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Abstract

The causal effect of a treatment can vary from person to per-
son based on their individual characteristics and predispo-
sitions. Mining for patterns of individual-level effect differ-
ences, a problem known as heterogeneous treatment effect
estimation, has many important applications, from precision
medicine to recommender systems. In this paper we define
and study a variant of this problem in which an individual-
level threshold in treatment needs to be reached, in order to
trigger an effect. One of the main contributions of our work
is that we do not only estimate heterogeneous treatment ef-
fects with fixed treatments but can also prescribe individu-
alized treatments. We propose a tree-based learning method
to find the heterogeneity in the treatment effects. Our exper-
imental results on multiple datasets show that our approach
can learn the triggers better than existing approaches.

Introduction

Developing optimal precision treatments for diverse popu-
lations of interest can lead to more effective public poli-
cies (Grimmer, Messing, and Westwood 2017), medical de-
cisions (Laber and Zhao 2015; Lakkaraju and Rudin 2017),
recommender systems (Li et al. 2010), and more (Ascarza
2018). Treatment effects, also known as causal effects, as-
sess the outcome response difference between applying a
treatment to a unit and not applying one. Heterogeneous
treatment effect (HTE) estimation refers to finding subsets in
a population of interest for which the causal effects are dif-
ferent from the effects of the population as a whole (Athey
and Imbens 2016). For example, if the treatment is a drug
with potential adverse reactions, doctors may want to pre-
scribe it only to those people who would benefit from it the
most. Additionally, HTE analysis allows the discovery of
subpopulations that can react adversely to a treatment and
should avoid the treatment altogether. HTE can be studied
as part of the post-analysis of running a controlled experi-
ment or through observational data.

Supervised machine learning techniques have been
adapted to the problem of HTE estimation (Imai and
Ratkovic 2013; Tian et al. 2014; Xu et al. 2015; Grim-
mer, Messing, and Westwood 2017; Xie, Chen, and Shi
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2018) and the closely related problem of finding individu-
alized treatment regimes which aims to find the best indi-
vidual treatment assignment (Almardini et al. 2015; Laber
and Zhao 2015; Lakkaraju and Rudin 2017; Kallus 2017;
Kallus and Zhou 2018). Most of them rely on recursive parti-
tioning using interpretable tree-based methods, such as deci-
sion lists (Lakkaraju and Rudin 2017), decision trees (Athey
and Imbens 2016; Breiman 2017; Laber and Zhao 2015;
Su et al. 2009; Zeileis, Hothorn, and Hornik 2008) and ran-
dom forests (Foster, Taylor, and Ruberg 2011; Wager and
Athey 2017; Athey, Tibshirani, and Wager 2016). Some of
the splitting criteria include highest parameter instability
(Zeileis, Hothorn, and Hornik 2008), t-statistic for the test
of no difference between splits (Su et al. 2009) and penal-
izing splits with high variance (Athey and Imbens 2016). In
(Kallus 2017), an impurity measure is developed to measure
risk of treatments in a partition. There are also other methods
that rely on clustering (Almardini et al. 2015) or propensity
scores (Xie, Brand, and Jann 2012).

In many realistic scenarios, the treatment is an ordinal (or
monotonously increasing continuous) variable, rather than a
binary one, and the effect depends on the amount of treat-
ment. For example, a clinician might be interested to under-
stand the minimum number of days (the trigger) that patients
with certain characteristics need to take a medication, in or-
der to be cured (the effect). Or, a company might be inter-
ested in offering a personalized discount where the thresh-
old is the minimum discount needed to trigger a customer
with given characteristics to buy a product. Then, the goal
becomes finding the threshold that maximizes the expected
outcome for each discovered subpopulation where the sub-
population is characterized by its set of equal or similar at-
tributes. To the best of our knowledge, none of the existing
work addresses this problem which is the focus of our work.

