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LeanResNet: A Low-cost Yet Effective Convolutional Residual Networks

Jonathan Ephrath 1 Lars Ruthotto 2 Eldad Haber 3 4 Eran Treister 1

Abstract

Convolutional Neural Networks (CNNs) filter

the input data using spatial convolution operators

with compact stencils. Commonly, the convolu-

tion operators couple features from all channels,

which leads to immense computational cost in

the training of and prediction with CNNs. To

improve the efficiency of CNNs, we introduce

lean convolution operators that reduce the num-

ber of parameters and computational complex-

ity, and can be used in a wide range of existing

CNNs. Here, we exemplify their use in residual

networks (ResNets), which have been very reli-

able for a few years now and analyzed intensively.

In our experiments on three image classification

problems, the proposed LeanResNet yields re-

sults that are comparable to other recently pro-

posed reduced architectures using similar num-

ber of parameters.

1. Introduction

Convolution Neural Networks (CNNs) (LeCun et al., 1990)

are among the most effective machine learning approaches

for processing high-dimensional data and are indispensable

in, e.g., in recognition tasks involving speech (Raina et al.,

2009) and image (Krizhevsky et al., 2012) data.

In a CNN, the features are grouped into channels. Through

the convolution operators, each feature interacts with other

features from a small neighborhood in the same channel

and, in most existing approaches, the features from the

same neighborhood in the remaining channels; (Gu et al.,

2018; Goodfellow et al., 2016). A drawback of this fully

coupled approach is that the number of convolution opera-

tors in a layer is proportional to the product of the number

of input and output channels. This scaling can be expensive

when using wide architectures and leads to a large number
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of weights, often in the millions and beyond. It also compli-

cates the deployment of such CNNs, especially on devices

with limited memory resources.

In recent years there has been an effort to reduce the

number of parameters in CNNs. Among the different

approaches are the methods of pruning (Hassibi & Stork,

1992; Han et al., 2015; Li et al., 2017; Luo et al., 2017)

and sparsity (Wen et al., 2016; Changpinyo et al., 2017;

Han et al., 2016) that have been typically applied to reduce

weights in full networks. It has been shown that once a

network is trained, a large portion of its weights can be

removed without hampering its efficiency by much. How-

ever, the non-zero structure of the weights in the resulting

networks is typically unstructured, which may lead to inef-

ficient deployment of the networks on hardware. Still, the

success of pruning suggests that there is a significant redun-

dancy in standard CNNs (Molchanov et al., 2016).

Another recent effort to reduce the number of parameters

in networks is to define architectures based on “depth-wise”

separable convolutions, which are block diagonal convolu-

tion operators. The depth-wise convolution restricts the

interaction of each feature to its nearby features in the

same channel. To facilitate coupling across the channels,

the depth-wise operators is typically used in conjunction

with point-wise 1 × 1 convolutions. This was applied

in the works of (Howard et al., 2017; Sandler et al., 2018;

Wang et al., 2016; Zhang et al., 2018; Ma et al., 2018), to-

gether with either bottleneck or shuffling techniques. Since

these works use the depth-wise and 1 × 1 separately, with

activation and batch normalization layers in between them,

they require a redesign of existing CNN architectures. In

addition, applying the depth-wise convolution on its own

has a high ratio of floating point operations (FLOPs) to

memory access, which has led to the design of networks

with shifts instead of convolutions (Wu et al., 2018). It is

known, however, that memory access is the true bottleneck

in modern parallel hardware, and not necessarily FLOPs.

In fact, the work (Qin et al., 2018) suggests a superior im-

plementation of the depthwise convolution on GPUs, which

is involved with more FLOPs than necessary.

In this paper, we propose a novel way to parameterize

CNNs more efficiently, while simply keeping the same

structure of the known networks, e.g. residual networks

(ResNets) (He et al., 2016a;b), which have been one of the
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most reliable architectures in the literature. Our goal is

to reduce the number of weights in the networks and the

costs of training and evaluating the CNN. Similarly to re-

cent approaches we use depth-wise convolutions, and 1× 1
convolutions to impose coupling between channels. The

following three aspects set our work apart from other ap-

proaches: (1) We linearly add the depth-wise and 1 × 1
convolutions so that the two operations can be applied si-

multaneously in hardware, in the same memory read. (2)

The combined convolution can be simply used as a single

convolution operator instead of the standard convolution in

any existing CNN, without any structural changes to the ar-

chitecture. (3) We use a 4-point stencil only instead of the

standard 3 × 3 or larger stencil, to further reduce memory

access and FLOPs of the depth-wise convolution.

