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Abstract

The study of adversarial robustness has so far
largely focused on perturbations bound in /-
norms. However, state-of-the-art models turn
out to be also vulnerable to other, more natural
classes of perturbations such as translations and
rotations. In this work, we thoroughly investigate
the vulnerability of neural network—based clas-
sifiers to rotations and translations. While data
augmentation offers relatively small robustness,
we use ideas from robust optimization and test-
time input aggregation to significantly improve
robustness. Finally we find that, in contrast to the
£p-norm case, first-order methods cannot reliably
find worst-case perturbations. This highlights spa-
tial robustness as a fundamentally different setting
requiring additional study.

1. Introduction

Neural networks are now widely embraced as dominant
solutions in computer vision (Krizhevsky et al., 2012; He
et al., 2016), speech recognition (Graves et al., 2013), and
natural language processing (Collobert & Weston, 2008).
While their accuracy scores often match (and sometimes go
beyond) human-level performance on key benchmarks (He
et al., 2015; Taigman et al., 2014), we still do not understand
how robust neural networks are. A prominent issue in this
context is the existence of so-called adversarial examples,
i.e., inputs that are almost indistinguishable from natural
data to a human but cause state-of-the-art classifiers to make
incorrect predictions with high confidence (Szegedy et al.,
2013; Goodfellow et al., 2014). This raises concerns about
the use of neural networks in contexts where reliability,
dependability, and security are important desiderata.
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There is a long line of work on methods for constructing
adversarial perturbations in various settings (Szegedy et al.,
2013; Goodfellow et al., 2014; Kurakin et al., 2016a;b;
Sharif et al., 2016; Moosavi-Dezfooli et al., 2016; Carlini
& Wagner, 2016; Papernot et al., 2017; Madry et al., 2017;
Athalye et al., 2017). However, these methods are quite so-
phisticated, and, since they often rely on having fine-tuned
control over a large number of input pixels or audio samples,
end up creating fairly contrived perturbations. As such, one
may suspect that adversarial examples constitute a problem
only in the presence of a truly malicious attacker and are
unlikely to arise in more benign environments. However,
recent work has shown that neural network—based vision
classifiers are vulnerable to input images that have been
spatially transformed through small rotations, translations,
shearing, scaling, and other natural transformations (Fawzi
& Frossard, 2015; Kanbak et al., 2017; Xiao et al., 2018;
Tramer & Boneh, 2017). The vulnerability of neural net-
works to such transformations raises a natural question:

How can we build classifiers robust to such naturally
occurring transformations?

We address this question by first performing an in-depth
study of neural network—based classifier robustness to two
basic image transformations: translations and rotations.
While these transformations appear natural to a human,
we show that small rotations and translations alone can
significantly degrade accuracy. These transformations are
particularly relevant for computer vision applications since
real-world objects do not always appear centered and can
often be significantly rotated.

1.1. Our Methodology and Results

We start with standard, near state-of-the-art image classifiers
for the MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky
& Hinton, 2009), and ImageNet (Russakovsky et al., 2015)
datasets. We find that small rotations and translations con-
sistently and significantly degrade accuracy across these
classifiers in a number of settings, as shown in Figure 1.

We then perform a thorough analysis comparing the abilities
of various adversaries — first-order, random, and grid—based
— to fool models with small rotations and translations. Our
results suggest that classifiers are even more brittle than
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Figure 1. Examples of adversarial transformations and their pre-
dictions in the standard, "black canvas", and reflection padding
settings.

previously believed, as we find that even small random
transformations can degrade accuracy by up to 30%. More
significantly, we find that grid adversaries are much more
powerful than first-order adversaries. This is in stark con-
trast to results in the £, adversarial example literature, where
first-order methods can consistently approximately worst-
case inputs (Carlini & Wagner, 2016; Madry et al., 2017).

To understand why such a difference occurs, we delve
deeper into the classifiers to try and understand the fail-
ure modes induced by such natural transformations. We find
that the loss landscape of classifiers with respect to rotations
and translations is nonconvex and contains many spurious
maxima. This is in contrast to the £, setting, in which, exper-
imentally, the maxima tend to concentrate well (Madry et al.,
2017). Our experiments with the landscapes demonstrate
that any adversary relying on first order information might
be unable to reliably find misclassifications. Furthermore,
for most images, the set of fooling rotations and translations
is highly irregular and nonconvex.

Using insights from our study, we next examine methods
for alleviating these vulnerabilities. As a natural baseline,
we augment the training procedure with rotations and trans-
lations. While this does largely mitigate the problem on
MNIST, additional data augmentation only marginally adds
robustness on CIFAR10 and ImageNet. We thus propose
two natural methods for further increasing the robustness of
these models. These methods are based on robust optimiza-
tion and aggregation of random input transformations. They
offer significant improvements in classification accuracy

against both adaptive and random attackers when compared
to both standardly trained models and those trained with
additional data augmentation.

