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Abstract

In this paper, we consider heuristic approaches
for solving the homological simplification problem.
While NP-Hard in general, we propose an algo-
rithm that in practice significantly reduces topolog-
ical noise from large datasets, such as those from
medical or biological imaging.

1 Introduction

In this paper, we will consider the homological sim-
plification problem. Introduced in [2], this asks:
given a simplicial pair (C,N) with C C N, can
the persistent homology group of this pair be real-
ized as the homology of some intermediate complex?
This problem is one way to approach the problem
of topologically accurate simplification, where the
goal is to take a “noisy” shape and simplify it to
reach some desired topological structure. Such al-
gorithms are useful in a wide range of applications,
as any surface or region reconstruction algorithm
on scanned input data is apt to contain errors, and
hence a postprocessing phase to simplify it is nec-
essary.

For any surface, the homological simplification
problem is solvable [8]; this work actually solves the
more general problem of finding an e-simplification
in a filtration. However, such existence results do
not hold in 3-dimensional manifolds where there
a filtrations of manifolds that do not have e-
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simplifications [8]. For the homological simplifica-
tion problem, it is NP-Hard to determine if a simpli-
fication exists for 3-manifolds, even if the complex
is embedded in R3 [2].

In this paper, we consider a 2-phase heuristic al-
gorithm to simplify voxelized shapes. We first use
a persistent homology-based algorithm to identify
candidate simplications. This approach is inspired
by prior work to find “nice” generators for homol-
ogy groups on surfaces [5], but we expand to find not
just the generators of homology group, but also rep-
resentatives in the larger space that kill those gen-
erators. Phase 2 is then a validation: given such a
candidate simplfication, we must check that it does
result in a global simplification, since adding such
things can introduce new topological features. We
apply this algorithm to a number of types of in-
put data, to assess how successful the heuristic is in
practice. We find that our simplificaitons are able
to remove over 99% of topological errors in several
real-world data sets.

2 Related Work

Cubical complexes: A cubical complex is built
from a collection of cells that are points, intervals,
squares, cubes and higher dimensional analogs with
the condition that the intersection of any two cells
is also a cell of the cubical complex. Formally, the
cells are build from products of intervals. An in-
terval is a unit interval [k, k + 1] or a degenerate
interval [k, k]; in d-dimensional space, a cube is a
product of d elementary intervals. Given 2 cubes z
and y, x is a face of y if x C y. A cubical complex
of dimension d is a collection of cubes that is closed
under taking faces such that the intersection of any
two faces is a common subface. In this paper, we
will use cubical complexes to represent the topology
of our shapes.
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Digital topology: In imaging and computer
graphics, voxelizations are among the most common
shape representatives. With Euclidean space di-
vided using a cubical lattice, each individual cube is
a single vozel and a voxelization of a shape is a set of
these voxels. A common connectivity model of vox-
els is called 6-connectivity, which considers two vox-
els adjacent if they share a common 2-dimensional
face [12]. This results in a different topology than
the actual union of the voxels, which would typi-
cally connect anything that shares an edge or ver-
tex as well. To be topologically consistent with this
model, we will work in the dual shape where there
is a vertex for each voxel, and edge whenever two
voxels share a common face, a square or 2-cell for
any 4 voxels around an edge, and a 3-cell or voxel
whenever there are 8 voxels surrounding a common
vertex. Note that this is still a cubical complex, but
it is not a pure cubical complex.

Homology: Homology groups and persistent ho-
mology on filtrations are commonly used tools to
find topological features in spaces; we refer the
reader to recent books covering the topic [6, 14].
Most relevant to our setting, cubical persistent ho-
mology has been considered in some prior work [18],
including optimized data structures to do such cal-
culations. The p** Betti number of a space X,
B,(X) is defined to be the rank of the p** homology
groups. Given map f : C' — N, we can define a per-
sistent notion of Betti number, where the p** Betti
number of f is the rank of the induced map on ho-
mology: 8,(C' = N) = rk(f*(H,(C))). Extending
this to filtrations of more than 2 spaces precisely
gives the notion of persistent homology groups (or
their ranks).

Homological simplification: Consider two spaces
C C N C R3. The homological simplification prob-
lem is generally phrased in terms of Betti num-
bers: we wish to find a space X such that the p-
dimensional Betti number, §,(X) is equal to the
Betti number of the inclusions C' — N, 8,(C — N).
In three dimensions, this problem has been shown
to be NP-Hard [2].

