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ABSTRACT

This paper targets an important class of applications that requires
combining HPC simulations with data analysis for online or real-
time scientific discovery. We use the state-of-the-art parallel-10
and data-staging libraries to build simulation-time data analysis
workflows, and conduct performance analysis with real-world ap-
plications of computational fluid dynamics (CFD) simulations and
molecular dynamics (MD) simulations. Driven by in-depth perfor-
mance inefficiency analysis, we design an end-to-end application-
level approach to eliminating the interlocks and synchronizations
existent in the present methods. Our new approach employs both
task parallelism and pipeline parallelism to reduce synchronizations
effectively. In addition, we design a fully asynchronous, fine-grain,
and pipelining runtime system, which is named Zipper. Zipper is a
multi-threaded distributed runtime system and executes in a layer
below the simulation and analysis applications. To further reduce
the simulation application’s stall time and enhance the data transfer
performance, we design a concurrent data transfer optimization
that uses both HPC network and parallel file system for improved
bandwidth. The scalability of the Zipper system has been verified by
a performance model and various empirical large scale experiments.
The experimental results on an Intel multicore cluster as well as
a Knight Landing HPC system demonstrate that the Zipper based
approach can outperform the fastest state-of-the-art I/O transport
library by up to 220% using 13,056 processor cores.
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1 INTRODUCTION

As high end supercomputing systems are evolving from petas-
cale to exascale, data generated from extreme-scale modeling and
simulation applications reach a scale of hundreds of terabytes or
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even petabytes. The grand challenges confronted by today’s scien-
tific computing community hence include not only computation-
intensive simulations, but also data-intensive analyses that need
to process the huge amount of computed results generated from
the simulations [7, 31, 44]. Today, it is even challenging to answer
certain basic questions such as: Did any unusual phenomena hap-
pen or not during the simulation? When and where did they occur?
With the new advanced big data analytics techniques, it is more
and more popular and appealing to combine modeling/simulation
with big data analysis to create a virtuous cycle that amplifies their
collective effects [16, 35, 37].

However, it is exceedingly challenging to achieve high perfor-
mance for an integrated workflow with both simulation and data
analysis applications particularly at extreme scales. There exist
workflow solutions that target high productivity. Workflow middle-
ware such as Kepler [28] and Pegasus [10] has been widely used in
different scientific domains. They provide orchestrating, executing,
and monitoring coarse-grain steps in a workflow. Each step runs an
application program or web service [17]. Also, those participant
steps are often loosely coupled such that the resultant workflows
have higher latencies (i.e., milliseconds or much more) than the
MPI-based HPC applications (i.e., microseconds).

In this paper, we seek to achieve the microsecond-level HPC
performance on scientific workflows. Achieving high performance
workflows requires we solve the following issues. First, what could
be the minimum end-to-end time-to-solution and how can we
achieve it? Second, simulation and data analysis applications work
as an interactive producer-consumer system, then how can we re-
duce the simulation stall time if the analysis is slow? Third, how
can we reduce the I/O time between simulation and analysis appli-
cations? The third issue of I/O bottleneck has been well recognized
and studied by many researchers. For instance, in-situ/in-transit
approaches, data-staging approaches, and a number of high-level
1/0 libraries have been developed to reduce the I/O bottleneck. Sec-
tion 2 will briefly introduce a few state-of-the-art I/O transport
libraries.

Instead of focusing on the I/O bottleneck only, we bring on an
end-to-end approach to optimizing a scientific workflow’s time-
to-solution, which is comprised of simulation time, data analysis
time, and I/O time. We use the latest high-level I/O libraries such as
MPI-IO [45], ADIOS [27], DataSpaces [11], DIMES [50], Decaf [13],
and Flexpath [9] to “glue” standalone simulation and analysis appli-
cations in a workflow. We have developed seven different workflow
implementations to combine a lattice Boltzmann method [20] based
computational fluid dynamics (CFD) simulation with a turbulence
flow analysis application. Each workflow implementation employs
a different I/O transport method (in total, seven methods). From the
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Figure 1: The Zipper runtime system.

experimental results, we find that these workflows’ end-to-end time
is significantly larger than the essential simulation time or analysis
time (shown in Section 3). Detailed performance analysis then iden-
tifies a set of performance inefficiencies such as synchronization
with centralized servers, coarse-grain critical sections, interlock
between applications, barriers, network bandwidth contention, and
application stalls.

In order to solve the performance inefficiencies, we devise a new
approach, which uses fine-grain data blocks, task parallelism, and
pipelining parallelism to tightly interleave simulation and analysis
applications. The new approach is driven by data availability, and
has no artifactual data dependency (e.g., barriers) between tasks. A
runtime system called Zipper is designed and developed to enable
the new end-to-end approach, as shown in Figure 1. Zipper is lo-
cated below the application layer, and above the high-level I/O and
communication libraries. The Zipper runtime system itself has two
strata: 1) The upper stratum provides the functions of buffering
data in memory, pipelining data blocks from simulation to analy-
sis applications, and scheduling data transfer operations and data
analysis tasks; 2) The lower stratum is an optimization layer, which
can transport computed results by two concurrent channels: low-
latency HPC network and file-based parallel file system. Section 4
will introduce the Zipper runtime system. In addition to the par-
allel framework implementation, we also build an analysis model
to evaluate the Zipper system. With this performance model, we
are able to estimate a combined workflows’s time-to-solution, and
provide an insight into which component should be improved to
achieve the fastest end-to-end time.

We conduct experiments with synthetic applications, a computa-
tional fluid dynamics (CFD) application, and a LAMMPS application
on two supercomputing systems. The CFD application is coupled
with an online statistical turbulence analysis, and the LAMMPS
application is coupled with the Mean-Squared Displacement (MSD)
data analysis. The paper shows three types of experiment: The
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first type of experiment is used to validate the analytical perfor-
mance model; the second type is used to show that the concurrent
dual-channel data transfer optimization can reduce data transfer
time as well as the simulation application stall time; and the third
type validates the scalability of the Zipper system. Based on the
experimental results, using Zipper can outperform the fastest state-
of-the-art I/O transport library by up to 2.2 times on 13,056 cores.
The performance benefits have been studied and analyzed by col-
lecting and comparing different workflow implementations’ traces.

To the best of our knowledge, this work makes the following
contributions:

e Detailed performance analysis and comparison between an
arrange of state-of-the-art I/O transport libraries designed
for implementing high performance scientific workflows.

e An end-to-end approach to combining the pipelining paral-
lelism and the asynchronous task parallelism, at a fine-grain
task level, to create the new Zipper runtime system for min-
imized workflow end-to-end time.

e Introducing the concurrent data transfer optimization to
reduce I/O time and simulation stall time with in-depth per-
formance analysis.

o Application of the Zipper runtime system to large-scale CFD
and molecular dynamics. The experimental results demon-
strate Zipper provides better performance than the existing
work. Zipper’s end-to-end time has also been verified by a
performance model and detailed traces.