We formalize this problem under the name trigger-based
HTE estimation and develop a learning procedure that en-
ables the discovery of individual-level thresholds for trigger-
ing an effect. In essence, we turn an ordinal treatment prob-
lem into a binary treatment one where the treatment thresh-
old is learned. For each subpopulation, the treatment effect
refers to the average difference between the outcomes for the
individuals in the subpopulation whose treatment is below
the threshold and those who are above the threshold. A key
assumption here is that the subpopulation that has received





The conditional mean for treatment and control in parti-
tion Xℓ is defined as:

µ̂t(Sℓ) =
1

Nℓ1

∑

Ti=t,i∈Sℓ

Yi, (2)

where t ∈ {0, 1}, µ̂1 and µ̂0 are the conditional means
for treatment and control groups in the partition, and Nℓ1

and Nℓ0 are the number of units in treatment and control
groups in the partition, respectively. The average causal ef-
fect (ACE) τ̂ for partition Xℓ is defined as:

τ̂(Sℓ) = µ̂1(Sℓ)− µ̂0(Sℓ), (3)

When performing estimation on a new set of data, say Ste,
the test examples are matched to the correct partition given
the features. Given an example sj ∈ Ste in partition ℓ, the
estimated ICE for unit sj is given by the ACE for Sℓ as (3).

Objective function

The goal of HTE estimation is to partition the feature space,
so that heterogeneity is found. Similar to (Athey and Imbens
2016), we define a partition measure that captures the mag-
nitude in ACE for the partition: F (Sℓ) = Nℓ · τ̂

2(Sℓ), where
Nℓ = |Sℓ| is the number of samples in partition ℓ.

To find subgroups for HTE, we wish to partition the fea-
ture space, so that the sum of all partition measures is max-
imized. For a feature space X , the objective is to maximize
the sum of partition measures F across L partitions:

max
S1, ..., SL

L
∑

i=1

F (Si),

s.t. X = X1 ∪ · · · ∪ XL,

Xℓ ∩ Xℓ′ = ∅, ℓ 6= ℓ
′
.

(4)

To reach this objective for the trigger-based HTE estimation,
we need to optimize partition splits both based on features
and possible feature threshold splits.

Recursive partitioning through causal trees

Trees are popular for HTE estimation (Athey and Imbens
2016; Green and Kern 2012; Laber and Zhao 2015). Each
partition is represented by a path in the tree, similarly to de-
cision trees. Trees are built in a greedy manner to maximize a
F from each node split. This results in locally optimizing the
objective (4) as splitting criteria. Given a node ℓ that needs
to be partitioned into two child nodes ℓ1, ℓ2, the algorithm
finds the split that maximizes F for the two children:

max
Sℓ1 , Sℓ2

F (Sℓ1) + F (Sℓ2), (5)

such that Xℓ = Xℓ1 ∪ Xℓ2 and Xℓ1 ∩ Xℓ2 = ∅. A sim-
ple method for building a tree is to directly use this split-
ting, called the adaptive approach, which we denote as CT-
A (Athey and Imbens 2016). The entire training set is used
to build the tree and estimate causal effects.

A penalty can be introduced to the splitting criteria (Athey
and Imbens 2016). This approach, called the honest ap-
proach, denoted as CT-H, is separated into two stages: tree-
building and estimation. The data is split into a training and
estimation sample, denoted by Str and Sest, respectively. Str

is used for tree building and Sest is used for estimation.

