
BlockLite: Toward Accurate and Efficient
Emulation of Public Blockchains in the Cloud

Xinying Wang, Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao

University of Nevada, Reno, NV 89557, USA

Abstract. Blockchain is an enabler of many emerging decentralized ap-
plications in areas of cryptocurrency, Internet of Things, smart health-
care, among many others. Although various open-source blockchain frame-
works are available in the form of virtual machine images or docker
images on public clouds, the infrastructure of mainstream blockchains
nonetheless exhibits a technical barrier for many users to modify or test
out new research ideas in blockchains. To make it worse, many advan-
tages of blockchain systems can be demonstrated only at large scales,
e.g., thousands of nodes, which are not always available to researchers.
This paper presents an accurate and efficient emulating system to replay
the execution of large-scale blockchain systems on tens of thousands of
nodes. In contrast to existing work that simulates blockchains with artifi-
cial timestamp injection, the proposed system is designed to be executing
real proof-of-work workload along with peer-to-peer network communi-
cations and hash-based immutability. In addition, the proposed system
employs a preprocessing approach to avoid the per-node computation
overhead at runtime and thus achieves practical scales. We have eval-
uated the system for emulating up to 20,000 nodes on Amazon Web
Services (AWS), showing both high accuracy and high efficiency with
millions of transactions.

Keywords: Distributed systems · Blockchains · Consensus protocols.

1 Introduction

Blockchain, a decentralized and immutable database, has drawn a lot of re-
search interests in various communities, such as security [22, 9], database [2, 14],
network [16], distributed systems [29], and high-performance computing [1]. Al-
though many existing blockchain frameworks [15, 20] are open-source and offer
docker images accessible in major cloud vendors (e.g., Google Cloud, Amazon
Web Services (AWS), and Microsoft Azure), there are yet more challenges for
blockchains to be widely adopted, such as (i) the lack of resources to carry out
large-scale experiments and (ii) much, if not prohibitive, engineering effort to
modify sophisticated production (despite open-source) systems to timely test
out new ideas.

To this end, multiple blockchain simulators were recently developed, two of
the most popular ones being Bitcoin-Simulator and VIBES.

2 Xinying Wang, Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao

Bitcoin-Simulator [17] follows the same architecture and protocol of Bit-
coin [7], the foremost application in cryptocurrency built upon blockchains. Users
of Bitcoin-Simulator can specify various protocol and network parameters, such
as the number of nodes and network bandwidth. The main goal of Bitcoin-
Simulator is to study the trade-off between performance and security. Because
of its design goal, Bitcoin-Simulator simulates the execution of a blockchain net-
work at the block level rather than the transaction level. Bitcoin-Simulator does
not provide a fine-grained control over the application, limiting its applicabil-
ity for broader adoption. In addition, Bitcoin-Simulator simply inserts a series
of static time stamps to simulate the proof-of-work (PoW) consensus proto-
col, which does not precisely characterize the behavior of real-world blockchain
systems: for instance, Bitcoin dynamically adjusts the PoW difficulty and the
nodes (as known as miners) usually complete the tasks in stochastic time in-
tervals. Last but not least, Bitcoin-Simulator’s network is built upon NS3 [26],
a discrete-event network simulator, which limits the scalability on up to 6,000
nodes. Bitcoin network currently consists of more than 10,000 nodes [8], imply-
ing that Bitcoin-Simulator cannot simulate the entire network of Bitcoin as of
the writing of this paper.

VIBES [28] extends Bitcoin-Simulator with the following improvements.
First, VIBES supports a web-based interface for users to visually track the
growth of the network. Second, VIBES improves the scalability of Bitcoin-
Simulator by employing a fast-forwarding algorithm, which essentially designates
a coordinator to control the events according to existing nodes’ best guess on
the block creation time. Such a centralized coordinator might be acceptable for a
single-node simulator at small- or medium-scale, and yet could be a performance
bottleneck for extreme-scale applications. Similar to Bitcoin-Simulator, VIBES
takes the same approach of inserting time stamps to hypothetically carry out
the PoW workload. Both Bitcoin-Simulator and VIBES are coarse estimators of
real-world blockchain executions due to the lack of real PoW implementations
or a decentralized architecture.