Topological repair: Various methods have been
developed in different research communities for re-
moving topological errors of surfaces in R3. In
computer graphics, algorithms exist for modifying a
given surface to either remove features smaller than

a given size or achieve a specific topology (e.g., a sin-
gle connected component with a prescribed genus)
[19, 21, 3]. These methods make decisions of where
and how to modify the surface solely based on the
shape of the given surface, whereas homological
simplification bases its decision on the persistence
of topological features between two spaces. In med-
ical image analysis, there has been active research
on ractiying the topology of reconstructions of bi-
ological structures, such as the cortical surface in
the human brain [16, 10, 15, 20]. However most
of these methods are specialized for removing re-
dundant handles and cannot deal with other types
of topological noises such as disconnected compo-
nents or cavities. Finally, in scientific visualization,
a line of research aims at simpliying the topologi-
cal structure (e.g., the Morse-Smale complex) of a
scalar function [4, 8, 9, 17]. While these methods
effectively remove topological noises on all level sets
of the function, they are unncessarily expensive if
the goal is to fix the topology of one level set. In
addition, methods designed to work on functions
in R? are limited to reducing the set of maxima or
minima, and hence they are less useful for removing
topological handles on the level sets.

3 Heuristic Shape Simplification

Since we will use voxelized representatives of our
input shapes, we will focus on the restriction of
the homology simplification problem to voxelized
shapes. We restate the problem as follows where
we refer to C' as the core, and N as the neighbor-
hood, and we wish to find a space X which is some-
how “in between” them with homology equal to the
persistent homology of C' — N.

The voxelized homological simplification problem:
Suppose C C N C R? are voxel regions. Deter-
mine if there exists X such that C C X C N and
Bp(X) = Bp(C — N) for all p.

Proposition 1 The vozelized homological simplifi-
cation problem is NP-hard.

Proof. [Proof sketch] We omit details due to space
constraints, but just briefly note that the proof for
simplicial complexes embedded in R3 is a reduction
from 3SAT [2]. They construct gadgets that are eas-
ily modified to be built from voxels on an O(m) by
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Figure 1: The core and neighborhood for the root system of corn. Note that in the inclusion of core into the
neighborhood some loops are filled (blue inset), components connect (red inset) and new loops form (green
inset). A solution to the homological simplification problem will accept the first two types of modifiations

and reject the creation of new loops and voids.

O(n) grid, where n is the number of booleans vari-
ables and m is the number of clauses in the 3SAT
instance. O

It is typically impractical to solve the homological
simpflication problem; however, we are concerned
with simplifying a shape as much as possible. In
particular, we will try to find a shape X where C' C
X C N with each of the Betti numbers 3, as close
as possible to the persistent Betti numbers 5,(C —
N). If they are equal, we have a solution to the
homological simplification problem. Even if we do
not achieve maximal simplification, we will typically
simplify our shape significantly.

Our simplification procedure will be a two phase
process. It starts with the core C, which our al-
gorithm will always include in the result, and then
tries to expand to remove topological noise. First,
a modified version of the standard persistence al-
gorithm [7] is used to find sets of voxels whose ad-
dition would remove topologcial features that are
not in the neighborhood. However, these candi-
dates might add new features that are not desired.
The second phase examines the modified shape and
checks if the persistence Betti numbers have been

reduced. If so, the changes are kept. This process
of candidate generation and validation is repeated
until no more valid additions can be found. There
are no guarantees that this will remove all of the
undesired topological features; however, our experi-
ments in Section 5 show that in real world examples
the accuracy of the simplification is very high.

Types of topological errors Consider C' C N C
R? and the maps induced by inclusion o
Hy(C) = Hy(N) for p = 0,...,3. If every f; is
an injection then C' is already a solution to the ho-
mological simplification problem. Any extraneous
topological noise will appear in the kernel of some
fy- Consider a cycle a # 0, where f,(a) = 0. «
might connect two components, fill a void or loop in
the large space. To interpret o, we assume « is irre-
ducible, that is it cannot be written as a non-trivial
sum of other elements of the kernel. Depending on
the dimension p, we have different interpretations
of the type of noise we observe. Each of these cases
can be observed in the root data in Figure 1.
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a € ker fi: Here « is represented by two points
lying in different components of C'. These compo-
nents can be connected by a path v in N that con-
nects the two points. In this case, 7 is a one dimen-
sional chain in N. By adding v to C' we obtain a new
space C'U~y where the kernel of Hy(CU~v) — Hy(N)
has rank one less than Hy(C) — Ho(N).

a € ker f{': In this case « is a curve that follows
a non-trivial topological feature in C, such as going
around a handle, but which*” bounds some surface
in NV that kills that homological feature. If this sur-
face is a disk D then Hy(CUD) — H;(N) has rank
one less than H,(C) — Hy(N). In other words, we
can add the disk D to remove the handle that is
present in C. However, if the curve bounds a sur-
face with genus, then if we were to add the surface
in, a generator of the kernel is removed but two or
more generators are added (since this surface has
its own handles). Hence the resulting object is not
simpler in terms of homology, and we cannot use
this chain to simplify the space.