Triggers for HTE

When there is a treatment value threshold (e.g., minimum
number of days to take a medication) that triggers an effect
(e.g., to be cured), the partitions will depend on the opti-
mal thresholds for each subpopulation. Let ti ∈ R be the
amount of treatment (e.g., number of days to take a medi-
cation) corresponding to each unit si. We define the trigger
θℓ of a population Sℓ as the threshold that splits Sℓ into two
subpopulations Sℓ1 and Sℓ0 in a way that optimizes the treat-
ment effect for Sℓ:

arg max
θℓ

µ̂1(Sℓ1)− µ̂0(Sℓ0), (6)

such that Sℓ = Sℓ1 ∪ Sℓ0 , Sℓ1 ∩ Sℓ0 = ∅, where Ti = 1
if ti ≥ θℓ and Ti = 0 otherwise. While we define the
treatment as a real variable, threshold-based triggers also
apply to treatments that are ordinal discrete values. Like in
the non-trigger case, a key assumption here is that Sℓ1 and
Sℓ0 represent the same underlying distribution and each unit
si ∈ Sℓ is equally likely to be assigned to each subgroup
(Ti ⊥ (Yi(0), Yi(1)) | Xi).

Learning HTE

Next, we present our general approach to learning HTE, that
applies to both discrete and trigger treatments. We explain
in detail the specific requirements for the trigger case.

Effect estimation

The formulation given previously may not be optimal on un-
seen test data. In contrast to (Athey and Imbens 2016), we
propose a different splitting criterion by introducing the idea
of a validation set to find splits that generalize well to unseen
data. For our approach, we clearly separate a training, vali-
dation, and testing sample for training and evaluation. Addi-
tionally, we jointly optimize generalizability using training
and validation in a one-stage tree-building process.

For a dataset S, we define the training, validation and
testing samples as Str, Sval, and Ste. We build the tree on
the training portion, while penalizing generalization ability
based on the validation set. Our method estimates effects
on the training sample and penalizes estimations that do not
match a validation set by introducing a penalty or cost.

Let τ̃(Str
ℓ ) be the true ACE in a node ℓ. The estimated

ACE on the validation set is τ̂(Sval
ℓ ) as in (3). Formally, de-

fine the cost term C as: C(Sval
ℓ ) = N val

ℓ ·
∣

∣τ̂(Sval
ℓ )− τ̃(Str

ℓ )
∣

∣.
This measures the error of estimated effect and validation
ACE. Using the cost term C, define a new measure:

FC(Sℓ) =
(1− λ) · F (Str

ℓ )− λ · C(Sval
ℓ )

|N tr
ℓ −Nval

ℓ |+ 1
. (7)

where λ ∈ [0, 1] is a parameter that controls the penalty. By
adjusting λ, we can introduce higher penalty to splits that do
not generalize well. The denominator acts as normalization
for training and validation sizes. This gives fair comparison
of measures across different splits. This new measure max-
imizes partition measures, but encourages generalization on
unseen data through the penalty and the use of validation.



Algorithm 1 Learning trigger-based causal trees

Input: Training set S, validation size ρ, indicator for measure B
(B = 1 if binary, B = 0 if trigger-based)

Output: The root of the causal tree
1: S tr, Sval = split(S, split size=ρ)
2: root.F← PARTITIONMEASURE(S,B) {e.g. equation (9)}
3: root.S← S tr {The sample at root node}
4: return TRAIN(root)
5: function TRAIN(currentNode)
6: Sℓ ← currentNode.S
7: bestPartition← −∞
8: for each feature split Xℓ1 ,Xℓ2 do
9: leftPartition = PARTITIONMEASURE(Sℓ1 , B)

10: rightPartition = PARTITIONMEASURE(Sℓ2 , B)
11: if leftPartition + rightPartition > bestPartition
12: bestPartition = leftPartition + rightPartition

13: if bestPartition > currentNode.F
14: left.F, left.S← leftPartition, Sℓ1

15: right.F, right.S← rightPartition, Sℓ2

16: currentNode.left← TRAIN(left)
17: currentNode.right← TRAIN(right)
18: else
19: return currentNode

20: function PARTITIONMEASURE(Sℓ, B)
21: if B == 1 { indicates no trigger }
22: return FC(Sℓ)
23: else
24: θℓ ← ∅; {denotes the trigger}
25: vℓ ← −∞; {v is the best partition measure}
26: T = {ti : ti ∈ Sℓ}
27: for each tj ∈ T do
28: Sℓ1 = {(Xi, Yi, Ti) : Ti ≥ tj}
29: Sℓ0 = {(Xi, Yi, Ti) : Ti < tj}
30: temp = F (Sℓ1 ∪ Sℓ0)
31: if temp > vℓ
32: vℓ, θℓ← temp, tj

33: return vℓ, θℓ

The maximization problem for causal tree learning is the
same as in (4) using our new partition measure. We are find-
ing heterogeneous partitions, while minimizing generaliza-
tion error using a cost C. This formulation is flexible, since
any cost can be introduced. We call this method CT-L.