This paper presents BlockLite, the very first blockchain emulator with
both high accuracy and high scalability. In contrast to Bitcoin-Simulator, Block-
Lite comprises a specific module to execute real PoW workload1, supports fine-
grained transaction management, and scales out to 20,000 nodes thanks to its
efficient network communications built upon distributed queues along with PoW
preprocessing that incurs negligible runtime overhead. Different than VIBES,
BlockLite is fully decentralized with no single point of failure or performance
bottleneck. It should be noted that even on a single node the decentralization
philosophy of blockchains still holds for a blockchain emulator because each
user-level thread is now considered as an individual node.

The remainder of this paper is organized as follows. §2 reviews important
literature of blockchain systems. We describe the system design of the proposed
emulator BlockLite in §3. §4 presents the implementation details and the inter-

1 Thus making it an emulator rather than a simulator

BlockLite: Lightweight Blockchain Emulation in the Cloud 3

face exposed to the users. We report the experimental results in §5, discuss some
open questions in §6, and finally conclude the paper in §7.

2 Related Work

Several researches on blockchain are being under focus among the distributed
computing community apart from the main stream blockchain systems like Bit-
coin [7], Ethereum [15], and Hyperledger [20]. In order to mitigate the bottle-
neck with the storage a blockchain framework named Jupiter [18] is designed for
mobile devices. Similarly, to alleviate storage bloating problem another frame-
work [13] is proposed based on Network Coded Distributed Storage. To enable
customization and enhancement in arbitrary scenarios Inkchain [21] is designed
that is built with the flavor of permissioned blockchain based on Hyperledger.

Reliability and security in order to maintain data integrity is being considered
another major concern for the distributed ledger technology. BigchainDB [6] is
known to have all the features from database (i.e., indexing, querying structured
data) and the blockchain properties (i.e., decentralization and immutability)
while providing better fault tolerance. To improve the security at the Trans-
port layer, Certchain [10] is proposed. Smart contract technology is leveraged
in [19] to make sure the validity of data based on decentralized privacy preserv-
ing search scheme. Similarly, 2LBC [3] is designed to manage the data integrity
in distributed systems based on leader rotation approach.

Distributed data provenance [11, 12] has been another research attraction
among the file system and database communities. Most recently, a consensus pro-
tocol called proof-of-reproducibility (PoR) [1] is crafted to manage distributed
in-memory ledger for HPC systems in order to support scientific data prove-
nance. For storage-level provenance several I/O optimization techniques [11, 12]
for file systems are proposed. There is also an emerging trend for conventional
workloads, such as high-performance computing and networking, to move to the
cloud platforms [24, 23, 31, 30]. Various solutions [5, 25] are designed for the
improvement of provenance in database transactions.

Though, a recent work namely SimBlock [4] focuses to develop a blockchain
network simulator that supports changing node behavior on run time in order to
investigate behavior of nodes; to the best of our knowledge, this paper presents
a blockchain framework for the first time that supports emulation with very
large scales of nodes in terms of user level threads along with the plug-in facil-
ity of custom components (i.e., ad-hoc consensus protocols) for domain specific
applications.

3 System Design

The objective of BlockLite is to provide blockchain researchers and practitioners
an easy-to-use and lightweight emulator to develop new components and evaluate
new ideas, such as ad-hoc consensus protocols customized for domain-specific
applications. To achieve that objective, BlockLite is designed to be deployed
to a single node, with loosely-coupled components for flexible customization.

4 Xinying Wang, Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao

Fig. 1. BlockLite Architecture.

In its infrastructure, BlockLite has implemented all the building blocks for a
basic blockchain system. This section details how these common facilities are
designed, the challenges we encounter, and the approaches we take to build up
the emulator.

