] (§3.1-3.4), a

leading cloud platform offering the most diversified service

options. We validate the major results in Google Cloud [37]

where possible (§3.5).

3.1 What service to use: IaaS, CaaS, or FaaS?
We choose three representative ML models, Inception-v3 [67],

Inception-ResNet [66], and OpenNMT-ende [47], for common

prediction tasks such as image classification and machine

translation, and evaluate their peak inference performance

with TensorFlow Serving [55]. Table 2 summarizes the cost

and average latency of serving 1 million requests using AWS

EC2 (IaaS), ECS (CaaS), and Lambda (FaaS), respectively.2

IaaS vs. CaaS. In EC2 [1], customers can choose among

predefined instance types with fixed vCPU and memory allo-

cation. In Table 2, we choose the cheapest compute-optimized

instance c5.large as the reference, since it is proven to be

the most cost-effective one in §3.3. AWS’s container service

ECS [2], on the other hand, lets users choose the number of

vCPUs they want. We allocate each container with 2 vCPUs

to match the capacity of c5.large, and with the minimum

memory allowed. Compared with c5.large, the ECS con-

tainer has similar serving latency but is more expensive.

FaaS. As for the serverless computing service Lambda [3],

the pricing is per-request based, and the cost per request de-

pends on the resource allocation and runtime of the request.

Customers specify memory allocation in Lambda, and CPU

resource is allocated proportionally to memory [14]. For a

fair comparison, we compare the Lambda cost of serving the

same amount of requests c5.large can serve in an hour, with

2Costs of instances are all based on AWS us-east-1 region.

the maximum memory allocated for best performance. The

cost is significantly higher, and the latency is longer, too.

Scalability. EC2 has long provisioning overhead (e.g., sev-

eral minutes), because additional time is needed to load and

set up large ML model serving atop standard overhead, as

Microsoft suggests with their production traces [41]. The

overhead makes it challenging to accommodate demand surge

without high margin of over-provisioning. The high launch-

ing overhead also penalizes frequent provisioning and de-

provisioning, since customers are billed during the instance

launching period as well. Similar to EC2, ECS also needs

dozens of seconds of provisioning overhead. Lambda, on the

contrary, is able to spawn thousands of new ML inference

instances in less than a few seconds, and once an instance is

ready, it can continuously serve requests without incurring

additional overhead [48]. The cold start overhead of Lambda

can be amortized by warming up [48]. Compared with EC2

and Lambda, ECS shows no obvious advantage.

Summary. A natural question is that can we exploit the cost-

effectiveness of IaaS service while also taking advantage of

the high scalability of FaaS? Conventional cloud provisioning

schemes have to over-provision because of the weak scala-

bility of IaaS or CaaS. Now that ML serving is eligible for

the highly scalable FaaS, we can reduce over-provisioning by

combining IaaS and FaaS. IaaS is used as the primary serving

option, while FaaS can provide transient service while new

IaaS instances are launching. Moreover, FaaS can potentially

handle the short lasting demand surges (short spikes), so that

the overhead of frequent provisioning and deprovisioning can

be eliminated. Although FaaS is costly, we believe the cost

reduction from less over-provisioning can justify its price.

With IaaS as the primary serving option, we shall determine

how to choose from a bewildering array of instance families

and sizes, which we answer in the following subsections.

3.2 IaaS: Can we use burstable instances?
IaaS providers typically categorize instances into families.

Within a family, instances share the similar physical hard-

ware but may have various sizes in terms of vCPUs, memory,

and network bandwidth. For CPU instances, EC2 offers four

main instance families: the general-purpose m-family, the

compute-optimized c-family, the burstable t-family, and

the memory-optimized r-family.

Among all instance types, burstable instances (t-family)

have the lowest hourly rate, but they are aggressively multi-

plexed on overbooked servers [71, 73]. Burstable instances

provide a baseline level (10% in AWS) of CPU performance

with the ability to burst when required by the workload, yet

with limited timespan according to a throttle policy (a new t2
instance can sustain 100% utilization for 30 minutes) [22,23].

We profiled t2 instances’ performance for ML serving and

show the results in Table 3. We see that the latency drops lin-

early with the CPU allocation but adding more memory does



Table 3: The average latency (t) and cost ($) of serving 1

million model inferences with bursted t2 instances.

AWS t2 Instance Size micro small medium large

Inception-v3
t (ms) 268.6 268.3 140.37 142.5

$ 0.87 1.71 1.81 3.75

Inception-ResNet
t (ms) 603.0 593.2 311.8 309.8

$ 1.94 3.79 4.01 7.96

OpenNMT-ende
t (s) 4.30 4.19 2.20 2.14

$ 13.85 24.83 28.36 56.71

(a) c5 instances (b) m5 instances

Figure 1: The latency (lines) and cost (bars) of serving 1

million model inference requests with c5 and m5 instances.