a € ker f5: Here « is a surface bounding a hollow
region (a “void”) in C, but which is not hollow in
N. This void could be a simple ball, but could
also contain topology. In either case, we can fill
this in to simplify the topology. If the surface is
a sphere, Alexander’s theorem implies that it will
bound a ball B in N [11]. In this case, it is easy
to simplify since Hy(C U B) — H3(N) has rank
one less than Hy(C') — Hy(N). If the surface does
not bound a ball, then the simplification may also
simplify ker f1, as some loops will disappear when
the void disappears.

The commonality of all of these cases is finding a
(k4 1)-dimensional structure in N whose boundary
is in the kernel of f;! and whose addition simpli-
fies the topological structure. Our techniques are
based on this observation, repeatedly adding sim-
plifications until no more can be found. Ideally,
after this we obtain a space X with C C X C N
and Hy(C) — Hp(X) is a surjection and Hy(X) —
Hy(N) is an injection for all k; in this case, we
would actually have a solution to the homologi-
cal simplification problem. Our algorithm will only
simplify the shape, although we have no guarantees
of optimality or approximation ratio. In Section 5,
we will discuss our implementation and show that
it works well on several data sets.

Candidate generation Consider C C X C N
where X is initially equal to C but is extended to
removed topological features that are not shared by
C and N. We will build a boundary matrix, d,, for
calculating the p-dimensional persistent homology
of the filtration C C X C N. There is a column of
0, for each (p + 1)-cell of X and a non-zero entry
in that column for each p-cell that is a face of the
(p + 1)-cell. The rows and columns are ordered so
that cells of C occur first, then cells of X and finally
cells of N. The standard persistence algorithm [7]
adds columns of ones to their right until a canonical
reduced form is obtained. Many improvements to
the algorithm have been made to make this calcu-
lation more efficient, but we are unable to utilize
them as they discard information about generators
along this way, which is the main data our approach
requires.

After the reductions, the columns of 9, represent
cycles involving the cells with non-zero entries. If
that column corresponds to cells of N and the non-
zero entries involved include d-cells of C, then this
cycle, z, is a feature of C' that does not persist in
N and should be removed. To remove this feature
we need to find a (d + 1) chain, b, in X such that
Opb = z. There are potentially many candidates for
z; we find one by creating a copy of the identity
matrix M with an entry for each column of 9, and
performing the same column operations as we did
in the reduction. An invariant of these column op-
erations is that if v is the i-th column of M, then
Opv is the i-th column of 9,. So we choose b to be
the union of cells with non-zero entries in the col-
umn of M corresponding to the cycle z; recall that
b is actually a chain in the dual cubical complex.
We build a candidate simplification S which is the
set of voxels that contain b. When S is added to X,
the cycle z will become trivial; however, additional
features could be added, so we cannot add S and
guarantee reduction of Betti numbers.

Candidate validation To determine if the addi-
tion of S will actually simplify the shape, recall
that our algorithm tries to minimize the sum of
Betti numbers B(X) = Zi:o Bp(X), with the
goal of reducing this complexity to be equal to
2220 Bp(C — N). If S is set of voxels that form a
candidate simplification, we will calculate B(XUS).
If B(XUS) < B(X) and 5,(XUS) < B,(X) for all
p, then we will consider this a wvalid simplification.
We cannot be sure that the addition of S has not
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Figure 2: (a) Three intensity threshold of input: ¢t —€,¢,¢t + €. (b) Corresponding core and neighborhood.

created new topological feature, but our check does
guarantee that more features are removed than were
introduced.

Our algorithm We will repeat the process of find-
ing candidate simplifications using the modified
standard persistence algorithm and adding them
one at a time if they are valid simplifications. This
process repeats until no valid simplifications are
found.