2. ResNets with Lean Convolution Operators

We consider a standard residual network (ResNet)

(He et al., 2016a;b) as a baseline architecture, since it has

been very successful and reliable for many tasks. Given a

data sample y0, the forward propagation through the net-

work is defined by a series of steps, where the jth step is

given by

yj+1 = yj + F(θj ,yj), for j = 0, . . . , N − 1. (1)

Here, θj is the set of weights associated with the jth step.

The nonlinear term in (1) usually reads

F(θ,y) = K2(θ
(2))σ(N (K1(θ

(1))σ(N (y)))), (2)

where σ(x) = max{x, 0} denotes a element-wise rectified

linear unit (ReLU) activation function, the weights are di-

vided into θ
(1) and θ

(2) that parameterize the two linear op-

erators K(θ(1)) and K(θ(2)). N denotes a normalization

layer that has trainable parameters as well (omitted here for

ease of presentation). The operators K1 and K2 are com-

posed of spatial convolution operators. If the input y has

cin channels, and the output K1y has cout channels, then a

common choice for K1 is a cout × cin block matrix of con-

volutions, introducing full coupling across the channels.

Our lean convolution operator contains two types of opera-

tors. One is the depth-wise (block diagonal) operator which

operates on each channel separately, and the other is a 1×1
convolution. For example, if cin = cout = 4, then in matrix

form, the operator is given by

Klean =









Ĉ1 α1,2I α1,3I α1,4I

α2,1I Ĉ2 α2,3I α2,4I

α3,1I α3,2I Ĉ3 α3,4I

α4,1I α4,2I α4,3I Ĉ4









, (3)

where αi,jI is a scaled identity defined by a learned scalar

parameter αi,j . The operator Ĉi is a matrix that corre-

sponds to a 5-point convolution kernel





0 ci,1 0
ci,2 αi,i ci,3
0 ci,4 0



 , (4)

where αi,i is the i, i entry of the 1 × 1 convolution, and

ci,1, ..., ci,1 are additional 4 parameters per input channel

i. Klean has cin × cout + 4cin parameters can be used in-

stead of the standard operators in CNNs. We note that if

the number of input channels is larger than 4, then the 1×1
convolution is the dominating operator both in terms of pa-

rameters and FLOPs.

Interpretation ResNets have been recently interpreted

as time-dependent nonlinear PDEs (Haber & Ruthotto,

2017; Chang et al., 2018; Weinan, 2017; Chaudhari et al.,

2017; Lu et al., 2018; Ruthotto & Haber, 2018; Chen et al.,

2018), which allows the community to analyze and ex-

tend ResNets using theoretical and practical ideas from the

world of ODEs and PDEs. In this point of view, the depth-

wise 3× 3 convolution can be seen as a linear combination

of a mass term, and discretization of first and second spa-

tial derivatives in each dimension. The 1 × 1 convolution

approximates a mass term only. It is known that most sim-

ple spatial derivatives can be approximated by a five-point

stencil as in (4), and therefore, a 3 × 3 stencil may be un-

necessary for extracting features in CNNs. A tremendous

advantage will be made in 3D CNNs where the standard 27-

point convolutions are replaced with a 7-point stencil (the

3D version of (4)).

3. Experiments

We experimentally compare the architectures proposed

in this paper to a ResNet with fully-coupled convolu-

tions, and other reduced architectures: ShuffleNetV2

(Ma et al., 2018), MobileNetV2 (Sandler et al., 2018), and

ShiftResNet (Wu et al., 2018). We use the CIFAR-

10, CIFAR100 (Krizhevsky & Hinton, 2009) and STL-

10 (Coates et al., 2011) data sets. Our primary focus is to

compare how the different architectures perform using a

relatively small number of weights. Our experiments are

performed with the PyTorch software (Paszke et al., 2017).

We adopt a rather standard ResNet architecture, and demon-

strate the performance of its lean version. Our ResNet net-

works consist of several blocks, that are preceded by an

opening convolutional 3 × 3 layer, that initially increases

the number of channels. Then, there are several blocks,

each consisting of a ResNet based part with a number of

steps that varies between the different experiments. Each

convolution is applied in addition to a ReLU activation and

batch normalization as described in (1). The last block con-

sists of a pooling layer that averages each channel’s map to
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CIFAR10 CIFAR100 STL10
Architecture Network Params Val. acc. Network Params Val. acc. Network Params Val. acc.