M1, M2, and M3 respectively denote Inception-v3, Inception-

ResNet, and OpenNMT-ende. The values are normalized by

that of c5.large (182.5ms with $4.3 for M1; 389ms with

$9.4 for M2; 2.18s with $51.5 for M3).

not benefit inference performance. Although it seems that t2
instances are of low cost with viable latency for ML serving,

these results are obtained in the bursted mode and do not sus-

tain a long time. This fatal disadvantage means that burstable

instances are not for compute-intensive services [50].

Summary. Burstable instances are plausible for transient

ML serving usage, but not as the main long-running resources.

3.3 IaaS: Big instances or small instances?

We further investigate CPU instance families compute-

optimized c-family and general-purpose m-family, where

we focus on the latest generation c5 and m5. We exclude

memory-optimized instances (r-family) from consideration,

as our measurements on t2 instances indicate that 4GB of

memory already does not bound the inference performance.

In EC2, the configurations (vCPUs and memory) and prices

of m5 and c5 instances are proportional to their sizes, so it

is important to see how scaling up to larger instances would

affect the ML serving performance.

Figs. 1a and 1b depict the measured latency (lines) and

cost (bars) of serving 1 million inference requests of three

ML models using c5 and m5 instances of different sizes. In

general, c5 instances are cheaper and have lower latency than

m5 instances because of more advanced CPU models, even

though the latter have higher memory than the former. Our

results also suggest that, for CPU instances of the same fam-

ily, smaller instances are more cost-effective, as the serving

throughput grows sub-linearly with the instance size. At the

same time, by scaling from a smaller instance to a bigger one,

the latency drops sub-linearly as well.

Summary. To sum up, smaller instances with advanced CPU

models (c5.large in AWS) are preferable as they achieve

higher performance-cost ratio. Moreover, owing to the finer

provisioning granularity, using smaller instances to serve dy-

namic workload improves the resource utilization. Note that

the cost analysis presented here is based in on-demand market.

Once we switch to the spot market, the cost-effectiveness is

variable w.r.t. the change of spot price.

3.4 IaaS: How does GPU compare with CPU?
Many high-end IaaS instances are equipped with hardware ac-

celerators, such as GPU and TPU (exclusive in Google Cloud),

that can be used to speed up ML training and inference. The

questions are: how would those hardware accelerators im-

prove the latency of ML serving, and if such performance

benefit can justify their high cost? In this subsection, we fo-

cus on GPU instances, as GPU is the most accessible and

popular general-purpose ML accelerator. We will extend our

study to TPUs in Google Cloud in §3.5.

A GPU instance is more expensive than a CPU instance, but

it can achieve up to 40× speedup due to its massive parallel

nature according to NVIDIA [54]. In order to unleash the full

power of its computing capability, it is essential to batch multi-

ple inference requests and serve them in one go [68]. Batching

benefits the performance in two ways. First, it amortizes the

overhead of operations such as RPC calls and inter-device

memory copy. Second, it can take advantage of batch opera-

tion optimization from both software and hardware [30, 62].

To disclose the intriguing performance difference between

CPU instances and GPU instances as well as batching, we

compare the inference performance of three ML models on

c5 CPU instances and GPU instances p2.xlarge. We choose

p2.xlarge as it is the smallest GPU instance in AWS (the

next size available is p2.8xlarge which has 8 GPUs and is

too expensive). Fig. 2 shows the cost and latency of serving

1 million inference requests with various batch sizes (# of

requests served in one batch) on c5 and p2.xlarge instances.

For smaller CPU instances such as c5.large and c5.xlarge,

the serving cost (bars) and latency improvement (lines) over

batching is marginal (latency growing proportionally as the

batch size), while bigger CPU instance (c5.4xlarge) dis-

plays certain improvement when batch size increases within

a small range. GPU instances, on the other hand, benefit sig-

nificantly from batching: the larger the batch, the lower the

cost per request. This phenomenon suggests that batching can

significantly improve the cost-effectiveness of larger CPU

instances and GPU instances.

Summary. With an appropriate batch size, GPU instances

can achieve lower per-request cost and shorter inference la-

tency than CPU instances. However, batch size cannot be in-



(a) c5.large (b) c5.xlarge

(c) c5.4xlarge (d) p2.xlarge

Figure 2: The cost and batch latency of 1 million model infer-

ence with batching of various sizes. M1, M2, M3 represents

inception-v3, inception-resnet, and OpenNMT-ende. The cost

and batch latency are normalized by the values when batch

size is set to 1.

creased arbitrarily: increasing batch size leads to both longer

queuing latency and batch inference latency [30]. We will

further discuss the batching configuration in §4 and formulate

the problem in a latency-aware context.

3.5 Characterization in Google Cloud
So far, all our profiling experiments are based on AWS. To val-

idate whether our main observations also apply to ML serving

in the other cloud platforms, we extend our characterization

to Google Cloud [37] which offers similar service and pric-

ing options as AWS, along with the Tensor Processing Unit

(TPU), the state-of-the-art ML ASIC.