The high-level architecture of BlockLite is illustrated in Figure 1. While the
interface, i.e., BlockLite API, will be detailed in §4, the infrastructure can be
broken down into three categories: storage, computation, and networking. In
the context of blockchains, they are usually referred to as distributed ledgers,
consensus protocols (e.g., PoW), and network communications.

Distributed Ledgers. The transaction data of a specific blockchain are
replicated, either fully or partially, in distinct files each of which is associated
to a hypothetical node. The data, also called ledgers, could have been partially
duplicated if the following two conditions are satisfied: (i) more than 50% of
nodes have agreed on that the new block (of transactions) is valid and (ii) the
current node (other than those nodes who have voted) does not process any
request regarding the new block. Regardless of specific consensus protocols, a
blockchain requires only 50% votes supporting the new block’s validity.

Consensus Protocols. A basic proof-of-work protocol is implemented from
scratch in BlockLite. In contrast to other simulators where the difficulty is sim-
ulated by time delay and timestamps, BlockLite, as an emulator, conducts the
real PoW workload by solving the puzzle. The puzzles we define in BlockLite
are similar to the Nakamoto protocol in Bitcoin [7] in the sense of comparing
blocks’ hash values against predefined thresholds. Nonetheless, BlockLite ex-
hibits an additional feature that preprocesses PoW allowing for fine tuning of
puzzle difficulty, which is detailed in §3.1.

Network Communications. It is one of the most challenging components
to emulate the networking in BlockLite that is designed to be working on a single
node. Fortunately, BlockLite is designed for emulating public blockchains that

BlockLite: Lightweight Blockchain Emulation in the Cloud 5

Fig. 2. Two-phase Puzzle for Efficient Preprocessing of PoW in BlockLite.

are based on PoW, which is compute-intensive rather than network-intensive2.
Therefore, the real network impact for PoW-based blockchains lies in the network
infrastructure’s latency rather than bandwidth. BlockLite applies a statistical
estimation of time delays for transmitting the messages between nodes, each
of which is emulated by a user-level thread whose requests are buffered in a
distributed queue. We will discuss the distributed queue in more detail in §3.2.

3.1 PoW Preprocessing for Fine-grained Calibration across
Heterogeneous Systems

One cornerstone of Nakamoto consensus protocol, or any PoW variants, is the
puzzle-based winner selection:3 the hash value of the (block of) transactions is
compared against the predefined “small” number. Because BlockLite is designed
to be running on an arbitrary node that can be heterogeneous case by case,
we must provide an efficient yet flexible mechanism to ensure the compatibil-
ity across heterogeneous machines. To this end, we design BlockLite puzzles as
follows. A puzzle’s difficulty is expressed by two sub-fields, L and M , in the
form of L.M (assuming SHA256 [27] is used as the hash function): L indicates
the required number of leading zeros in the 64-hex (i.e., 256-bit) hash value; M
indicates the minimal number of zeros in the middle of the hash value.

Figure 2 illustrates how L.M is constructed. The first part L is semantically
equivalent to the Nakamoto protocol: checking whether a hash value is smaller
than a predefined threshold is essentially the same to counting the number of
leading zeros in the binary or hex form of the hash value. L is a coarse-level
adjustment of difficulty because the same L might imply a wide spectrum of
computation time, and this is exactly why Bitcoin dynamically adjusts the dif-
ficulty every 2016 blocks [7]. To address that, BlockLite introduces the M part
to allow the system to check whether there are M zeros in the middle of the
hash value satisfying the following conditions: (i) Any leading zeros in L are not
considered; (ii) Tailing zeros, by definition, are counted towards M ; and (iii)
Zeros need not be continuous.