4 Removing Topological Errors in 3D Imaging

In a 3D imaging technology such as CT or MRI,
the output is a grid of voxels each with an intensity
value. A typical representation would be a map
f:40,...,k—1}3 — R. Shapes of interest, in the-
ory, can be extracted by selecting voxels in a given
intensity range. A typical segmentation might try
to extract all voxels with intensity over a specified
threshold, e.g. X = f~!([t,0)). However, there
can be a variety of errors in this segmentation.
There is a natural two dimensional filtration of
the region where X; 5 = N5 (f~* ([t,00))). Where ¢
specifies the intensity threshold and I Ny is in fact a
morphological dilation when ¢ > 0 or erosion when
§ < 0, using the ball of radius |d| as the structuring
element[13]. Formally, Ns is a neighborhood of a
set for positive § and points with a |§] neighborhood
contained in the set for negative § defined by

Ny(X) = {UxeXBg(x) 5>0
{.’E | B—(S(w) CX} 0<0

If t is a threshold for an initial segmentation

X = f71([t,00)), we can give two parameters, ¢

and 0, representing noise levels on the threshold

value and geometric scale, respectively. We will de-

fine the core € = Xy _s and the neighborhood

<)

@

N = X;_.,s. This collapses the two dimensional fil-
tration into a pair of spaces C' C N. In this case the
core C represents voxels that we want to include in
the final shape, they all have neighborhoods meet-
ing a higher intensity threshold. And the neigh-
borhood N constains all the voxels near some voxel
with a lower intensity threshold. See Figure 2 for
an example.

A good solution to the homological simplification
with this C' and NV would have features that do not
appear or disappear with a small change in thresh-
old, expanding or contraction of the shape, or a
combination of these changes. In practice, a par-
tial solution to the homological simplification prob-
lem might only remove some of the noise; this still
resuts in an improvement over simple thresholding
techniques. In the following section, we will discuss
our observations of a reduction in more than 99%
of the noise in real world datasets.

5 Experimental Results

We experimented on three different collections of
data: CT scans of corn root systems, synthetic root
systems and brain volumes reconstructed from his-
tological sections. The corn data was from a sin-
gle variety of corn, with three different scans each
viewed at two different resolutions. The synthetic
root was designed to roughly resemble a root sys-
tems and was studied at nine different resolutions.
The brain scans were of the BigBrain dataset [1]
downsampled at ten different resolutions. Figure 3
gives some information about the datasets. The
largest regions had close to 400 million voxels. This
forced some additional techniques described below
to handle the scale of the data sets. The largest
core in these experiments has 2.5 million voxels and
the largest neighborhood had over 4 million voxels.
The most complicated example had approximately
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Region size Core size Neighborhood size Complexity
Corn 23x105—15x10% | 1.6 x 10° — 2.4 x 10° | 2.4 x 103 —4.6 x 10° | 109 — 6,713
Synthetic | 3.9 x 105 — 3.8 x 10% | 1.8 x 103 — 1.7 x 10° | 2.3 x 10> — 2.7 x 10° | 208 — 26, 605
Brain 3.9x10°—1.7x 107 | 5.1 x 10* —2.5 x 10% | 6.1 x 10° — 3.6 x 10° | 388 — 15,393

Figure 3: Characteristics of the data analyzed, including the number of voxels in the region examined, core
and neighborhood and the initial complexity of the shapes.
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Figure 4: (a) Experimental runtime and (b) error rates on three datasets.

8 thousand components, 17 thousand loops and one
thousand voids. All but approximately 100 of those
where noise features. In general, the complexity of
the initial shapes was very high and there were very
few features that were shared between the core and
the neighborhood.

Practical concerns The shapes that we have con-
sidered have regions as large as several hundred mil-
lion voxels. As a result, we utilize a sparse repre-
sentation for our shapes, so that the neighborhoods
have about 6 million voxels at most. While the
fastest persistent homology implementations can
handle inputs of this size, the standard persistence
algorithm has trouble on this size of inputs. How-
ever these faster algorithms did not allow us to gen-
erate candidate simplifications. We choose to do
this calculation on windows of data at most 2503
voxels in size. These windows were overlapped to
cover the shape. There is the thorectical possibil-
ity that this would fail to repair some very large
features, but it made the algorithms computational
feasible. This allowed us to perform the caluclations
on the largest shapes in under five hours on a Linux
desktop with a 2.20 GHz processor I5 processor and
64 GB RAM,; see Figure 4.

Accuracy For all of the test shapes, over 99.7% of
the topological errors were removed by our method.
In several cases, our algorithm was able to find so-
lutions to the homological simplification problem.
See Figure 4 for the error rates in the experiments.
We note that it is computationally infeasible to de-
termine in the other cases if solutions to the homo-
logical simplification problem exist.

6 Future Work

There are several natural directions to purse next.
First, we would like to continue scaling the algo-
rithms to larger datasets through optimizations and
potential parallelization. We also plan to consider
a more robust set of candidate simplifications that
might be able to reduce the errors that are not re-
paired; at the same time, we would like to restrict to
simplifications that have nice geometric properties
as well as topological properties. Finally, more on
the theoretical side, it is interesting to consider the
notion of hardness of approximation or any approx-
imation guarantees of heuristics such as our greedy
approach.
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