In the remainder of the paper, the following section introduces
different state-of-the-art I/O transport libraries. Section 3 shows
performance analysis of scientific workflows using the I/O transport
libraries. Section 4 introduces the Zipper runtime system, its parallel
implementation, and an analytical performance model. Section 5
compares the existing work with our work. Finally, Sections 6 and
7 present the experimental results and summarize the paper.

2 BACKGROUND OF EXISTING I/O
TRANSPORT LIBRARIES

Integrating simulation and data analysis applications into a work-
flow requires efficient data transport libraries. In this section, we
briefly introduce six high performance software packages that we
deploy to combine simulation with data analysis applications: 1)
MPI-IO, 2) DataSpaces, 3) DIMES, 4) Flexpath, 5) ADIOS, and 6)
Decaf.

(1) MPI-IO is a parallel file I/O interface that allows multiple
processes of an MPI program to write or read parts of a
shared common file [19, 45]. It can map I/O reads and writes
to message-passing sends and receives to improve the I/O
performance. Unlike the following five software packages,
MPI-IO is a low-level I/O library that can support each in-
dividual MPI application’s file I/O. Also, coupling different
applications with MPI-IO requires writing code to let a con-
sumer application know when new data is available in a
file.

DataSpaces offers an abstraction of virtual shared space that
is distributed across a number of dedicated data servers [8,
11]. It can support data coupling at runtime. In DataSpaces,
each participant application is launched by its own mpirun or



aprun command such that there are multiple failure domains.
If one application fails, the other applications can still survive.
DataSpaces provides put and get functions that use RDMA
to write/read data to/from the dedicated data servers. It also
provides reader-writer locks to coordinate accesses to shared
data among different applications.

(3) DIMES is another data staging library that is provided by the
DataSpaces project [8, 50]. Similar to DataSpaces, it supports
runtime data coupling, and has multiple failure domains.
However, DIMES stores data in RDMA memory buffers lo-
cated in the simulation application’s nodes directly. This way
data staging becomes as fast as copying data to main mem-
ory. Although data-storage servers are not needed, DIMES
requires metadata servers to manage where data are located
and provide locking services to collaborating applications.

(4) Flexpath implements a publisher/subscriber communication
mechanism to combine simulations with componentized
data analyses [9, 14]. With Flexpath, different software com-
ponents can be connected by event channels and source-to-
sink event communications at runtime. Each publisher or
subscriber is executed as an independent application by run-
ning mpirun or aprun. Hence, Flexpath has multiple failure
domains. To transfer data, a publisher uses an output epoch
(i.e., open, write, close) to save data to its buffer. Later on,
a subscriber sends to each of the event publishers a fetch
message to request its desired data. Flexpath provides the
ADIOS interface (see below) as its own interface.

(5) The Adaptable IO System (ADIOS) supports a range of I/O

transport methods [1, 27]. It can be configured to make use of

different data-staging libraries such as DataSpaces, DIMES,
and Flexpath. In the paper, we call it the “ADIOS/name” trans-
port method if we use ADIOS’s interface and use the specific

I/0 method of name. Otherwise, we call it a “native” method

for which we use the intrinsic I/O library directly.

Decaf is a dataflow system for parallel communication of

participant applications in workflows [13]. It can be regarded

as a “coupling service”, which allows users to describe nodes
and links as serial entities while Decaf takes care of their
parallelism. It provides a simple put/get API that utilizes MPI,
and can implement a workflow system by using a Python API.

Different from the above DataSpaces, DIMES and Flexpath,

Decaf creates a single MPI_ Comm_World for all the partic-

ipant applications. Data coupling between applications is

defined during the compile time. Also, it requires existing

MPI-based programs to replace their MPI_ COMM_WORLD

by the communicator provided by Decaf. Therefore, there is

a single failure domain in Decaf workflows.

(©)

Next section will compare the performance differences between
different workflows that use the above I/O transport libraries.

3 PERFORMANCE ANALYSIS OF
WORKFLOWS WITH STATE-OF-THE-ART
I/0 LIBRARIES

We use the I/O transport libraries of MPI-IO, Flexpath, ADIOS
DataSpaces, native DataSpaces, ADIOS DIMES, native DIMES, and
Decaf to implement a scientific workflow. The workflow application
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uses a Lattice Boltzmann method (LBM) based CFD simulation to
generate steps of simulation data, which are read and processed by
a coupled parallel n-th moment turbulence data analysis applica-
tion [34, 39]. LBM is a numerical method to solve Navier-Stokes
equations and simulate complex fluid flows. It considers fluid as
a collection of particles, each of which has random motions [20].
Collision and streaming are two phases in each simulation time step.
Collision happens when each particle updates its own distribution
function using its local information, and streaming happens when
a particle exchanges its local information with its neighbors.

We perform workflow experiments on the Bridges system from
the Pittsburgh Supercomputing Center. Bridges has 752 (regular)
compute nodes, each of which has two Intel Haswell 3.3 GHz 14-
core CPUs and 128GB memory (more detailed system information
is provided in Section 6).

Figure 2 shows the various end-to-end time of the CFD workflow
experiments using different I/O libraries. Table 1 also presents the
experimental setup information of the workflow experiments. On
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Figure 2: Performance of the CFD workflow application using 7
different I/O transport libraries, in comparison with the simulation
time and analysis time.

Table 1: Experimental setup of the CFD workflow experi-
ments shown in Figure 2.

Global input grid size in 3D | 16384 X 64 X 256 (64 X 64 X 256 per process)

#Simulation processes 256 processes on 16 nodes

#Analysis processes 128 processes on 8 nodes

Compute node information | Each node has 28 cores, 128GB of memory

#Data staging processes DataSpaces: 32 server processes on 8 nodes
DIMES: 32 server processes on 8 nodes

Decaf: 64 Decaf-link processes on 8 nodes

#Time steps in the simulation | 100, every time step has a data analysis

The n-th moment turbulence
data analysis

Total amount of data moved




Table 2: Configurations of different I/O transport libraries that have been used to generate Figure 2.

Software Tested Version Build Configurations Runtime Configurations
ADIOS/Data$; Data$S :1.6.2

/DataSpaces, atapaces ’ Default ADIOS autoconfig script lock_type=1, hash_version=2
and ADIOS/DIMES | ADIOS: 1.13

Native DataSpaces,

. DataSpaces 1.6.2
and Native DIMES

--with-ib-interface=ib0
--with-dimes-rdma-buffer-size=1024

lock_type=2, hash_version=2

ADIOS/MPI-IO ADIOS 1.13 Default ADIOS autoconfig script xml: type="MPI”, without time aggregation

Flexpath EVPath, ADIOS 1.13 perl chaos_bootstrap.pl adios-1.13 CMTransport=socket, CM_Interface=ib0
https://bitbucket.org/tpeterkal/decaf

Decaf ps://bitbucket.org/tpeterkal/deca mpi_transport=on redist="count”

Git commit version used: 637eb58

Bridges, we build all the software and libraries with gcc 4.8.5 and
the Intel MPI library (2017 Update 3). Table 2 particularly lists the
software versions and configuration options we use to install and
build the tested software systems. Furthermore, we perform large
scale experiments using the MPI-IO, Flexpath and Decaf libraries
on 13,056 cores as shown in Section 6.3 (see Figures 16 and 18).