The benefit of the additional M -zero checking is that we can adjust the
puzzle difficulty under the same meta-difficulty, i.e., same L but different M ’s.
In addition, M is positively correlated to the puzzle difficulty: a larger M implies
more computation time. To see this, we can think of a larger M representing a

2 Private blockchains are indeed network-intensive due to the quadratic number of
messages.

3 As known as “leader” in the context of distributed systems

6 Xinying Wang, Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao

super-set of the sets of less zeros with smaller M ’s. As a consequence, a smaller
M has a higher chance to meet the requirement—the difficulty is lowered.

While the flexibility is significantly improved, one limitation of this L.M two-
phase puzzle is that the two arbitrary difficulty numbers do not follow partial
orders in terms of computation time. That is, if T (·) indicates the computation
time of a specific difficulty, it is possible that

T (L1.M1) > T (L2.M2) and L1 < L2,

if M1 is significantly larger than M2. The root cause of this counter intuition is
that L and M are, essentially, incomparable. For instance, if L is much smaller
than M , then finding out M zeros, despite from random positions, is still much
harder than locating a few leading zeros. As an extreme case, if we have two
setups as L1.M1 = 1.63 and L2.M2 = 2.1, obviously the former case is much
harder where we will seek for a hash value with all 64 zeros, as opposed to finding
a hash value with two leading zeros and another zero from any of the remaining
62 hex digits.

3.2 Optimization for Extreme-scale Networking through
Distributed Queues

In contrast to existing blockchain simulators, BlockLite does not simply insert
timestamps for the the completion of PoW; instead, it solves the real puzzle to
accurately emulate a real blockchain system. The downside of this approach is
the cost and overhead for large-scale systems. For instance, Bitcoin has about
10,000 mining nodes as of January 2019 [8]. A single machine, despite its multi-
or many-cores, is not able to efficiently emulate tens of thousands of nodes each
of which works on a compute-intensive puzzle such as finding out a qualified
hash value.

BlockLite overcomes the scalability challenge by delegating one node (thread)
to solve the puzzle in a preprocessing stage and when the real application runs
at a specific difficulty, the assigned nodes (or, threads) simply replicate the
behavior of the delegation node. In doing so, BlockLite achieves the best of both
worlds: real execution of PoW and low overhead (i.e., high scalability). Since
the calibration is carried out in a preprocessing state, no runtime overhead is
introduced.

The second technique taken by BlockLite to achieve high scalability is the
usage of queue-based network communication. Specifically, we implement a pri-
ority queue who manages all the events in the order of their creation time. That
is, the head of the queue always points to the earliest event, followed by later
events each of which is requested by a specific node. Therefore, the queued events
implicitly determine the the orders of nodes completing their tasks (e.g., submit-
ting transactions, solving puzzles, appending blocks), which significantly reduces
the network traffic.

4 Implementation and Interface

BlockLite is implemented in Java with about 2,000 lines of code. We have been
maintaining a website for the BlockLite project at https://hpdic.github.io/

BlockLite: Lightweight Blockchain Emulation in the Cloud 7

blocklite; the source code will be released to https://github.com/hpdic/

blocklite.

Because users’ machines are equipped with different resources, the very first
step to deploy BlockLite is to calibrate the parameters in accordance to the
system’s specification. For instance, a throughput of 10 transactions per second
might require 7.x difficulty on a high-end server with 32 cores, and the same
throughput might require 4.x difficulty on a mainstream laptop with four cores.
The calibration, also called PoW preprocessing, is to allow BlockLite to adjust
the difficulty by considering factors input by users (e.g., expected throughput,
consensus protocols) as well as system specification (e.g., number of cores, mem-
ory size).

When BlockLite runs for the first time, it generates a difficulty-time

map between difficulty levels and the execution time. This map is implemented
as a HashMap and is accessible to all the nodes. Whenever a node is waken up
according to the consensus protocol, the node will consult with the difficulty-time
map and replay the behavior with controlled randomness.

Specifically, the emulator starts by asking the user to specify the values of
two parameters: MAX DIFF and MAX SUBDIFF. The emulator then goes on
to repeatedly mine the blocks in a nested loop as shown in Algorithm 1. The
complexity of the algorithm is O(n2) by observing the two levels of loops, one
for the main difficulty and the other for the sub difficulty.