IaaS remains the best option. We first compare the cost

and latency performance of ML serving using Google’s IaaS,

CaaS, and FaaS with the same workloads as in §3.1. All the

experiments were run in us-central1 region. Among the

three provisioning options, IaaS remains the best with the low-

est cost and shortest latency. For instance, the average latency

and total cost of serving 1 million Inception-v3 requests on an

customized IaaS instance with 1 vCPU and 2GB memory are

317ms and $3.70, respectively. In comparison, it takes 319ms

and $4.17 using the cheapest CaaS instance n1-standard-1
(1 vCPU and 3.75GB memory), and 527ms and $17.4 using

Google Cloud Functions (FaaS) with 2GB memory.

Small instances win on performance-cost ratio. We then

compare the cost and latency performance of CPU instances

of various sizes within the same family. We made the sim-

ilar observations as in AWS (§3.3): smaller instances offer

higher performance-cost ratio than the bigger ones, though

the latter leads to shorter latency. In particular, when serv-

(a) Inception-v3 (b) ResNet50

Figure 3: The cost and batch latency of serving 1 million in-

ference requests with various batch sizes. The batch latencies

are normalized by the latency when there is no batching.

ing 1 million Inception-v3 requests with n1-standard-1,

n1-standard-2, and n1-standard-4, the cost (average la-

tency) ends up with $4.16 (319ms), $7.82 (296ms), and

$11.98 (227ms), respectively.

CPU, GPU, or TPU? Finally, we compare the cost and la-

tency performance of using CPU, GPU, and TPU instances for

ML serving with various batch sizes. We chose two popular

image classification models, Inception-v3 and ResNet50 [44].

The results are shown in Fig. 3, where we used a customized

CPU instance with 1 vCPU and 2 GB memory (CPU), the

same instance with a K80 GPU attached to it (GPU), and a

Cloud TPU-v2 instance (TPU). We observe the similar trend

of cost and latency w.r.t. batch size for CPU and GPU in-

stances as in AWS (§3.4). As for TPU, we find that its high

price tag does not justify the performance benefit. In fact,

TPU is a massively parallel accelerator optimized for training

throughput rather than inference latency. Note that in Fig. 3,

the batch size for TPU is calculated per core. As TPUv2 has 8

cores, the device batch size is actually 8 times the value. The

design of TPU calls for large batch sizes to fully exploit its

computing capacity [40]. However, the stringent latency re-

quirement of real-time inference cannot wait for large batches

to accumulate, leading to extremely low hardware utilization.

In summary, TPUs are not suitable for real-time ML serving.

3.6 Characterization Summary

We summarize our key findings as follows: (1) IaaS achieves

the best cost and latency performance for ML model serv-

ing, and combining it with FaaS can potentially reduce over-

provisioning while remaining scalable to spiky workloads. (2)

Burstable instances are viable to cover transient ML serving

demand. (3) In on-demand CPU market, smaller instances

have higher performance-cost ratio than the bigger ones, even

though the latter provides shorter latency. (4) Only with ap-

propriate batching can the use of GPU instances be justifiable

to achieve lower cost and shorter latency than CPU instances.



Figure 4: An overview of the MArk model serving system.

4 MArk

In this section, we present MArk (Model Ark), a scalable

system that provides cost-effective, SLO-aware ML inference

serving in AWS. While MArk is built in AWS, nothing pre-

vents our design from being extended to the other cloud plat-

forms with similar service offerings, such as Google Cloud.

4.1 Overview

Following our observations in §3, MArk uses EC2 as the pri-

mary means of provisioning ML serving. It also uses Lambda

to quickly cover the service gap when there is a need to scale

out/up. Fig. 4 illustrates the overall architecture of MArk. In

particular, requests from clients are deposited to a request

queue, and are grouped into batches by the Batch Manager
(details in §4.3). MArk periodically measures the workload

metrics, such as the request arrival rate, and sends them to

a Proactive Controller which makes predictions and plans

instances in advance to reduce over-provisioning (§2.2). The

controller then sends the launching and destroying requests

to EC2 instances, on which custom service backends such as

Tensorflow Serving [55] are hosted. The controller also moni-

tors the health status of all running instances. With predictive

scaling, further actions are needed to handle prediction errors

and unexpected load surges. On each running EC2 instance,

there is a Bouncer monitoring serving metrics and performing

request admission control. If an incoming request cannot be

served within a specified time RTmax, it will be handled by

Lambda instances immediately. In addition, MArk employs

an SLO Monitor that keeps track of and maintains the SLO

compliance with the method described in §4.4.

SLO requirements. Following Swayam [41], we set two

SLO requirements for MArk. (1) Response Time Threshold:

A request is deemed fulfilled only if its response time is below

RTmax. (2) Service Level: The service is considered satisfac-

tory only if at least SLmin percent of requests are fulfilled.

4.2 Workload Prediction

MArk employs predictive scaling to reduce over-provisioning.