Our first attempt tried to use four I/O transport libraries (i.e.,
ADIOS/{DataSpaces, DIMES, MPI-IO, Flexpath}). Among all the
transport methods, MPI-IO performs the worst: it gives the longest
and most variational end-to-end time. This is anticipated because
MPI-IO writes data to a file system, which is also shared by many
other users. However, MPI-IO in the fastest case can still achieve a
performance that is comparable to the in-memory methods (e.g.,
ADIOS/DataSpaces), which had surprised us.

To investigate the problem and enhance the performance of
ADIOS/DataSpaces, we turn to the native DataSpaces and DIMES
libraries. This brings on a significant speedup of 1.3 times for DataS-
paces, and a speedup of 1.5 times for DIMES. The reason for the
speedup is as follows. ADIOS introduces a uniform interface for all
transport methods. However, to achieve this goal, low-level details
in certain transport methods have to be hidden in this common
interface. For instance, native DataSpaces provides a customized
light-weight lock strategy to enforce synchronizations among ap-
plications (e.g., dspaces_lock_on_write). The native lock strategy
is not exposed by the ADIOS interface. Therefore, we use multiple
native DataSpaces locks to implement both native DataSpaces and
DIMES workflow experiments.

As shown in Figure 2, among all the libraries, Decaf achieves
the best end-to-end time of 83.4s, followed by ADIOS/Flexpath of
96.1s. All of our workflow implementations have been designed
to overlap simulation with analysis time steps to obtain the best
performance. For instance, Figure 3 illustrates how our workflow
implementation can hide the analysis time when the simulation
time is greater than the analysis time. A similar figure can also
be drawn when the analysis time is greater than the simulation
time (omitted here). By using such a software design, either the
simulation time or the analysis time can be totally hidden from the
workflow execution time.

However, the experimental results in Figures 2 show that the
workflow execution time is still much larger than the simulation
time or analysis time. To investigate why and where the perfor-
mance is lost, we use TAU [41] and Intel Trace Analyzer and Col-
lector (ITAC [23]) to collect traces of the experiments. Due to the
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Step 1 Step 2 Step 3 Step 4 Step 5 Step n

Simulation | N

Analysis

Figure 3: Our workflow implementations can overlap simulation
and analysis using I/O transport libraries. In this example, we as-
sume data analysis is faster than simulation for each time step.

space limit, here we only show the performance analysis results
for the three fastest methods (i.e., the native DIMES, Flexpath, and
Decaf) to reveal major performance inefficiencies.

Figure 4 shows the trace for the CFD workflow implementation
that uses the native DIMES library. In this workflow, simulation
needs to synchronize between metadata servers and computing
processes, and then inserts results into the DIMES buffer. Notice that
there is a lengthy “lock” period, when the simulation is performing
data insertions. We use the type-2 customized lock of DIMES, which
is a collective lock and enforces strict synchronization between
producers and consumers. To better overlap simulation with data
analysis, and efficiently utilize the RDMA memory in DIMES, our
DIMES workflow uses multiple locks.

The DIMES implementation is presented as follows: we use
(step%num_slots) as the lock name so that we keep reusing a circu-
lar queue of multiple locks with a fixed size of num_slots, where
step is the time step index of the CFD simulation, and num_slots is
the number of slots the CFD simulation can use to buffer its output
data in a FIFO manner. When the analysis application is slower,
the simulation application will be stalled in order to make sure
the previous data are not overwritten. This scenario is shown in
Figure 4 where the application stall time is almost equal to one
step of simulation time. As a result, the end-to-end workflow time
nearly doubles. !

Next, we present the TAU trace for the Flexpath-based workflow
implementation in Figure 5. In the figure, we display a snapshot
of length of three seconds for two different cases: 1) running sim-
ulation alone, and 2) running the Flexpath workflow. The orange
stripes represent the time to execute the MPI_Sendrecv function,
which performs the inter-process communication in the streaming
phase of the LBM simulation. We can see that after adding the
!Workflow implementations with DIMES can be further optimized by using an ad-

ditional thread in the consumer application to fetch newer version of data while the
main thread is analyzing the data of previous time steps.
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Figure 4: A trace of native DIMES with a snapshot of 2 seconds.
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MPI_Sendrecv

Flexpath | cpp | step CFD 1 step

CFD 1step CFD 1 step

MPI_Sendrecv

Figure 5: Comparison between running CFD simulations only and
running Flexpath based workflows. This figure shows a snapshot of
3 seconds.

Flexpath data staging, the MPI_Sendrecv time in the LBM simu-
lation takes much longer, which results in increased end-to-end
time. Because both LBM’s streaming operation and Flexpath’s event
channel involve intensive communications, Flexpath’s data-staging
operations will compete with the simulation’s MPI communication.
In particular, when staging a large slab of simulation data (e.g., 16
MB per time step per process in this workflow experiment), the
chances to have communication interferences are much higher.

Finally, we compare the fastest workflow implementation that
uses the Decaf method (whose performance is shown in Figure 2)
to the experiment that runs simulation only. We are not able to use
TAU for the tracing purpose, because the latest TAU library (version
2.27) cannot filter out the huge number of inline Boost serialization
function calls made by Decaf. The inline function calls make the
trace files too large to generate. We have reported the problem to
TAU developers, and they are working on it. To circumvent the
tracing problem, we manually instrument the workflow source code,
and use the Intel Trace Analyzer and Collector (ITAC) software to
collect execution traces.

Figure 6 shows the two traces for CFD simulation only, and
Decaf-based workflow, respectively. In the CFD simulation only
trace, each time step contains three major computation kernels:
collision (CL), streaming (ST), and update (UD). In a trace snapshot
for 0.9 seconds, CFD simulation itself can execute 3 time steps. Note
that all time steps have the similar performance pattern. By contrast,
in the lower Decaf-based workflow trace, there is an additional PUT
function invoked by simulation processes to transfer output data to
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[ MPI_Waitatl |
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Figure 6: Comparison between running CFD simulations only and
running Decaf-based workflows. This figure shows a snapshot of 0.9
seconds.

link nodes via Decaf. We observe that the PUT function utilizes a
collective “MPI_Waitall” function, during which time all simulation
processes stall. This is because Decaf has to make sure data is safely
stored in the link nodes before it can proceed to the next step. We
also observe that the “MPI_Sendrecv” time (within the streaming
ST phase) increases significantly after Decaf is added. This indicates
that using Decaf has affected the MPI communication performance
of the original simulation application.