We propose two variants, CT-HL and CT-HV. This
method uses the idea of honest estimation from (Athey and
Imbens 2016), where a separate estimation set is used to pe-
nalize variance in the splits. We now introduce a separate
estimation set as Sest. Define an honest term as H(Sℓ):

H(Sℓ) =

(

1 +
N est

N

)

·

(

V (1)(Sℓ)

p
+

V (0)(Sℓ)

1− p

)

, (8)

where p = N tr/N is the share of treated units, and V (1)(Sℓ)
and V (0)(Sℓ) are the variance of treated and control means.

In the first variant, we combine the idea of honest estima-
tion with our validation penalty. We separate an estimation
set from the training data to perform honest estimation to
control variance. We also separate a validation set, so we
have generalization cost and variance penalty. The partition
measure is: FHL(Sℓ) = FC(Sℓ) − H(Sℓ). We call this the
CT-HL method.

In the second variant, we do not separate an estimation

set. We treat the validation as a hybrid estimation and val-
idation set. Formally, the partition measure is: FHV (Sℓ) =
FC(Sℓ) − Hval(Sℓ). Hval is the same as the honest penalty,
except using the validation set instead of a separate estima-
tion set. We denote this as the CT-HV method.

Learning triggers for HTE

The goal of identifying triggers for HTE estimation is to find
subpopulations in which both the trigger threshold and the
individual characteristics play a role in the observed effect
differences. We define a partition measure that optimizes the
treatment effect for each subpopulation through the choice
of both the feature and the trigger threshold. For each node ℓ
and its corresponding sample Sℓ, we wish to find the trigger
θℓ that maximizes the treatment effect in Sℓ. When finding
splits, we jointly optimize for the choice of feature to split
on and triggers of the node’s children. For example, con-
sider estimating the effect that a product discount has on
the decision to buy that product. In this case, the method
would identify the minimum discount necessary to make a
customer with certain characteristics buy that product.

Let T = {ti} be the set of all possible treatment values
in the dataset. Define θℓ ∈ T as the trigger value that splits
the sample Sℓ into two subsamples Sℓ1 and Sℓ2 , found by
maximizing the ACE as in (6). The partition measure for the
trigger-based treatment effect is defined as F T :

F
T (Sℓ) = max

θℓ

FC(Sℓ), (9)

where Sℓ = Sℓ1 ∪Sℓ2 is the sample with trigger-based treat-
ment. We are maximizing the previously defined partition
measure in (7), over the possible triggers. For splitting, we
use the trigger-based partition measure, replacing the binary
partition measure in (4). Note that this formulation finds the
best trigger for treatment at each node in the tree. Therefore,
the trigger for heterogeneity is different and can be observed
at each level. We note that the partition measure used in (9),
FC(Sℓ), can be any partition measure (e.g. FH(Sℓ)). This
makes our formulation easily applicable to any measure.

Algorithm 1 briefly describes how to learn trigger-based
causal trees. The algorithm requires the validation size, and
an indicator for considering binary treatments or trigger-
based treatments. To determine triggers, we consider all
treatment values in the dataset as possible trigger values.

One potential concern is our strong assumption that the
population above and below the trigger represent the same
underlying distribution. While decision trees take care of it
to some extent (i.e., examples in a subpopulation stored in a
leaf share the feature values of the tree path that leads to that
leaf), in our experiments we ran further tests that compare
the treatment and control population in each leaf.