ResNet A 4.3M 94.7% C 27M 78.5% E 17M 84.1%
ResNet (small) B 0.6M 91.6% D 3.8M 72.3% F 1.8M 78.6%
MobileNetV2 A 0.5M 91.5% C 2.7M 71.6% E 1.9M 80.4%
ShuffleNetV2 0.5x 0.4M 89.3% 1.5x 2.5M 70.6% 1.5x 2.5M 86.2%
ShiftResNet A 0.5M 92.5% C 3.1M 74.2% E 1.9M 82.3%
LeanResNet [ours] A 0.5M 92.8% C 2.9M 74.3% E 2.0M 83.7%

Table 1. Classification results

a single pixel, and we use a fully-connected linear classifier

with softmax and cross entropy loss. In Table 2 we summa-

rize the network parameters that we use, which differ in the

number of channels and the number of repetitions for each

layer.

Type Layer width # Steps

A 32-64-128-256 2-3-3-3
B 12-24-48-96 2-3-3-3
C 64-128-256-512 3-5-7-4
D 24-48-96-192 3-5-7-4
E 32-64-128-256-512 2-3-3-3-3
F 12-24-48-96-192 2-3-3-3-3

Table 2. Network configurations

As noted, although the architectures of LeanResNet and

ResNet appear to be the same, LeanResNet is based on

the parameterized convolution (3), hence it consumes less

parameters. The convolution sizes of MobileNetV2 and

ShiftResNet were chosen such that the size of the expanded

(by 6) 1 × 1 convolution in a layer is equivalent to the

size of a square 1 × 1 convolution of LeanResNet. The

architecture of ShuffleNetV2 is evaluated with the config-

urations (0.5x,1.0x,1.5x) that were introduced in the pa-

pers. For training the networks we use the ADAM opti-

mizer (Kingma & Ba, 2014) and a minibatch of 100. We

run 300 epochs and reduce the learning rate by a factor of

0.5 every 75 epochs, starting from 0.1. We also used stan-

dard data augmentation, i.e., random resizing, cropping and

horizontal flipping.

Our classification results are given in Table 1. The results

show that our architecture is in par and in some cases bet-

ter than other networks. There is no preferred architecture

between all options, but our architecture has the advantage

of simplicity and resemblance to a standard and reliable

ResNet network. We note that although not shown here for

a fair comparison, it is better to use 3×3 convolutions in the

early layers (where there are low numbers of channels and

parameters), and then switch to reduced architectures as the

network progresses and the number of channels grow.

3.1. Computational Performance

We compare the computational cost of our CUDA imple-

mentation of the lean convolution with two other combi-

nation of layers, comprised of a 1 × 1 convolution that is

followed by a depth-wise convolution. In one combination

we use cin = cout, and in the other cin ≈ 6cout, but with

the same number of parameters. Such layers are applied in

(Sandler et al., 2018). We compare the runtime of a typical

network: the first layer consists of 16 channels of 512×512
maps, and the maps are coarsened by a factor of 2 when the

channels increase by a factor of 2 (i.e., for 512 channels the

images are of size 16). We use a batch size of 64, and com-

pare the runtime of a NVIDIA GeForce 1080Ti GPU for

the task. The implementation for the other convolutions is

based on PyTorch’s 1 × 1 and grouped convolutions using

CUDA 9.2. Figure 1 summarizes the results. The depth-

wise convolutions dominate the low channels layers, while

all combination converge to the cost of the 1×1 convolution

as the channels increase (and the depthwise layer becomes

negligible). Our implementation of (3) is clearly faster and

exploits the simultaneous multiplication of the operators.
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Figure 1. Relative timings of reduced convolutions compared to a

3×3 convolution (lower is faster). The expanded and square 1×1

convolutions has the same number of parameters.

4. Conclusion

We present a lean convolution operator that aims at reduc-

ing the number of parameters and computational costs of

CNNs. In our experiments the new architecture yields clas-

sification results that are comparable to other reduced ar-

chitectures, and is almost as effective as a fully-coupled

ResNet. It is important to realize that our new architecture

becomes even more advantageous for 3D or 4D problems,

e.g., when analyzing time series of medical or geophysical

images, the cost of each convolution is much more expen-

sive. Also, the number of weights in the 3D kernels im-

poses memory-related challenges.
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