To expose the long-term cost trade-off between different in-

stances and resource provisioning, we need to estimate the

maximum request rate in the near future, which requires

multi-step workload prediction. Existing works employ many

well-established resource estimation methods, such as linear

regression [27], autoregressive models [34, 61], and neural

networks [19, 53, 57, 65]. As the accuracy of prediction de-

pends on the underlying workload, there is no such a universal

method that works perfectly in all cases. Therefore, MArk

exposes an API through which users can implement their

own workload prediction methods that best fit their applica-

tions. The challenge is how to gracefully handle unavoidable

prediction errors and unexpected load surges.

We have implemented a vanilla version of long short-term

memory (LSTM) network [36] for multi-step workload pre-

diction, as it is reported to give the state-of-the-art perfor-

mance [64]. In our implementation, the prediction unit (time

interval) is Pu, and the prediction window is Pw, meaning

MArk updates the predicted load for the next PwPu interval

every Pu time units. During each unit, MArk keeps sampling

the arrival rate in consecutive short sample windows of Ps. It

keeps track of the maximum arrival rate of the unit, and gets

the maximum arrival rate array for the next Pw units. In our

evaluations, we set the [Pu,Pw,Ps] to [1min,60,5s]. Prediction

unit is set to 1 minute, as EC2 charges at least 1 minute for

new instances. Prediction window is set to 60 steps, since 1

hour of future trend is good enough to expose the long term

trade-offs. The sample size is set to 5 seconds, since the arrival

rate can be treated as stable in short time slots [74]. MArk

is designed to work for all ML serving workloads, so users

can fine-tune this prediction algorithm or replace it with their

own implementations for better prediction results.

4.3 Instance Provisioning and Batching
With workload prediction, we need to determine what and

how many instances should be used to serve the requests.

In general, this problem can be formulated as a compilation

of queueing system [74], where instances of each type are

modeled as an M/D/c queue with deterministic processing

time and the predicted request arrival rate. However, as shown

in [74], this problem has no closed-form solution even without

considering request batching and instance pricing. Given this

hardness result, we turn to a heuristic solution: instead of

jointly considering batching and instance provisioning, we

solve the two problems separately using heuristics.

Batching. Inspired by the adaptive batching in [30], we in-

troduce two hyperparameters to control the batching behavior

of an instance type: Wbatch which is the maximum waiting



time window for request batching, and Nbatch which is the

maximum batch size. The Batch Manager fetches requests

from the queue, and submits the batched requests if either

of the two limits is reached (Fig. 4). We tune the two hy-

perparameters to meet the following two requirements: (1)

No SLO requirements can be violated, meaning the waiting

time window and the processing time of the batch together

should be capped by response time threshold RT max; (2) the

throughput with batching enabled must be greater than that of

no batching. That is, the waiting time window and the batch

processing time together should be less than the time needed

to process all those requests sequentially without batching.

In practice, hyperparameter tuning requires light profiling

for the target instance. We first profile the optimal processing

rate of the target instance without batching, denoted by μ∗nb.

We then gradually increase the batch size from 1 until at least

one of the following constraints no longer holds, where b is

the batch size, and Tb is the time needed to process a batch:

Wbatch +Tb ≤ RT max,

Wbatch +Tb ≤ b
μ∗nb

.

Now that we have the optimal batch size Nbatch ← b and

the maximum processing rate μ∗ under this configuration,

together with their corresponding Wbatch, we can simply treat

the target instance as a black box with processing rate μ∗.

Instance provisioning. We now solve the instance provi-

sioning problem using an online heuristic algorithm that con-

siders both long-term cost-effectiveness and the launch over-

head, while at the same time attaining high utilization of

running instances.

We first introduce the notations. Suppose there are n types

of instances that can be used for serving. At a given time t0,

let R = {r1,r2, · · · ,rn} be the set of running instances and

F = (F1, · · · ,Fm) the predicted maximum request arrival rate

for the next m steps, where Ft is the predicted maximum

rate in step t. For each instance type i, let Ci be the instance

capacity, measured by the maximum throughput of a given

model (requests per hour). Let Pi be its unit price, and Oi its

launch overhead, i.e., cost due to the instance provisioning

latency. Finally, let I be the set of available instance types.

Given R, F , I and the target SLO, our problem is to determine

what instances to launch and which instances to destroy at t0,

so as to minimize the cost while meeting the target SLO.

The challenge of finding the optimal solution in the long

run is how to deal with the running instances at t0. They may

not be the most cost-effective in the next m steps, yet keeping

using them avoids additional launch overhead. We propose a

greedy solution in Algorithm 1. Our intuition is to greedily

find the most cost-effective instance from time period t0 to tm
considering both the pay-as-you-go fee and launch overhead.

The running instances at t0 can be treated as special ones

without launch overhead.