Experiments
We compare our methods to the adaptive and honest causal
trees developed in (Athey and Imbens 2016), as well as non-
tree based methods that use propensity scores (Xie, Brand,
and Jann 2012). We study two datasets that lend themselves
to the trigger-based treatment problem which is the focus of
our work. We also use the ACIC Causal Inference Challenge
dataset for binary treatments.







Table 4: ACIC data error. The results are for non tree methods (e.g. MS), and the unpruned and pruned trees (e.g. CT-L vs
CT-LP). Bold results are statistically significant. The table shows that our methods (shaded grey), are significantly better in 18
out of 24 datasets. When our method does not perform better the other methods are not significantly better.

Data Size = 1000 Data size = 2500 Data size = 5000
Method 32be 5316 d09f ea8e 6c04 7e4d 95ba c55e 4e47 9450 a386 f4c2

MS 0.922 0.897 0.685 0.895 0.828 0.823 0.872 0.663 0.914 0.895 0.117 0.200
SD 0.941 0.928 0.711 0.886 0.847 0.838 0.818 0.647 0.944 0.888 0.058 0.360
SM 0.826 0.998 0.400 0.882 0.864 0.953 0.710 0.191 0.864 0.995 0.997 0.223

CT-A 0.927 0.971 0.557 0.933 0.924 0.955 0.752 0.425 0.932 0.999 0.546 0.330
CT-H 0.970 0.998 0.473 0.831 0.905 0.891 0.985 0.244 0.860 0.998 0.855 0.220
CT-L 0.958 0.946 0.319 0.876 0.782 0.929 0.560 0.193 0.907 0.947 0.362 0.168

CT-HL 0.827 0.980 0.189 0.926 0.807 0.894 0.626 0.185 0.802 0.999 0.297 0.016
CT-HV 0.935 0.986 0.296 0.790 0.793 0.887 0.826 0.127 0.909 0.794 0.679 0.108

CT-AP 0.893 0.971 0.484 0.978 0.920 0.954 0.756 0.247 0.930 0.999 0.433 0.290
CT-HP 0.918 0.998 0.341 0.966 0.905 0.961 0.985 0.105 0.924 0.998 0.855 0.149
CT-LP 0.927 0.946 0.319 0.882 0.782 0.924 0.524 0.054 0.918 0.947 0.193 0.135

CT-HLP 0.815 0.980 0.204 0.926 0.807 0.893 0.527 0.185 0.909 0.998 0.002 0.016
CT-HVP 0.926 0.986 0.296 0.889 0.801 0.762 0.826 0.076 0.944 0.883 0.003 0.043

Data Size = 10000 Data size = 25000 Data size = 50000
Method 0099 0a2a 5cc4 c93b 2e47 4dce 536d 630b 3461 9d8c a6c1 f2e5

MS 0.649 0.914 0.657 0.398 0.830 0.845 0.754 0.867 0.764 0.918 0.256 0.910
SD 0.698 0.934 0.517 0.367 0.774 0.949 0.737 0.789 0.782 0.916 0.259 0.909
SM 0.293 0.562 0.738 0.609 0.463 0.752 0.959 0.955 0.577 0.895 0.999 0.944

CT-A 0.197 0.872 0.142 0.605 0.350 0.872 0.457 0.961 0.998 0.947 0.996 0.939
CT-H 0.191 0.954 0.176 0.547 0.291 0.835 0.315 0.887 0.977 0.917 0.984 0.973
CT-L 0.189 0.568 0.194 0.461 0.198 0.596 0.076 0.749 0.658 0.894 0.920 0.712

CT-HL 0.251 0.156 0.177 0.657 0.178 0.632 0.153 0.589 0.909 0.998 0.002 0.016
CT-HV 0.092 0.753 0.185 0.349 0.106 0.720 0.060 0.619 0.923 0.888 0.965 0.807