4 THE ZIPPER RUNTIME SYSTEM AND
IMPLEMENTATION

From the above performance analysis, we find multiple performance
issues and optimization opportunities as follows: 1) The staging-
server access cost including the server query, data movement and
locking service can be reduced (e.g., DataSpaces and DIMES have
such a cost); 2) the enforced global barriers for all writer processes
and all reader processes can be reduced (e.g., Decaf and Flexpath
have such barriers); 3) the data transfer time between consecutive
simulation steps can be hidden by computation time, and decreased
by an early-start fine-grain pipelining approach (e.g., we will in-
crease the degree of task-level parallelism and use pipelining to
overlap all simulation, analysis, and I/O tasks); and 4) asynchro-
nous fine-grain-block data transfers have a more balanced network
traffic, which can have a less interference with the original ap-
plication’s communication time than a burst of large data block
transfers (e.g., Decaf and Flexpath have experienced increased MPI
communication time in the original simulation application).

The rest of this section will introduce a new runtime system
called Zipper to improve the above identified performance ineffi-
ciencies.

4.1 System Overview

In our system design, both simulation and analysis applications
are executed in parallel using different compute nodes of an HPC
system. For instance, we allocate m compute nodes to execute the
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Figure 7: Architecture of the Zipper workflow framework to inte-
grate a parallel simulation application with a parallel analysis ap-
plication.

simulation application, and allocate n compute nodes to execute the
data analysis application simultaneously. The analysis application
is driven by data-availability. At the same time, the simulation
application pushes data to the analysis application continuously
(i.e., using two-sided data transfers). Whenever a new data block
arrives, the analysis application will immediately read and process
it.

The architecture of the Zipper system is shown in Figure 7.
Both simulation process and analysis process use the Zipper li-
brary to output or input data, respectively. The interface provided
by the Zipper library is simple: Zipper.write(block_id, void* data,
block_size) and Zipper.read(block_id, void* data, block_size). The
Zipper.write() method passes data to the Producer Runtime Module.
The producer runtime module is multi-threaded and provides the
essential functionalities of buffer management, asynchronous I/O,
data prefetching, communication with consumers, and the concur-
rent data transport optimization. On the other side, the analysis
application works as a consumer. Each analysis process uses Zip-
per.read() to interact with its Consumer Runtime Module to get data
constantly. Both producer and consumer runtime modules can uti-
lize low-latency HPC network and high-performance parallel file
system to transport and store computed results.

The Zipper system offers two modes to users: Preserve mode and
No Preserve mode. A user may choose the Preserve mode to keep the
computed results for future analysis, validation, and verification.
On the other hand, one may choose the No Preserve mode to save
storage space and perform faster experiments.

4.2 Implementation

Figure 8 shows the producer runtime module. It consists of a pro-
ducer buffer, a sender thread, and a writer thread. The sender thread
is responsible for sending data to the consumer processes via the
HPC network. The writer thread is responsible for storing com-
puted results to a parallel file system. More specifically, the sender
thread checks whether there are blocks stored on disks, and then
appends the on-disk block IDs to form a mixed message. Notice that
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Figure 8: The producer runtime module.

even when the analysis application is slower than the simulation,
the simulation application will not be blocked or stalled since the
writer thread is also moving data to the parallel file system. In
Subsection 4.3, we will describe how the writer thread can help the
sender thread to increase data transfer rate by using a concurrent
dual data-path method.

Figure 9 shows the consumer runtime module, which consists of
a consumer buffer, a receiver thread, a reader thread, and an output
thread. The receiver thread gets a mixed message from the HPC
network, and divides it into a data block and a list of block IDs. The
data block will be moved to the consumer buffer and the block IDs
will be copied to an array of “block IDs on disk”. The reader thread
will read the block from the parallel file system and put it to the
consumer buffer. The data block itself contains all the necessary
information that the analysis application will need, which includes
the time step index, the process ID that sends the block, and the
position of the data block in the global input domain. This way the
consumer process knows which specific block it receives and can
apply appropriate data analysis to it.

The output thread in Figure 9 is dedicated to supporting the
Preserve mode. It constantly fetches data blocks from the consumer
buffer. If the fetched data block has a flag of on_disk = false, the
output thread will store the data block to the file system. A data
block in the consumer buffer can be freed from the system only
if the block has been both analyzed by the analysis process and
stored to the file system by the output thread. Note that the output
thread will not be created by the runtime system in the No Preserve
mode.

Zipper.{ead()

HPC
Network

O

\
& -
\’& B } .
*obe’/// (1)
& <—~5— —{blockIDs Jn disk} \),C{(\‘
K
Paralle file system < o“Q

Figure 9: The consumer runtime module.



4.3 Optimization of Concurrent Message and
File Data Transfers

The Zipper runtime system relies on two data paths to transport
data: 1) message passing via a low-latency HPC network, and 2)
parallel I/O via a parallel file system. We use the parallel file system
because we need it to alleviate the simulation stall time when the
analysis application is relatively slow such that the simulation
application is blocked.

On the other hand, using two data paths has the potential to
increase the data transfer rate if a portion of the data movement
work is offloaded to parallel file I/O. Figure 10 explains how a con-
current transfer optimization may work. The top part shows that all
data blocks are sent by network. The bottom part shows that most
blocks are transferred by network while a few blocks are trans-
ferred by parallel file I/O. Considering that emerging HPC systems
will deploy much faster non-volatile memory (NVM) technologies,
future HPC systems will benefit more from this optimization.

Our concurrent data transfer optimization method is implemented
as a work-stealing algorithm, which allows data blocks to be sent
through the parallel file system path only when it is necessary. The
writer thread in the producer runtime module works like a helper.
When detecting the producer buffer is almost full (defined by a
“high water mark” threshold), the writer thread will fetch a data
block from the buffer and send it to the file system. Algorithm 1
shows the pseudocode of the adaptive writer thread. This strategy
can automatically adapt to either the message-passing-only method
or the mixed network&file-IO method depending on how full or
empty the producer buffer is. For instance, if the buffer is constantly
near-empty, Zipper will always use the fastest HPC network to send
data to the analysis application (Section 6 shows the experiments
and effect of using the concurrent data transfer optimization).

We use hardware performance counters to monitor network
traffic and verify the cause of the speedup by using the concurrent
data transfer optimization method. If an HPC system has two sepa-
rate networks (i.e., one for message passing and the other for I/O
traffic), we expect the proposed concurrent data transfer optimiza-
tion will increase the data transfer rate. If an HPC system does not
have a segregation of communication traffic and I/O traffic (such
as the Bridges system and the Stampede2 system used in Section
6), the concurrent data transfer optimization may not be able to
reach its highest potential. Nevertheless, we still observe a signifi-
cant speedup on Bridges and Stampede2 (detailed experiments are
shown in Section 6). Here, we briefly introduce the reason. Since
both InfiniBand and Omni Path Architecture (OPA) networks have

1. Data blocks sent via network

(S | A NSNS EEE -9 (e ]
2. Data blocks sent via network and file I/O

s HNHEEEN - ,

Figure 10: The concurrent data transfer method can reduce the
data transfer time by converting a portion of message passing time
to certain overlapped parallel file I/O time.
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Algorithm 1 Writer Thread Work-stealing Algorithm

1: while true do
2: block « StealBlock(ProducerBuffer)
3 store the block to the parallel file system

4 place the block’s ID into the in-memory data structure of
block IDs on disk
5: end

6: function StealBlock(ProducerBuffer)

7: while true do

8: acquire the lock of ProducerBuffer

9: if #Blocks in ProducerBuffer > Threshold then

10: fetch the address of the first block in ProducerBuffer

release the lock of ProducerBuffer
return the address of the block
else
wait on a condition variable and release the lock

11:
12:
13:
14:
15: /* Note: the computation thread will produce data and signal the

condition variable when #Blocks in ProducerBuffer > Threshold. */

network congestion control mechanisms, when many simulation
processes try to send data to many analysis processes simultane-
ously, network congestion control in network switches will play a
key role in performance. Our concurrent data transfer optimization
method is more efficient in working with the congestion control
mechanism because our dual paths allow messages (i.e., the data
blocks) to arrive out of order and take different network paths, to
ease network congestion and take advantage of multiple network
links/switches for improved bandwidth. In-depth performance anal-
ysis will be presented in Subsection 6.2.