Algorithm 1 Greedy Algorithm

procedure SCHEDULE(F,R, I,SLO)

S ← S∪R � Running instances are treated as special ones

with zero launch overhead

for all instance i in S do
if instance i cannot meet SLO requirement then

S = S\{i} � Remove i from S
if S = /0 then

Report error � No candidate instance can meet SLO

instance_plan ← /0 � initialize provisioning plan

FILL(F,S, instance_plan)

Launch instances in instance_plan but not in R
Destroy instances in R but not in instance_plan

procedure FILL(F,S, instance_plan)

Csum ← total capacity of all instance i in instance_plan
for t = 1 to m do

Λt = Ft −Csum � Unfulfilled requests predicted at step t
if Λτ ≤ 0 then � Planned capacity is enough at step τ

return

Find the largest e such that there are unfulfilled requests from

steps τ to e, i.e., Λt ≤ 0 for all τ ≤ t ≤ e
min_cost ← ∞ � Greedily search the instance with the lowest

per-request cost to cover unfilled requests from τ to e
for all instance type i ∈ S do

cost ← (Oi +(e− τ)Pi)/N, where N is the number of un-

fulfilled requests that will be served by an instance i in [τ,e]
if cost < min_cost then

min_cost ← cost
j ← i

instance_plan ← instance_plan∪{ j}
FILL(F,S, instance_plan)

In our algorithm, assuming most instances can get ready

in τ time units after launching, we use the predicted load at

t0 + τ as the provisioning target, as it is safe to make instance

provisioning decisions τ time units in advance. The values of

τ can be easily adjusted based on the actual scenario. In our

setup, τ is set to 5 minutes, and the scheduling time unit is set

to 1 minute. In this case, the scheduling decisions are made

every minute, targeting the load in 5 minutes. The launching

requests should be sent right away once the instance_plan is

ready, while destroying requests should be sent after a prede-

fined cool-down period to ensure better service quality [59].

It is worth mentioning that Algorithm 1 trivially meets the

SLO requirement by ensuring that the latency performance of

each selected instance comply to the target SLO individually.

4.4 SLO tracking

The heuristic in Algorithm 1 plans instance capacity based

on predictions. Yet not all demand surges are predictable,

and such surges would result in SLO violations if solely re-

lying on proactive provisioning [59]. To further improve the

SLO compliance, MArk actively monitors request latency,



and reactively scales the cluster as soon as SLO violations

are detected. MArk constantly checks if the last M requests

satisfy the SLO requirements, if not, L instances of type T
will be launched (c5.large by default). All those parameters

can be tuned for specific models and SLO requirements.

4.5 Spot Instance and Lambda Cold Start

Use of spot instances. Note that Algorithm 1 does not differ-

entiate between on-demand and spot instances, which allows

MArk to exploit the price discount of spot instances. However,

the adoption of spot instances poses the challenge of instance

interruptions. Although the interruption of a spot instance will

be notified 2 minutes in advance, such a grace period may

not be long enough for a substitute spot instance to get ready.

The question is how can we handle the outstanding requests

in the presence of instance interruptions? Lambda seems to

be a choice, but it would take a toll on the latency and cost.

Our answer to this challenge is the burstable instance. As

shown in §3.2, burstable instances are cheap instances which

can sustain full utilization for about 30 minutes. The low cost

and high peak performance make them a perfect fit for tran-

sient backups in case of short-term interruptions. Moreover,

burstable instances can be resumed from stopped state in less

than 2 minutes thanks to their small sizes. Therefore, when

we use spot instances with MArk, we reserve a few stopped

burstable instances as cold standbys. Once MArk receives

interruption notices, it resumes the corresponding amount of

burstable instances to handle the transient requests until the

regular spot instances capacity is back to normal, after which

those burstable instances are stopped.

Lambda cold start. Another potential challenge MArk

faces is the cold starts in Lambda [71]. Every time a new

Lambda instance is launched, it needs to load the ML model,

framework library and code in memory, which results in a

much longer inference delay. Nevertheless, cold starts only oc-

cur when the request rate exceeds the concurrency, measured

by the number of currently available lambda instances [32,73].

Existing benchmarking shows that a Lambda instance is re-

cycled after it stays inactive for 45 to 60 minutes [31]. Our

evaluations further confirm that, with more than 3 million

requests, the cold start rate never exceeds 0.23%. Therefore,

the latency impact of cold starts is limited. The cost impact is

also negligible. Our profiling shows that $1 can spin up 7K

inception-v3 Lambda instances, which is capable of serving

more than 20K requests per second. Algorithm 1 hence does

not consider the cost impact of Lambda cold starts.

Despite the negligible impacts of Lambda cold start, our

implementation employs strategical concurrency warm-up to

further amortize its impact. When a potential Lambda request

surge is expected, such as spot interruptions and unexpected

workload surges, MArk sends concurrent pings to Lambda to

warm up more instances as described in [32].

Table 4: ML models and frameworks used in evaluation.