Algorithm 1 Calibration

1: function runMillsOfDiffcults
2: mainDifficult ← 1
3: for i ∈ {0 · · ·MAX DIFF} do
4: subDiffcult ← 0
5: for j ∈ {0 · · ·MIN DIFF} do
6: Start Timer
7: powProof ← newProofWork(i, j);
8: mineBlock();
9: End Timer
10: end for
11: end for
12: end function

Algorithm 2 illustrates the mechanism of BlockLite to mine a specific block.
The main difficulty mainDiff corresponds to L in Figure 2, subDiff indicates
the auxiliary difficulty corresponding to M , and miner() is the implementation
method of mining. The overall complexity is therefore O(n), where n indicates
the number of attempts before we find out the qualified nonce number.

BlockLite provides an easy-to-use interface for users to plug in application-
specific components. Listing 4 illustrates a simplified code snippet of the interface
with two core methods. Users can implement both methods to inject customized
consensus protocols. For instance, generateProof solves the puzzle; in PoW, this
means to check many nonce numbers until the hash value of the combined data
satisfies the condition. Therefore, when the node wants to create a new Block,

8 Xinying Wang, Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao

Algorithm 2 Mine Block

1: function mineBlock
2: nonce ← 0
3: n ← mainDifficult+ subDiffcultf
4: target ← A string of �mainDifficult� 0’s
5: while !blockID.startwith(target) or countOfZero(blockID) <n do
6: nonce ++;
7: blockID ← calculateHash(lastBlockID + timeStamp+ nonce+ ...);
8: end while
9: end function

the program will call mineBlock() in block.java to solve the puzzle, i.e., select
the appropriate difficulty to control the mining time according to the difficulty
calibration map.

1 pub l i c i n t e r f a c e Provable {
2 pub l i c boolean v e r i f yP r oo f (Block) ;
3 pub l i c S t r ing generateProo f (Block) ;
4 }

Listing 1.1. BlockLite Plug-in Interface.
Both aforementioned methods take as input a Block object, whose fields

are explained in Table 1. The class comprises all the necessary information for
the system to manipulate the blocks and more important, the transactions—
the dominant data format in blockchain-based applications. A more detailed
declaration of the class can be found in the source code, which is open-sourced
at the project website: hpdic.cse.unr.edu/blocklite.

Table 1. Block Member Variable.

Variable Definition

blockID ID of the Block

creationTime Creation Time of Current Block

creatorID Creation ID (Node ID) of Current Block

parentBlock Parent Block of Current Block

depth Depth of Current Block

previousHash Hash Value of Parent Block

childList Child List of Current Block

numChild Numbers of Current Block Children

txnList Numbers of Current Block Transactions

proof Consensus protocol (Nakamoto by default)

5 Experimental Evaluation
5.1 Experimental Setup

We perform extensive experimental evaluation of BlockLite on AWS. We pick
four different instance types, the processors of which represent a wide spectrum

BlockLite: Lightweight Blockchain Emulation in the Cloud 9

Fig. 3. Overhead of Various Instances.

of CPUs from both Intel and AMD. Table 2 lists the instance types along with
their processor specification.

Table 2. Different AWS instances used for evaluating BlockLite.

Instance Types CPU Specifications

t2.large 2 Intel(R) Xeon(R) CPU E5-2686 v4 @2.30GHz

t2.2xlarge 8 Intel(R) Xeon(R) CPU E5-2686 v4 @2.30GHz

c5.18xlarge 72 Intel(R) Xeon(R) Platinum 8124M CPU @3.00GHz

m5a.12xlarge 48 AMD EPYC 7571

The data we use for our evaluation are transactions in the same format of
Bitcoin trades. Specifically, more than two million transactions are fed into the
emulator for real-scale applications. We repeat all experiments for five times and
report the average; we do not report the variance if it is unnoticeable.