Finally, we examine the interplay between rotations / trans-
lations and the widely used ¢.-based adversarial examples.
We observe that robustness to these two classes of input per-
turbations is largely orthogonal to each other. In particular,
pixel-based robustness does not imply spatial robustness,
while combining spatial and ¢,-bounded transformations
seems to have a cumulative effect in reducing classification
accuracy. This emphasizes the need to broaden the notions
of image similarity in the adversarial examples literature
beyond the common £,-balls.

1.2. Summary of Contributions

We perform extensive experiments that provide a fine-
grained understanding of rotation / translation robustness
on a wide spectrum of datasets and training regimes. In
summary, we show that:

e Grid based adversaries performing an exhaustive, fine-
grained search are a strong adversary for fooling mod-
els with small rotations and translations. Suprisingly,
unlike in the corresponding ¢, setting, first-order based
adversaries fail to reliably find fooling inputs and are
significantly less effective than grid-based adversaries.
Furthermore, an attacker using random rotations and
translations can still significantly degrade accuracy,
suggesting that there might be a large degree of mis-
classification stemming from these vulnerabilities even
in benign settings.

e The optimization landscape of loss with respect to rota-
tions and translations is nonconvex and contains many
spurious local maxima. This could explain the failure
of first-order methods to find fooling transformations.
Consequently, rigorous evaluation of model robustness
in this spatial setting requires techniques that that go
beyond what was needed to induce £, adversarial ro-
bustness.

e Additional data augmentation is not sufficient to sig-
nificantly increase robustness to rotations and transla-
tions, even in the benign case. However, robustness
can be significantly increased using ideas from robust
optimization and test-time input transformations; on
ImageNet, our best model attains a topl accuracy of
56 % against the strongest adversary, versus 34% for a
standard network with additional data augmentation.

e Robustness to /.-bounded perturbations does not sig-
nificantly affect spatial robustness. Instead, these two
notions appear orthogonal to each other.
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2. Related Work

The fact that small rotations and translation can fool neu-
ral networks on MNIST and CIFAR10 was first observed
in (Fawzi & Frossard, 2015). They compute the minimum
transformation required to fool the model and use it as a
measure for a quantitative comparison of different architec-
tures and training procedures. The main difference to our
work is that we focus on the optimization aspect of the prob-
lem. We show that a few random queries usually suffice for
a successful attack, while first-order methods are ineffective.
Moreover, we go beyond standard data augmentation and
evaluate the effectiveness of natural baseline defenses.

The concurrent work of (Kanbak et al., 2017) proposes a
different first-order method to evaluate the robustness of
classifiers based on geodesic distances on a manifold. This
metric is harder to interpret than our parametrized attack
space. Moreover, given our findings on the non-concavity
of the optimization landscape, it is unclear how close their
method is to the ground truth (exhaustive enumeration).
While they perform a limited study of defenses (adversarial
fine-tuning) using their method, it appears to be less effec-
tive than our baseline worst-of-10 training. We attribute this
difference to the inherent obstacles first-order methods face
in this optimization landscape.

Recently, (Xiao et al., 2018) and (Tramer & Boneh, 2017)
observed independently that it is possible to use various
spatial transformations to construct adversarial examples
for naturally and adversarially trained models. The main
difference from our work is that we show even very simple
transformations (translations and rotations) are sufficient
to break a variety of classifiers, while the transformations
employed in (Xiao et al., 2018) and (Tramer & Boneh, 2017)
are more involved. The transformation in (Xiao et al., 2018)
is based on performing a displacement of individual pixels
in the original image constrained to be globally smooth and
then optimized for misclassification probability. (Tramer &
Boneh, 2017) consider an ¢,-bounded pixel-wise perturba-
tion of a version of the original image that has been slightly
rotated and in which a few random pixels have been flipped.
Both of these methods require direct access to the attacked
model (or a surrogate) to compute (or at least estimate) the
gradient of the loss function with respect to the model’s
input. In contrast, our attacks can be implemented using
only a small number of random, non-adaptive inputs.

3. Adversarial Rotations and Translations

Recall that in the context of image classification, an adver-
sarial example for a given input image x and a classifier
C' is an image z’ that satisfies two properties: (i) on the
one hand, the adversarial example 2’ causes the classifier
C' to output a different label on 2’ than on z, i.e., we have

C(z) # C(a'). (ii) On the other hand, the adversarial
example x’ is “visually similar” to z.

Clearly, the notion of visual similarity is not precisely de-
fined here. In fact, providing a precise and rigorous defini-
tion is extraordinarily difficult as it would require formally
capturing the notion of human perception. Consequently,
previous work largely settled on the assumption that z’ is a
valid adversarial example for « if and only if ||z — 2'||, < ¢
for some p € [0, 00| and & small enough. This convention is
based on the fact that two images are indeed visually similar
when they are close enough in some ¢, norm. However,
the converse is not necessarily true. A small rotation or
translation of an image usually appears visually similar to
a human, yet can lead to a large change when measured in
an £, norm. We aim to expand the range of similarity mea-
sures considered in the adversarial examples literature by
investigating robustness to small rotations and translations.