Model Type Framework Size

Inception-v3 Image Classification Tensorflow Serving 45MB

NASNet Image Classification Keras 343MB

LSTM-ptb Language Modeling MXNet Model Server 16MB

OpenNMT-ende Machine Translation Tensorflow Serving 330MB

5 Experimental Evaluation

We have prototyped the proposed MArk system and con-

ducted extensive experimental evaluations on AWS to vali-

date its effectiveness and robustness. We first compare the

performance of MArk using on-demand instances and spot in-

stances respectively with the premier industrial ML platform

SageMaker against production traces from Twitter. To ensure

MArk’s performance does not mainly rely on prediction ac-

curacy, we then examine whether MArk is able to maintain

its advantage under unpredictable, highly bursty workload.

After that, we run a few microbenchmarks to demonstrate the

robustness of MArk in terms of handling spot interruptions,

and the ability to handle unexpected demand surges.

5.1 Evaluation Setup

MArk. We have prototyped MArk on top of Amazon EC2

and Lambda services in two versions, MArk-ondemand which

only uses on-demand instances, and MArk-spot which uses

spot instances with interruption-tolerant mechanism, i.e., us-

ing burstable servers for smooth transition during unexpected

instance interruption (§4.5).

Testbed. We use AWS as the testbed for conducting exten-

sive experiments. The types of instance used in our evalua-

tion include all the c5 and m5 instances as examples of CPU

instances and p2.xlarge instances as an example of GPU ac-

celerators. In our experiments, we used up to 42 c5 instances,

10 m5 instances, and 12 p2.xlarge instances.

ML models. We use four popular ML models that are of

various sizes and cover diverse domains deployed in three

popular ML serving software frameworks to evaluate MArk’s

performance, which are summarized in Table 4. To config-

ure the batching of the ML models on EC2 instance, we

performed lightweight profiling following the instructions de-

tailed in §4.3. The optimal batching hyperparameters Wbatch

and Nbatch for p2.xlarge instance found by our tuning al-

gorithm outlined in §4.3 are 200ms and 8 for Inception-v3,

750ms and 16 for NASNet, 490ms and 16 for OpenNMT-ende.

For LSTM-ptb, we only performed experiments on CPU as

MXNet Model Server does not support batching at the time

of writing. For OpenNMT-ende on CPU instance, the optimal

batching hyperparameter Nbatch is found to be 2, and Wbatch is

set accordingly. For the other models on CPU instance, we do

not use batching as it does not bring benefits (see Fig. 2).

SLO. Recall that the SLO requirement is specified as at



(a) Twitter (b) MMPP

Figure 5: Snapshots of the arrival process using Twitter and

MMPP with the prediction results of LSTM based algorithm.

least SLmin percent of requests must be served in RTmax time

(§4.1). We set SLmin to 98% for all models, and set RTmax as

600ms, 1000ms, 100ms, and 1400ms for Inception-v3, NAS-

Net, LSTM-ptb, and OpenNMT-ende respectively.

Workload. In our evaluation, we drive the arrival process

of ML workloads in two different ways. First, as there is no

publicly available traces for ML serving, we synthesize ML

requests based on the tweets traces from Twitter [20]. We

believe that the Twitter traces serve as a good benchmark,

as it represents a popular web service with highly dynamic

load. The trace exhibits typically characteristics of ML in-

ference workloads, containing recurring patterns (e.g., hour

of the day, day of the week) as well as unpredictable load

spikes (e.g., breaking news). In particular, the peak request

rate in the traces is 4 times higher than the valley, a result of

transient demand surges commonly found in industrial-scale

web applications. Fig. 5a(a) illustrates a snapshot of the trace.

Second, to further evaluate the performance sensitivity of

MArk w.r.t the workload, we synthesize random and bursty

ML request load using Markov-Modulated Poisson process
(MMPP) [28,35,60]. The load generated by MMPP are highly

unpredictable, as the occurrence and duration of demand

surges are completely random, as shown in Fig. 5b.

In summary, we use the Twitter traces to evaluate how well

MArk performs against synthesized real workload that can

be largely predicted. Using MMPP-generated workload, we

stress test MArk’s performance in the presence of frequent,

unpredictable load spikes.

Baseline. We use SageMaker [13] as the baseline for the eval-

uation. SageMaker is AWS’s leading ML training and hosting

system. SageMaker hosting employs AWS’s new target track-

ing autoscaling policy [16,18]. Given the dynamics in request

arrival rate (i.e., the arrival rate can increase more than double

in just a few minutes), to ensure service quality, we follow

the AWS guidelines [16] and set the over-provisioning factor

to 2 for SageMaker. We will show in Fig. 7 that even so the

over-provisioning is still incapable of handling the volatile

workload of the Twitter traces.

(a) Latency of Inception-v3 on TFS (b) Latency of NASNet on Keras

(c) Latency of LSTM-ptb on MMS (d) Latency of OpneNMT on TFS

Figure 6: Latency comparison of MArk-ondemand (MO),

MArk-spot (MS), and SageMaker (SM) on 4 ML models

using Twitter workload.