5.2 Overhead

We report the overhead to find the map between the difficulty and the block-
creation time in Figure 3. Specifically, we build the maps of four VMIs for the
following three example intervals: 10 minutes, 20 minutes, and 30 minutes. It
should be noted that, however, these overheads are incurred only during the
preprocessing stage and would not be applied to the real-time execution.

We can observe that the overhead increases at an exponential rate with re-
spect to the intervals; take the t2.large instance for example, the overhead
increases by 3.7× from 10 to 20 minutes and then increases by 8.7× from 20 to
30 minutes. Another observation is that these VMIs do not exhibit much differ-
ence in overhead at shorter intervals like 10 or 20 minutes; and yet, for longer
interval like 30 minutes, the smaller instances (i.e., t2.large and t2.2xlarge)

10 Xinying Wang, Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao

Fig. 4. Difficulty v.s. Block Creation Time

indeed incur much longer overhead (than c5.18xlarge and m5a.12xlarge). This
phenomenon can be best explained by the fact that smaller VMIs are equipped
with slower CPUs that need to solve the same puzzle in a longer time.

5.3 Accuracy

Figure 4 shows the calibration map of the m5a.12xlarge instance. For practical
time intervals, e.g., ten minutes or more, the emulated processing times are close
to the expected time intervals. We also plot the preprocessing difficulties in the
figure; the result suggests that most difficulty values range in between six and
eight, covering mining time from 1 to 30 minutes.

We then report the accuracy on various instance types in Figure 5. The for
sake of clarity, we do not plot the corresponding difficulty in the figure. As we
can see from the figure, not all instance types exhibit the same accuracy; in our
tested VMIs, the c5.18xlarge seems to achieve the highest accuracy except for
the trivial case of 1- and 5-minute intervals.

5.4 Sensitivity

This section evaluates the sensitivity of BlockLite when deployed to various
VMIs. Figure 6 shows the puzzle-solving time on four different instances with
respect to practical difficulties from four to eight. For clarity, we only compare the
main difficulty between VMIs in the figure (we will report sub difficulties

later on). The figure clearly shows that smaller instances (t2.large, t2.2xlarge)
take more time than the larger instances for all difficulties, which, again, can be
explained by the different CPU performance on these instances.

In Figure 7, we report the puzzle-solving time of both main and sub difficul-
ties. Indeed, the highest computation time appears on the top-right corner of the
map in all cases, as that corner represents both the highest main difficulty and
the highest sub difficulty; similarly the lowest value appears at the bottom-left
corner. Nonetheless, we do observe different gradients from these four heat-maps.

BlockLite: Lightweight Blockchain Emulation in the Cloud 11

Fig. 5. Block Creation Rate with Various Instances Type.

Fig. 6. Difficulty and Puzzle Solving Time

For instance, the largest instance (m5a.12xlarge) seems to have the most low-
value cells (i.e., shorter puzzle-solving time).

5.5 Scalability

We tested BlockLite’s scalability by emulating up to 20,000 nodes on the instance
with 48 AMD EPYC cores and 192 GB memory (m5a.12xlarge, see Table 2).
The workload is comprised of more than one million transaction data.

Figure 8 shows BlockLite’s real-time executions, along with memory foot-
print, on 5,000, 10,000, 20,000, and 40,000 nodes, respectively. The puzzle diffi-
culty is set to one for the sake of fast demonstrations. We can observe that even
at the the real scale of Bitcoin—10,000 nodes, BlockLite can finish the emulation
in 13 seconds with reasonable memory footprint of less than 4 GB.

12 Xinying Wang, Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao

(a) t2 large (b) t2 2xlarge

(c) c5 18xlarge (d) m5a 12xlarge

Fig. 7. Puzzle-solving time of both main and sub difficulties.