CT-AP 0.157 0.754 0.142 0.466 0.350 0.912 0.448 0.921 0.998 0.947 0.996 0.955
CT-HP 0.084 0.706 0.176 0.366 0.291 0.885 0.108 0.878 0.977 0.915 0.983 0.848
CT-LP 0.077 0.455 0.194 0.176 0.207 0.810 0.076 0.482 0.658 0.894 0.882 0.714

CT-HLP 0.088 0.156 0.177 0.141 0.178 0.857 0.077 0.468 0.884 0.887 0.002 0.016
CT-HVP 0.041 0.753 0.174 0.064 0.106 0.720 0.060 0.451 0.923 0.888 0.965 0.807

treatment and control groups. Table 3 compares the average
Mahalanobis distance for each tree-based method. For Ma-
halanobis distance, we compute the distance between each
treatment feature vector to the mean of the control group,
and each control feature vector the the mean of the treat-
ment, and average over all distances in each leaf. From the
table, our proposed CT-HV method has lower population
differences at leaves, which means that it deals better with
trigger-based selection bias.

Impact of number of triggers. One concern of find-
ing triggers is the increase in complexity of building causal
trees. Instead of considering all possible treatment values in
the dataset as triggers, we explore the impact of using lower
number of possible triggers. Fig. 3a shows the number of
triggers against the error rate using CT-HV on the NMES
dataset. We see that increasing number of considered trig-
gers generally lowers the error. However, we see that even
after introducing 100 possible triggers, the error is still sig-
nificantly higher than when we consider all possible triggers
(0.741 compared to an error of 0.416 from Table 1). This
shows that there is a significant tradeoff between number of
triggers considered and error.

Evaluation on binary treatments

Table 4 shows the error for each ACIC dataset. For each
dataset, we compare unpruned (e.g. CT-L) and pruned (e.g.
CT-LP) tree results separately. We bold statistically signifi-

cant results. Our methods are shaded in grey.
Across all the datasets, we see that our proposed meth-

ods achieve lower error compared to the previous tree-based
methods. For those datasets where our method is not signif-
icantly better, the other methods do not have significantly
lower error. Our variants (CT-HL and CT-HV) generally
have lower error than our base method. Careful validation
should be done to choose the best method.

We notice that some of the datasets have very large error
error (> 0.9). A likely reason is that the range of the re-
sponse variable varies wildly in some cases. For example,
in dataset 9450, the range of response is about 429. When
building the tree, large values affect the ACE at each node.

Hyperparameter tuning

Since we introduce two hyperparameters in our methods,
namely the weight λ for controlling validation penalty, and
the validation split size, we explore varying these values.

Fig. 3b shows the error rate for varying values of λ across
different validation sizes. From this plot, we see that with
sizes of the validation set, the lowest error changes with dif-
ferent values of λ. We notice that a larger λ is needed for
smaller validation, while a smaller λ is needed for larger
validation. Also, the error seems to be more stable when the
validation is the same size as the training set.

Fig. 3c shows the error rate for varying validation sizes,
with λ fixed. We can infer that having a validation size close



to the size of the training size is a good choice for lower
error. From both figures, we conclude using a method for
learning these parameters is important. Cross-validation can
be used to tune these parameters (e.g. using (10)).

Conclusion

In this paper, we define the problem of trigger-based hetero-
geneous treatment effect estimation. To do this, we propose
novel splitting criteria for building causal trees and incor-
porate validation data to improve generalizability. We in-
troduce the use of a validation set for HTE estimation for
learning optimal partitioning, by introducing a loss func-
tion that penalizes partitions whose effects do not generalize.
We showed our method can get better coverage on average
causal effect on unseen test data when identifying triggers.
Our experimental results show our method performs better
than previous causal tree methods for binary treatment esti-
mation. Important future directions include outlier detection
for decreasing sample variance, developing methods for dif-
ferent distribution assumptions, such as non-i.i.d data, and
incorporating matching methods into HTE estimation.
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