5.2 Macrobenchmarks

Workload prediction. For Twitter traces, we use the data

of the first 5 months to train the workload prediction model.

For MMPP-generated arrival process, we use a period of 24-

hour data for training. Fig. 5b demonstrates snapshots of

the prediction results. We see that the prediction accuracy is

in general good for the Twitter traces, yet very poor for the

MMPP case. Since striving for the best workload prediction

is NOT the focus of this paper, and we mainly use the LSTM

based algorithm as an example of the pluggable workload

prediction component, we do not provide detailed evaluation

of the prediction algorithm in the interest of space.

Experimental results using Twitter traces. We first com-

pare MArk-ondemand, MArk-spot, and SageMaker on the

ML models described in §5.1 by feeding the arrival rate ex-

tracted from Twitter traces. The experiments were performed

on AWS spanning more than 8 hours each. We report two

metrics: request latency in Fig. 6, and cost breakdown in Ta-

ble 5. The request latency is measured as the time between

request arriving at the serving system and getting response

back, while the cost is the charge billed by AWS. The compar-

ison results suggest that MArk can significantly reduce both

the cost and latency compared with SageMaker. For cost re-

duction, compared with SageMaker, MArk-ondemand respec-

tively achieves 3.63×, 2.79×, 2.41×, and 3.15× for the four

ML models; MArk-spot achieves 6.21×, 5.91×, 6.64×, and

7.83×, respectively. For latency, MArk-ondemand achieves

up to 57% reduction and MArk-spot achieves up to 60% re-

duction compared with SageMaker.

The latency advantage of MArk over SageMaker comes

in three-fold. First, with appropriate batching configuration,



Table 5: Cost ($) comparison of MArk-ondemand (MO),

MArk-spot (MS), and SageMaker (SM) on 4 ML models

using Twitter workload.

Setting
Inception-v3 NASNet

MO MS SM MO MS SM

EC2 20.94 9.83 80.98 24.21 10.71 68.1

Lambda 1.34 3.2 NA 0.19 0.81 NA

Total 22.28 13.03 80.98 24.40 11.52 68.1

Setting
LSTM-ptb OpenNMT-ende

MO MS SM MO MS SM

EC2 6.17 2.24 14.9 27.54 10.79 87.1

Lambda 0 0.04 NA 0.12 0.33 NA

Total 6.17 2.28 14.9 27.66 11.12 87.1

GPU instances can reduce the overall latency by performing

more efficient parallel computation. Second, the SLO-aware

design of MArk helps reduce the queuing delay. In addition,

the predictive scaling and SLO-awareness together form an

efficient hybrid approach that enjoys the benefits in both proac-

tive and reactive designs. It is worth pointing out the different

performance behaviors between MArk-ondemand and MArk-

spot. As shown in the latency box plots in Fig. 6, MArk-spot

has longer latency tails, since more requests are handled by

Lambda compared with MArk-ondemand, in case of interrup-

tions. However, the average and median latencies of MArk-

spot are usually the same or even better than MArk-ondemand.

This is because in spot market, the performance-cost ratio is

highly dynamic, which allows MArk-spot to opportunistically

use large instances and GPU instances at cheaper price than

on-demand, leading to better latency performance.

MArk’s cost reduction comes from the following aspects.

First, predictive scaling together with Lambda services brings

a more judicious over-provisioning design that can reduce

the cost. The 2× cost reduction over SageMaker in MArk-

ondemand using only CPU instances for LSTM-ptb is a good

example. Second, GPU instances can further reduce the cost

during high arrival rate as batching increases the efficiency of

computing. The cost reduction is more significant for Open-

NMT as it benefits the most from batching as shown in Fig. 2d.

MArk-spot further brings down the cost by enjoying the spot

market discounts. Note that although Lambda service used

by MArk is expensive in price, but the cost of Lambda can be

well justified by enabling more judicious over-provisioning.

We have also performed a case study of SLO compliance

and report the Complementary Cumulative Distribution Func-
tion (CCDF) of request latency in Fig. 7. As expected, MArk

managed to maintain its compliance with SLO requirements,

thanks to the SLO-aware design. SageMaker, on the other

hand, is SLO-oblivious, so the queuing delay adds up during

high arrival periods, and the SLO is violated.

Experimental results using MMPP-generated load. Next

we evaluate MArk using the more challenging, less pre-

dictable MMPP workload. We still use the same four ML

models, and each experiment lasts about 4 hours on AWS. In

(a) Inception-v3 (b) NASNet

(c) LSTM-ptb (d) OpneNMT

Figure 7: CCDF of latency comparison between MArk and

SageMaker. RTmax is drawn as a black dashed vertical line (the

black dashed horizontal line shows the corresponding CCDF

value of RTmax). MRK and SM represents MArk and Sage-

Maker, while TWT and MP represents Twitter and MMPP

workload respectively.

the interest of space, we only demonstrate the SLO compli-

ance results in Fig. 7. Fig. 7a shows that the SLO compliance

of SageMaker is significantly degraded from Twitter case to

MMPP case due to the much more dynamic and bursty be-

haviors in MMPP. However, MArk can still meet the SLO

requirements even when the workload is highly dynamic and

unpredictable, thanks to the SLO Monitor that can detect the

failure of proactive prediction and timely add backup ma-

chines based on the feedback control algorithm. Note that

we only evaluated SageMaker with MMPP-driven arrival pro-

cess on Inception-v3 model as it is too expensive for us to

run all of them. However, given the SLO-oblivious nature of

SageMaker, we expect the behavior would be similar.