Brief summary of Zipper’s features: In summary, 1) Zipper
uses fine-grain data blocks and creates a higher degree of task
parallelism to accelerate the pipeline execution. The other in-situ
workflow systems often generate one big data block per time step.
2) Zipper does not impose strict barriers between time steps, and
deploys a dataflow-driven approach to minimizing application stalls.
The other workflow systems often force using strict writer-reader
interlocks and collective global operations (e.g., wait_wall, global
locks). 3) There is no server overhead involved, which is different
form DataSpaces and DIMES. 4) Zipper supports multiple failure
domains (similar to DataSpaces, DIMES, and Flexpath). And 5)
Zipper supports both Preserve mode and No-Preserve mode, and
introduces a concurrent data transfer optimization, which is based
on an adaptive work-stealing algorithm.

4.4 Performance Model

To evaluate the efficiency of Zipper, we use a simplified analytical
performance model to estimate the workflow end-to-end time. The
analytical model uses the following notation. A number of P pro-
cessor cores are used to compute simulation, and a number of Q
processor cores are used to analyze results. The total amount of
simulation data generated is D. Given a fine-grain data block of
size B, there would be nj, = % blocks. In the experiments, we use
block sizes that are between 1MB and 8MB.



To keep our analytical model simple, we assume that each simu-
lation processor core computes %” blocks, and each analysis pro-
cessor core analyzes ¢ blocks. Nevertheless, the model can be
adapted to support load imbalance situations by considering the
process with the maximum workload. The analytical model is based
upon the time spent on each data block. Since we use the pipelining
parallelism to couple applications, a data block will go through
different stages: Simulation — Transfer result — Analyze result.

Let tc, tm, and t, denote the time to compute a data block, trans-
fer a block, and analyze a block, respectively. We model the parallel
computation time Teomp as te X n—lf, and model the parallel analysis
time Typalysis as ta X %”. Because each pipeline stage works inde-
pendently from any other stage, the end-to-end time-to-solution
can be expressed as follows: Tras = max(Tcomp, Tiransters Tanalysis)-
We assume that the number of data blocks is much greater than
the number of pipeline stages for which we can ignore the pipeline
startup time and drainage time. In the paper, we use the analytical
model to show the end-to-end time is almost equal to the time
of one stage. A more detailed model that can accurately predict
performance would require modeling the time to compute a block,
transfer a block, and analyze a block (for any data block size from
small to large), as well as network contention/congestion given a
block size and different numbers of P and Q. Our future work will
study how to build a more detailed performance model.

The simplified T;25 formula can be easily derived from a pipeline
diagram. For instance, as shown in Figure 11, different stages are
overlapped such that the end-to-end time is almost equal to the time
of the slowest stage. Based upon the model, if the simulation appli-
cation and analysis application are scalable, the Zipper workflow
can scale well accordingly.

Note that the data transfer time of Ti ansfer can be controlled by
the frequency to output the simulation data (e.g., one data output
per k time steps) to reduce the I/O time. In Section 6, we will perform
a variety of experiments to verify the model.
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Figure 11: Non-integrated design (upper) vs. integrated de-
sign (lower). In the (lower) integrated design, at any time, four stages (C,
O, I, and A) are working on four distinct data blocks. The four data blocks
could be sequentially dependent, but can still be processed in parallel due to

the data pipelining parallelism.
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5 RELATED WORK

In the conventional post data processing methods [21, 32, 42], a
simulation application computes and stores computed results to
files. Next, an analysis application is launched to perform various
data analyses. Due to the post-processing methods’ expensive I/O
cost, in-situ approaches are introduced to analyze data when the
data are still in memory [4, 5]. For instance, Paraview/Catalyst
[15] and Vislt/Libsim [47] can be used to perform in-situ analysis
and visualization on large datasets in memory. Paraview/Catalyst
defines an interface between simulation and visualization appli-
cations, which requires developers implement three subroutines:
initialize, coprocess, and finalize. Similar functions are also provided
by VisIt/LibSim to support in-situ visualization.

As an alternative to in-situ approaches, data staging approaches
can enable co-analysis pipelines by using a loosely coupled integra-
tion model. ADIOS [1], PreDatA [51], GLEAN [46], DataStager [2],
DataSpaces [11], DIMES [50], and Flexpath [9] leverage advanced
1/0 infrastructure to reduce the I/O cost. In particular, PreDatA [51]
realizes in-transit data processing along a data flow. It moves data
from compute nodes to staging nodes through two passes: the first
pass of sending data-fetch requests to the staging nodes, followed
by the second pass of pulling packed data chunks from the compute
nodes. We use a single pass to move data to the analysis processes
rapidly. DataSpaces [11] and DIMES [50] allow different applica-
tions to store data to and extract data from dedicated servers (or
metadata servers) simultaneously. Our Zipper system does not use
dedicated servers and has no accompanying server access overhead.
Sun et al. [43] use DataSpaces and asynchronous coupling of work-
flows as a user case to develop scheduling polices for placing data
to different staging cores. GLEAN [46] and DataStager [2] deploy
a data staging service on analysis nodes of a cluster to support
in-situ processing. FlexIO [52] uses local memory and RDMA to
support co-analysis either on the same compute nodes or on differ-
ent staging nodes. Our research shares the data-staging philosophy
of theses libraries (e.g., data coupling at runtime and multiple fail-
ure domains), but uses fine-grain data blocks, asynchronous task
parallelism, and holistic end-to-end level pipelining to minimize
application idle time, reduce network contention, and overlap all
workflow stages (i.e., simulation, data write, data read, and data
analysis).

Our concurrent data transfer optimization method improves the
communication throughput by taking advantage of the network
congestion control and multiple switches and links. Our deployed
network congestion measurement is inspired by the work of Alali
et al. [3], which conducts a study to understand whether network
congestion occurs on production HPC systems. There are also stud-
ies that investigate how to use Quality of Service (QoS) mechanisms
to enhance communication. Reinemo et al. compare a list of QoS
capabilities on InfiniBand, Advanced Switching, and Ethernet [38].
Gonsiorowski et al. create a model to analyze the use of QoS lanes
to reduce the impact of the RAID rebuild traffic by assigning dif-
ferent traffic quotas to read, write, and rebuild operations. [18].
Kim et al. design an OpenSM (Open SubnetManager) based scheme
to adjust the QoS level dynamically by considering the estimated
bandwidth and requirement to increase the overall bandwidth of
multiple concurrent traffics [25].