5.6 Monetary Cost

This section evaluates the cost incurred at the cloud computing vendors when
various CPU or instance types are selected. As we can see in Figure 9, small
instance t2.large incur the lowest cost in all intervals while the c5.18xlarge

instance is the most costly one. This can be explained by the high unit price of
the c5.18xlarge instance: although the execution time is comparable with the
other large instance (m5a.12xlarge), the overall charge is higher because of the
different unit price.

6 Discussion

There are a few optimizations that could have been applied to current BlockLite
design, which are not supported at the writing of this paper. Although there
are many more open questions to be answered, we list two of most interesting
optimizations here in the following for the sake of limited space.

One possible optimization to the current BlockLite implementation is to
leverage the underlying multi- or many-cores in modern processors. It should
be noted that in many computation-based consensus protocols, the workload is
embarrassingly parallel. Therefore, we should be able to parallelize the proof-of-
work (POW) protocols, which will be studied in our future work.

Another possible extension to this work is to implement an inter-node com-
munication such that the emulator can be distributed over a cluster of nodes.

BlockLite: Lightweight Blockchain Emulation in the Cloud 13

(a) 5,000 nodes (b) 10,000 nodes

(c) 20,000 nodes (d) 40,000 nodes

Fig. 8. Scalability and Memory Footprint of BlockLite.

Fig. 9. Monetary Cost of Various Instances.

This would further improve the adaptability of BlockLite if a single node is
not capable of conducting the intensive computation expected by some large
difficulties.

14 Xinying Wang, Abdullah Al-Mamun, Feng Yan, and Dongfang Zhao

7 Conclusion and Future Work
This paper presents BlockLite, the very first system who can emulate large-scale
public blockchains on up to 20,000 nodes. BlockLite achieves such a high scal-
ability through an offline calibration of PoW execution and distributed queues.
The emulation also achieves high accuracy through a two-phase adjustment over
the underlying consensus protocol. In terms of usability, BlockLite provides an
easy-to-use interface to plug in application-specific components such as ad-hoc
consensus protocols.

Future research directions include extending BlockLite into a general em-
ulating platform applicable for a wider spectrum of blockchain types such as
permissioned blockchains and field blockchains. The loosely-coupled design phi-
losophy of BlockLite would likely emulate these non-public blockchain systems
with high accuracy and high efficiency on par with public blockchains.

Acknowledgement

This work is in part supported by a Google Research Award and the National Sci-
ence Foundation under contracts CCF-1756013 and IIS-1838024 (using resources
provided by Amazon Web Services as part of the NSF BIGDATA program).

References

1. Al-Mamun, A., Li, T., Sadoghi, M., Zhao, D.: In-memory blockchain: Toward effi-
cient and trustworthy data provenance for hpc systems. In: Proceedings of the 6th
IEEE International Conference on Big Data (BigData) (2018)

2. Allen, L., et al.: Veritas: Shared verifiable databases and tables in the cloud. In:
9th Biennial Conference on Innovative Data Systems Research (CIDR) (2019)

3. Aniello, L., Baldoni, R., Gaetani, E., Lombardi, F., Margheri, A., Sassone, V.:
A prototype evaluation of a tamper-resistant high performance blockchain-based
transaction log for a distributed database. In: 13th European Dependable Com-
puting Conference (EDCC) (2017)

4. Aoki, Y., Otsuki, K., Kaneko, T., Banno, R., Shudo, K.: Simblock: A blockchain
network simulator. CoRR abs/1901.09777 (2019)

5. Arab, B.S., Gawlick, D., Krishnaswamy, V., Radhakrishnan, V., Glavic, B.: Using
reenactment to retroactively capture provenance for transactions. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE) 30(3), 599–612 (March 2018)

6. BigchainDB: https://github.com/bigchaindb/bigchaindb (Accessed 2018)
7. Bitcoin: https://bitcoin.org/bitcoin.pdf (Accessed 2019)
8. Bitcoin Scale: https://bitnodes.earn.com (Accessed 2019)
9. Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical uc-secure delegatable

credentials with attributes and their application to blockchain. In: Proceedings of
the ACM SIGSAC Conference on Computer and Communications Security (CCS).
pp. 683–699 (2017)