5.3 Microbenchmarks

In this section, we evaluate the robustness of MArk by taking

a closer look at how MArk handles unexpected demand surges

and spot interruptions.

Robustness against unexpected surge. MArk harvests per-

formance and cost benefits by using a judicious over-

provisioning scheme. One important question is whether

MArk can handle unexpected demand surges well in the

presence of unforeseeable flash crowds or poor workload

prediction accuracy. To answer this question, we increase the

request rate for LSTM-ptb serving by 50%, 75%, and 100% in

2 minutes and compare the latency over time between MArk



(a) 50% surge in 2 min (b) 75% surge in 2 min

(c) 100% surge in 2 min (d) spot instance interruption

Figure 8: Microbenchmark results. (a), (b), (c): The latency

change comparison during unexpected demand surge between

MArk and SageMaker, where the surge starts at the 11th min

shown by the dashed line. (d): The latency change when differ-

ent percentages of spot instances are interrupted in MArk-spot,

where the interruption notice is received at the 7th min.

and SageMaker in Figs. 8a, 8b, and 8c. 3 Since the surge is

unpredictable, both MArk and SageMaker handle it reactively.

The results suggest that MArk acts faster and effectively than

SageMaker during the unforeseeable surge, i.e., the increased

latency period and amount are much smaller, thanks to the

Lambda-based fallback mechanism, which can immediately

take over and cap the latency to prevent queue building up

like in SageMaker. In addition, MArk’s SLO Monitor can

detect the SLO violations and issue backup instance requests

right away to adapt to the new arrival rate, while SageMaker

is only able to react in the next scaling cycle.

Robustness against spot interruption. MArk-spot utilizes

spot instances to reduce the cost. However, the interruption

of spot instance can cause performance degradation if not

handled properly. We evaluate MArk-spot by zooming in

the interruption handling periods under different interruption

ratio of instances. We launched a 20-instance Inception-v3

cluster, and manually interrupted 20%, 40%, and 80% of the

instances respectively. Fig. 8d illustrates the latency change

during the interruption. The interruption happens at the 7th

minute (vertical dashed line), and MArk resumes t2 instances

as transient resources upon receiving interruption notice. The

proactive controller then adjusts the provisioning plan and

requests new instances. At the 13th minute new spot instances

are ready, and the latency goes back to normal. The average

latency drops during transient period because burstable t2 in-

stances can have temporal boosted performance as discussed

3Given that we only compare latency here, we show the results of MArk-

spot as the latency results of MArk-ondemand can only be better.

in §3.2. The short latency bump at the 13th minute is due to

the switching overhead (i.e., warm up of new instances).

To sum up, the results above confirm that MArk can handle

unexpected surge and spot interruption robustly.

6 Discussion

Cloud platform. The measurements and evaluations in this

paper are mainly based on AWS. However, the main design

of MArk can be generally extended to other major cloud

platforms, as they offer both IaaS and FaaS services, as well as

flexible pricing models. Nevertheless, some hyperparameters

used in the algorithm are platform-dependent, and must be

re-tuned. Also, we have not considered reserved instances, as

they require a long-term usage commitment. We believe they

will bring down the cost of serving stable inference demands

in a long run, and will leave it as a future work.

Large models. Deep learning models are becoming increas-

ingly large and may not fit into the memory of Lambda (or

even IaaS) instances. A possible solution goes to distributed

inference under the model parallel scheme, which is not sup-

ported in our current design. We will leave it as a future work.

Hardware accelerator. We used the most common ML accel-

erator GPU as an example of utilizing hardware accelerators.

The same batching formulation can be applied to other accel-

erators (e.g., FPGA) as they benefit from batching similarly.

MArk’s architecture requires a master machine to make

provisioning decisions. While such design has limitations

on scalability and is vulnerable to the single point of failure,

these problems can be easily addressed with mature industrial

solutions such as Zookeeper [46].

7 Concluding Remark

In this paper, we conducted a systematic study of serving

ML models on cloud and concluded that combining FaaS

and IaaS can achieve scalable ML serving with low over-

provisioning cost. Driven by the unique characteristics of ML

model serving, we proposed MArk, a cost-effective and SLO-

aware ML serving system. We prototyped MArk on AWS

and showed that compared with the premier autoscaling ML

platform SageMaker, MArk yields significant cost reduction

(up to 7.8×) while complying with the SLO requirements

with even better latency performance.
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