Workflow systems such as Pegasus [10], Kepler [28], Taverna
[48], and Condor/DAGMan [24] use files to communicate data and
target coarse job-level meta-scheduling. Decaf [13] is a workflow
middleware that uses multiple overlapping MPI communicators
and a special staging area called “link” to transfer data between
a producer and a consumer. The communication among Decaf
producer, link, and consumer are inter-locked, and all data must
arrive in link before they can be forwarded to the next application.
Also, slower consumers will block the producers from running.
Swift/T [49] uses a Swift-Turbine compiler to translate a Swift
program to an ADLB [30] MPI program, and executes it with a
master-worker model. Differently, we target fine-grain tasks and
asynchronous computing, and use data-staging to minimize the
workflow latency.

6 PERFORMANCE EVALUATION

This section evaluates the performance model, concurrent message
and file transfer optimization, and scalability of the Zipper system
on two different supercomputers: Bridges and Stampede2.

The Bridges system from the Pittsburgh Supercomputer Cen-
ter (briefly mentioned in Section 3) has 752 regular nodes (128GB
memory each), 42 large shared-memory nodes (3TB memory each),
and 4 extreme shared-memory nodes (12TB memory each). Each
node has 28 Intel Haswell cores. Bridges deploys a 100 Gbps Intel
Omni-Path Architecture, which connects all compute nodes with a
10PB high performance Lustre parallel file system.

The Stampede2 system in the Texas Advanced Computing Center
entered full production in August 2017. It has 4,200 Knights Land-
ing nodes. Each node has a self-booting Knights Landing (KNL)
processor (68 cores), 96GB of DDR memory, and 16GB of MCDRAM
(Multichannel DRAM), and peak performance of 3 Teraflops per
node. Stampede2 uses an Intel Omni-Path Architecture and has a
30PB Lustre parallel file system.

We perform experiments with three synthetic applications and
two real-world scientific computing applications. Information of
the applications is presented in Table 3.

6.1 Evaluation of the Performance Model

We describe an analytical performance model in Section 4.4 showing
that the Zipper system ideally should obtain end-to-end time of
T = max(Tcomps Ttransfers Tanalysis)- Our first experiment is intended
to verify whether the performance model conforms to the actual
Zipper workflow’s performance. The experiments were performed
on Bridges using 1,568 CPU cores for simulation and 784 CPU cores
for data analysis in both No Preserve and Preserve modes. In the
experiments, a total amount of 3,136GB of data are transferred from
simulation to analysis.

Figure 12 shows the No Preserve mode’s time breakdown for
three synthetic applications (i.e., the O(n), O(nlog n), and 0(n%/?)
applications listed in Table 3) using two block sizes of IMB and
8MB. In the synthetic workflow, each data block is analyzed and
its standard variance is reduced to one double-precision floating
point value. For each block size (i.e., IMB and 8MB), we show the
measured simulation time, data transfer time, and analysis time, as
well as the workflow’s end-to-end time.
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Figure 12: Time breakdown of the execution time for three differ-
ent synthetic applications in the No Preserve mode.

As depicted in the figure, given the same block size, as the applica-
tion’s time complexity T(n) increases, the dominant stage switches
from data transfer time (in red color) to simulation time (in blue
color). However, regardless of the distinct synthetic applications,
the workflow’s end-to-end time is always close to the maximum
stage time, which empirically validates our performance model.

Next, we do the same experiments using the Preserve mode. Fig-
ure 13 shows the corresponding time breakdown and total time.
The experiments show that the end-to-end workflow time is almost
equal to the time spent on storing computed results to the file sys-
tem. Since all processes have generated a total amount of 3,136 GB
of data, storing data to disks takes the longest time.
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Figure 13: Time breakdown of the execution time for three differ-
ent synthetic applications in the Preserve mode.

Moreover, we evaluate the performance model with two real-
world applications of CFD and LAMMPS. Their results are shown
together with the weak-scalability experiment (in Subsection 6.3).
For the CFD and LAMMPS applications, their workflow end-to-end
time is nearly the same as the dominant simulation time.

6.2 Effect of the Concurrent Message and File
Transfer Optimization

Our second experiment will evaluate the effect of using the concur-
rent message and file data transfer optimization.

The three synthetic applications in Table 3 are used to do exper-
iments on Bridges. We instrument the applications’ source code,
and measure the time spent on two parallel threads of each simula-
tion process: the computation thread, and the sender thread. The
computation thread will be either computing simulations or stalled
due to a full producer buffer (represented as stacked simulation
and stall in Figure 14). Similarly, the sender thread will be either




Table 3: Description of the applications used in our experiments.

Workflow applications Simulation

Data analysis

Synthetic O(n)
Synthetic O(nlog n)
Synthetic o(n3/?)
CFD application
LAMMPS application

To emulate T(n)=O(n) linear algorithms

To emulate T(n)=O(n log n) such as divide&conquer algorithms
To emulate T(n)=0(n3/%) algorithms such as matrix computations
Use the Lattice Boltzmann method to compute 3D channel flows
Use LAMMPS to compute 3D Lennard-Jones atoms melt dynamics

Standard variance computation
Standard variance computation
Standard variance computation
Turbulence analysis

Atoms movement statistics

sending messages or waiting for new data (represented as stacked
data transfer and stall).

As seen in Figure 14, we increase the number of CPU cores from
84 to 2,352 to perform weak scaling experiments. For each specific
number of cores, we compare the implementation that uses the
message-passing-only method to the implementation that uses the
concurrent message&file transfer optimization. Given n cores, there
is a group of four columns in the figure. The left two columns show
the performance of the message-passing-only implementation, and
the right two columns show the performance of the concurrent
transfer optimization.

In Figure 14.a for the O(n) application, from 84 to 2352 cores,
the simulation application’s wallclock time has been reduced by
32.4%, 26.3%, 29.2%, 16.1%, 29.4% and 20.2%, respectively. This im-
provement is mainly due to the reduced stall time. For this O(n)
application, the data generation rate from each compute node is
56GB/s, while the point-to-point network bandwidth for each port
is 10.2GB/s. As a result, the sender thread cannot move data out
in time, and the producer buffer becomes full and the simulation
thread is blocked. In this case, our work-stealing writer detects that
the threshold is reached and starts to steal blocks (stolen 47%~62.4%
of total blocks) in the above cases.

In Figure 14.b for the O(n log n) application, the concurrent trans-
fer optimization has reduced the simulation stall time and data
transfer time by 8.1%, 14.2%, 21.7%, and 22.5%, from 336 to 2352
cores, respectively. Our work stealing doesn’t improve the two
smaller cases of 84 and 168 cores because the producer buffer is
mostly empty and there is nothing to steal during the execution.