10. Chen, J., Yao, S., Yuan, Q., He, K., Ji, S., Du, R.: Certchain: Public and efficient
certificate audit based on blockchain for tls connections. In: IEEE INFOCOM 2018
- IEEE Conference on Computer Communications (2018)

11. Dai, D., Chen, Y., Carns, P., Jenkins, J., Ross, R.: Lightweight provenance service
for high-performance computing. In: International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT) (2017)

BlockLite: Lightweight Blockchain Emulation in the Cloud 15

12. Dai, D., Chen, Y., Kimpe, D., Ross, R.: Provenance-based object storage prediction
scheme for scientific big data applications. In: IEEE International Conference on
Big Data (BigData) (2014)

13. Dai, M., Zhang, S., Wang, H., Jin, S.: A low storage room requirement framework
for distributed ledger in blockchain. IEEE Access 6, 22970–22975 (2018)

14. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: Blockbench: A
framework for analyzing private blockchains. In: ACM International Conference on
Management of Data (SIGMOD) (2017)

15. Ethereum: https://www.ethereum.org/ (Accessed 2018)
16. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-ng: A scalable

blockchain protocol. In: Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation (NSDI) (2016)

17. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS) (2016)

18. Han, S., Xu, Z., Chen, L.: Jupiter: A blockchain platform for mobile devices. In:
IEEE International Conference on Data Engineering (ICDE) (2018)

19. Hu, S., Cai, C., Wang, Q., Wang, C., Luo, X., Ren, K.: Searching an encrypted
cloud meets blockchain: A decentralized, reliable and fair realization. In: IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications (2018)

20. Hyperledger: https://www.hyperledger.org/ (Accessed 2018)
21. Inkchain: https://github.com/inklabsfoundation/inkchain (Accessed 2018)
22. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain

model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
Symposium on Security and Privacy (SP) (2016)

23. Li, T., Keahey, K., Wang, K., Zhao, D., Raicu, I.: A dynamically scalable cloud
data infrastructure for sensor networks. In: Proceedings of the 6th Workshop on
Scientific Cloud Computing (ScienceCloud) (2015)

24. Li, T., Zhou, X., Wang, K., Zhao, D., Sadooghi, I., Zhang, Z., Raicu, I.: A con-
vergence of key-value storage systems from clouds to supercomputer. Concurr.
Comput. : Pract. Exper. (2016)

25. Niu, X., Kapoor, R., Glavic, B., Gawlick, D., Liu, Z.H., Krishnaswamy, V., Rad-
hakrishnan, V.: Provenance-aware query optimization. In: IEEE 33rd International
Conference on Data Engineering (ICDE) (2017)

26. NS3: https://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf (Accessed
2019)

27. SHA-256: https://en.bitcoin.it/wiki/SHA-256 (Accessed 2018)
28. Stoykov, L., Zhang, K., Jacobsen, H.A.: Vibes: Fast blockchain simulations for

large-scale peer-to-peer networks: Demo. In: Proceedings of the 18th ACM/I-
FIP/USENIX Middleware Conference (Middleware) (2017)

29. Zhang, K., Jacobsen, H.: Towards dependable, scalable, and pervasive distributed
ledgers with blockchains. In: 38th IEEE International Conference on Distributed
Computing Systems (ICDCS) (2018)

30. Zhao, D., Mandagere, N., Alatorre, G., Mohamed, M., Ludwig, H.: Toward locality-
aware scheduling for containerized cloud services. In: IEEE International Confer-
ence on Big Data (BigData). pp. 273–280 (2015)

31. Zhao, D., Yang, X., Sadooghi, I., Garzoglio, G., Timm, S., Raicu, I.: High-
performance storage support for scientific applications on the cloud. In: Proceed-
ings of the 6th Workshop on Scientific Cloud Computing (ScienceCloud) (2015)