Figure 14.c shows the time for the computation-intensive o(n3/?)
application. Since this application has the slowest data generation
rate, the producer buffer is almost always empty such that the work-
stealing in the writer thread is never activated. In this case, the
concurrent transfer optimization falls back to the message-passing
method.

Based on the performance results in Figure 14, we can find that
the concurrent optimization method is always as good or better than
the message-passing-only method. The reason is that the concurrent
optimization deploys an adaptive stealing-based approach such that
it lends a hand only if there exist appropriate opportunities to steal.
If there is no stealing opportunity, its performance will be the same
as the original performance.

6.2.1  Why the concurrent optimization can improve performance.
The HPC system of Bridges uses the Intel Omni Path Architecture
(OPA) network, where each compute node is connected to a leaf
edge switch (42 ports, 12.5 GB/s each) and then all leaf switches are
connected through a set of core edge switches [6]. At first glance, it
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seems to be impossible to gain any benefits by using the concurrent
transfer optimization because there is only one link from a compute
node to one port of a leaf switch.

To dig into the reason, we use the PAPI network component [36]
and OPA network analysis tools to measure network related perfor-
mance events. We measure the performance counters of XmitData,
XmitPkts, RcvData, RcvPkts, and XmitWait when we compare the
message-passing only method and the concurrent method. Since
users do not have privileges to access the counters on switches, we
can only collect the performance counters on the network adapter
on each compute node.

Among all the network events, we find that the XmitWait counter
shows the biggest difference between using the message-passing
only method and using the concurrent method. The specific XmitWait
counter is used to count the number of events (in FLIT?) when any
virtual lane had data but was unable to transmit [22], for reasons
such as no transmission credits available, or the link was busy send-
ing non-data packets. Hence, this counter is often used to measure
the extent of network congestion [3].

We use the Linux command “opapmaquery -o getportstatus”
to collect the values of the counters on each compute node periodi-
cally. Whenever 10% of the total number of blocks are generated,
our sender thread will query the counters and calculate the dif-
ference between the current query and the previous query. This
measured difference indicates how many messages are attempted
to send out but rejected due to the network congestion control
mechanism. The larger the XmitWait value is, the more times the
network adapter is unable to transmit, and the more congested the
network is.

We use the measured XmitWait counter to show the relationship
between the degree of the network congestion and the data transfer
time. As shown in Figure 15.a dedicated for the O(n) application,
we observe that the counter of XmitWait using message-passing-
only is larger than that using the concurrent method by 80%, 21%,
13%, 13%, 13%, and 24% from 84 to 2,352 cores, respectively. This
suggests that when we use the message-passing-only method, more
messages are not able to transmit than when we use the concurrent
method. Since XmitWait is an indication of the degree of network
congestion, we can say that the concurrent method has less serious
congestion than the message-passing-only method. Also due to the
reduced network congestion, the concurrent method can send data
more quickly and has shorter transfer time, which is confirmed by
Figure 14.a correspondingly.

%In Omni Path, the Link Transfer (LT) layer segments the end-to-end Fabric Packets
(FPs) into 64 bit Flow Control Digits (FLITs), and groups 16 FLITs into a Link Transfer
Packet (LTP) to reliably transport FP FLITs and control information on the link[6].
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Figure 15: Network Congestion of the concurrent data transfer optimization using different number of cores on three synthetic applications.
XmitWait counts the number of occurrences when any virtual lane had data but was unable to transmit.

Measurement of the XmitWait counter for the O(nlog n) appli-
cation is shown in Figure 15.b. On 84 and 168 cores, the XmitWait
counter is less than 0.5 x 10°, which implies a light network conges-
tion and all data can be sent out rapidly without waiting. The other
sign of a light network congestion is that the producer’s message
buffer is almost empty all the time. Therefore, our writer thread
does not steal any data blocks such that the concurrent method be-
comes the message-passing-only method. Hence, Figure 14.b shows
equal data transfer time on 84 and 168 cores. However, for larger
scales starting from 336 cores, the XmitWait counter rises up signif-
icantly (i.e., 3 times to 12 times bigger than that on 168 cores). This
suggests a higher degree of congestion, and the producer’s buffer
becomes full and the writer thread starts stealing and eases the
congestion again. The reduced congestion also justifies the shorter
data transfer time by using the concurrent method from 588 to 2352
cores (see Figure 14.b).

In Figure 15.c, for the slowest O(n?/2) producer application, the
value of the XmitWait counter is around 10° (i.e., three orders of
magnitude less than the previous two applications). The congestion
degree is constantly low for all different numbers of cores, and
the producer’s buffer is almost empty such that the concurrent
method falls back to the message-passing-only method. Therefore,
the corresponding Figure 14.c shows that the message-passing-only
and concurrent methods have equal data transfer time.

6.3 Scalability Performance

The last experiment is to evaluate the scalability performance of
the Zipper system. We perform experiment with two real-world
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applications of CFD and LAMMPS on the larger Stampede2 system.
Bridges only allows 4,704 cores per job.

The CFD application uses the Lattice Boltzmann method to com-
pute 3-D simulations of viscous incompressible fluid sliding down
3D hydrophobic microchannel walls [20, 53]. Its corresponding
analysis component computes the n-th moment of the velocity
distribution: E(u(x, t)"), where u(x,t) is the velocity at a spatial
point x at time t. The statistics can help scientists understand the
properties of the turbulent flow with high Reynolds numbers. When
all n-th moments are available, the probability density function of
u(x, t) can be evaluated to give the complete information of the
velocity fluctuation of a turbulent flow [29, 40].

The LAMMPS application simulates clusters of Lennard-Jones
atoms. We use the application to study the melting process of ma-
terials from a low-energy solid structure at low temperatures to
a set of higher energy liquid structures at high temperatures. The
Lennard-Jones model is a mathematical model for approximating
interactions between neutral atoms or molecules. The counterpart
data analysis application will compute MSD (mean squared displace-
ment). MSD calculates the deviation time between the position of
a particle and a reference position, in order to analyze the spatial
extent of random motions.

Remark: The reason we select the CFD and LAMMPS workflows
to do experiments is that simulation-time data analyses are com-
mon in scientific and engineering domains, and achieving high
performance is crucial to most domain scientists [12, 26, 33]. The
data analysis application in our workflows receives data blocks and
analyzes them accordingly, followed by asynchronous reduction



operations. Our future work will add a simplified programming
interface (e.g., an application interface similar to MapReduce) to
Zipper to simplify parallel programing of big data analysis.

6.3.1 The CFD application. In the CFD workflow experiments,
each simulation process is allocated with a fluid subgrid of dimen-
sion 64X 64x256. When doubling the number of CPU cores, the total
input size also doubles (i.e., weak scaling). Among the total number
of cores, two thirds of the cores are used for CFD simulations and
one third are used for the n-th moment analysis.

Figure 16 shows the end-to-end time using MPI-IO, Flexpath,
Decaf, and Zipper, as well as the simulation-only time in the No Pre-
serve mode. On Stampede2, when the number of compute nodes is
larger than 8, DataSpaces and DIMES aborted with “rpc_bind_addr”
error in the DataSpaces/DIMES initialization function. The error is
related to “an issue related to OPA and KNL processors”, and has
been confirmed by the DataSpaces team. Hence, we could not test
DataSpaces/DIMES on Stampede2. Nevertheless, the fastest library
is Decaf, which we choose to compare with Zipper.

Simulation-only time is the time spent only by the simulation
program’s computational kernels (excluding any I/O, idle time, and
data staging related cost). It works as a lower bound of the workflow
end-to-end time. As depicted in Figure 16, we can see that using
MPI-1O is not scalable: as the number of cores increases from 3264
to 13,056, larger MPI-IO experiments take too long to finish. On the
other hand, Flexpath and Decaf scale well from 204 cores to 3,264
cores. However, Flexpath and Decaf crashed with software faults
on 6,528 and 13,056 cores. In particular, Decaf has segmentation
faults due to integer overflows. We have reported the issue to Decaf
developers and they have confirmed the error. Flexpath terminated
with segmentation fault when the number of cores reaches 6,528.
We have also reported the problem to Flexpath developers.

In order to show complete experimental results for Flexpath
and Decaf, we assume that both methods have perfect scalability
on 6,528 and 13,056 cores, and show their ideal end-to-end time
(denoted by dotted lines). As shown in Figure 16, Zipper’s end-to-
end time is almost equal to the simulation-only time, and is 11.5
times faster than Flexpath, and 1.7 times faster than Decaf.

One might wonder why Flexpath is slow. We conducted a set
of investigations to find out the reason. Based on our experiments,
Flexpath’s data transfer time becomes significantly slower as we
increase the number of processes per node (each process uses Flex-
path to transport data). Our finding is that Flexpath does not have
optimized support for multiple processes per node. Flexpath utilizes
a socket interface and all communications (even within the same
node) have to go through the socket interface. However, the com-
munication between processes on one node can use shared memory
to achieve higher performance (e.g., MPI uses this optimization).
In order to show the ideal performance of Flexpath, we attempt
one-process-per-node to rerun the 204-core experiment (although
wasting many cores on each node). In the new experiment, Flexpath
using 102 processes on 102 nodes (i.e., 6,936 cores) only takes 46
seconds, but is still slower than Zipper using 102 processes on 3
nodes (i.e., 204 cores) by 16.8%. Besides using a smaller number of
processes per node, another Flexpath optimization is to use a “Mas-
ter” process on each node to aggregate data from all processes of
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Figure 16: Scalability performance of the CFD workflows using

MPI-IO, Flexpath, Decaf and Zipper, respectively.
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Figure 17: Trace comparison between Zipper and Decaf for the
CFD application on 204 cores. This figure shows a snapshot of 1.3
seconds when using 204 cores, which is taken from the experiment
shown in Figure 16.

the node to reduce the communication cost. However, this method
requires significant code modifications.

In order to illustrate why Zipper is faster than Decaf, Figure 17
displays Zipper and Decaf’s traces within a time interval of 1.3
seconds on 204 cores. To take the snapshot, we zoom in the entire
trace, and then cut out a trace segment of 1.3 seconds. Note that
showing the entire trace all at once will make the figure too dense
to view any details. During the same interval, Zipper is able to run
three simulation steps, while Decaf is able to run two steps with a
significant amount of stall time. This speedup of 1.4 times is almost
the same as the speedup shown in Figure 16 on 204 cores.

The reason for the performance inefficiency is as follows (also
reported in Section 3): 1) Decaf has significant simulation stall
time caused by MPI_Waitall, and 2) the simulations application’s
MPI_Sendrecv time becomes longer due to Decaf’s interference.
Since Zipper uses smaller data blocks and asynchronous pipelin-
ing data transfers, both the network traffic interference and the
collective MPI cost have been reduced.
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6.3.2 The LAMMPS application. Figure 18 shows the experi-
mental results for the LAMMPS workflow application. Again, we
perform weak scaling experiments. Figure 18 shows that Flexpath
scales well from 204 to 3,264 cores but is 7.1 times slower than
Zipper. Because the data size in LAMMPS does not reach the inte-
ger limit, we are able to execute Decaf on 6,528 and 13,056 cores
successfully without integer overflows. From the figure, we can see
that Decaf scales greatly from 204 to 1,632 cores, but becomes 128%
slower from 1,632 to 6,528 cores. Eventually, its end-to-end time
increases by 177% from 6,528 to 13,056 cores.

To study why Decaf is 2.2 times slower than Zipper in the largest
experiment, we specifically collect two very large traces for Decaf
and Zipper using 13,056 cores, respectively. Visualizing the large-
scale trace itself requires us to use a dedicated compute node from
the Stampede2 HPC system for 2 hours.

Figure 19 shows a snapshot of the two traces in an interval of
9.1 seconds. During the same time interval, LAMMPS using Zipper
runs around 4.4 time steps. On the other hand, LAMMPS using
Decaf runs around 2 time steps. Notice that the Decaf trace has a
significant stall time at the end of each step. Also, the LAMMPS
simulation time using Decaf becomes much longer than that using
Zipper. In this LAMMPS workflow experiment, each LAMMPS pro-
cess generates approximately 20MB of data in each time step. While
Decaf directly sends a message of 20MB to destination processes,
Zipper divides the contiguous 20MB data into many small blocks
of size 1.2MB. Such an asynchronous fine-grain-block data transfer
method has managed to keep network traffic more balanced with
lesser interference to the LAMMPS simulation processes.

7 CONCLUSION

This work studies the important class of scientific workflows that
combine large-scale simulations with big data analysis by carrying
out performance analysis and optimization on the present I/O and
data transfer libraries. Our trace analyses reveal that there are sig-
nificant performance inefficiencies in the current practice (such as
remote server and metaserver read/write time, coarse-grain critical
sections, interlock between applications, barriers, and application
stalls). With the aim of minimizing the end-to-end time of scientific
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Figure 19: Trace comparison between Zipper and Decaf for the
LAMMPS application on 13,056 cores. This figure shows a snapshot
of 9.1 seconds when using 13,056 cores, which is taken from the ex-
periment shown in Figure 18.

workflows, we propose to combine the abstraction of pipelining par-
allelism with the abstraction of fine-grain task parallelism to totally
intertwine the simulation and analysis applications such that the
time-to-solution is merely one stage of time. A new Zipper runtime
system has been designed and implemented. Supported by both
an analytical performance model and empirical experiments, we
show that the Zipper system can obtain the fastest end-to-end time,
which almost reaches the lower bound of the simulation-only time.
In addition, the concurrent data transfer optimization can reduce
the stall time of the simulation application when the simulation is
coupled with a relatively slow data analysis. Our experiments with
the real-world CFD and LAMMPS workflows show that the Zipper
approach is able to outperform the Decaf method — which is the
fastest one among seven modern methods — by up to 2.2 times.
A set of subsequent traces also reveal that the reduced idle/stall
time, the lesser interference with the simulation time, and the full
overlapping of all workflow stages have contributed the most to
Zipper’s enhanced end-to-end workflow time.
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