Attack methods. Our first goal is to develop sufficiently
strong methods for generating adversarial rotations and
translations. In the context of pixel-wise ¢, perturbations,
the most successful approach for constructing adversarial
examples so far has been to employ optimization methods
on a suitable loss function (Szegedy et al., 2013; Goodfel-
low et al., 2014; Carlini & Wagner, 2016). Following this
approach, we parametrize our attack method with a set of
tunable parameters and then optimize over these parameters.

First, we define the exact range of attacks we want to opti-
mize over. For the case of rotation and translation attacks,
we wish to find parameters (du, dv, ) such that rotating
the original image by 6 degrees around the center and then
translating it by (du, dv) pixels causes the classifier to make
a wrong prediction. Formally, the pixel at position (u, v) is
moved to the following position (assuming the point (0, 0)
is the center of the image):

u'|  |cos@® —sinf| |u du

[v’] o L‘in@ cos 6 } ' L}} + [51}} ’
We implement this transformation in a differentiable man-
ner using the spatial transformer blocks of (Jaderberg et al.,
2015) !. In order to handle pixels that are mapped to non-
integer coordinates, the transformer units include a differen-
tiable bilinear interpolation routine. Since our loss function
is differentiable with respect to the input and the transforma-
tion is in turn differentiable with respect to its parameters,
we can obtain gradients of the model’s loss function w.r.t.

the perturbation parameters. This enables us to apply a
first-order optimization method to our problem.

By defining the spatial transformation for some z as

'"We used the open source implementation found here:
https://github.com/tensorflow/models/tree/
master/research/transformer.
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T (x;du, 0v,0), we construct an adversarial perturbation
for x by solving the problem

max L(x',y), forz' =T(z;0u,év,0), (1)

51,60,0

where £ is the loss function of the neural network?, and 1y 18
the correct label for .

We compute the perturbation from Equation 1 in three dis-
tinct ways:

e First-Order Method (FO): Starting from a random
choice of parameters, we iteratively take steps in the
direction of the gradient of the loss function. This is
the direction that locally maximizes the loss of the clas-
sifier (as a surrogate for misclassification probability).
Since the maximization problem we are optimizing is
non-concave, there are no guarantees for global opti-
mality, but the hope is that the local maximum solution
closely approximates the global optimum. Note that
unlike the £,-norm case, we are not optimizing in the
pixel space but in the latent space of rotation and trans-
lation parameters.

e Grid Search: We discretize the parameter space and
exhaustively examine every possible parametrization
of the attack to find one that causes the classifier to give
a wrong prediction (if such a parametrization exists).
Since our parameter space is low-dimensional enough,
this method is computationally feasible (in contrast to
a grid search for £,-based adversaries).

e Worst-of-k: We randomly sample £ different choices
of attack parameters and choose the one on which the
model performs worst. As we increase k, this attack
interpolates between a random choice and grid search.

We remark that while a first-order attack requires full knowl-
edge of the model to compute the gradient of the loss with
respect to the input, the other two attacks do not. They only
require the outputs corresponding to chosen inputs, which
can be done with only query access to the target model.

4. Improving Invariance to Spatial
Transformations

As we will see in Section 5, augmenting the training set
with random rotations and translations does improve the ro-
bustness of the model against such random transformations.
However, data augmentation does not significantly improve
the robustness against worst-case attacks and sometimes

The loss £ of the classifier is a function from images to real
numbers that expresses the performance of the network on the
particular example z (e.g., the cross-entropy between predicted
and correct distributions).

leads to a drop in accuracy on unperturbed images. To ad-
dress these issues, we explore two simple baselines that turn
out to be surprisingly effective.

Robust Optimization. Instead of performing standard
empirical risk minimization to train the classification model,
we utilize ideas from robust optimization. Robust optimiza-
tion has a rich history (Ben-Tal et al., 2009) and has recently
been applied successfully in the context of defending neural
networks against adversarial examples (Madry et al., 2017;
Sinha et al., 2017; Raghunathan et al., 2018; Kolter & Wong,
2017). The main barrier to applying robust optimization for
spatial transformations is the lack of an efficient procedure
to compute the worst-case perturbation of a given exam-
ple. Performing a grid search (as described in Section 3)
is prohibitive as this would increase the training time by a
factor close to the grid size, which can easily be a factor
100 or 1,000. Moreover, the non-convexity of the loss land-
scape prevents potentially more efficient first-order methods
from discovering (approximately) worst-case transforma-
tions (see Section 5 for details).

Given that we cannot fully optimize over the space of trans-
lations and rotations, we instead use a coarse approximation
provided by the worst-of-10 adversary (as described in Sec-
tion 3). So each time we use an example during training, we
first sample 10 transformations of the example uniformly
at random from the space of allowed transformations. We
then evaluate the model on each of these transformations
and train on the one perturbation with the highest loss. This
corresponds to approximately minimizing a min-max for-
mulation of robust accuracy similar to (Madry et al., 2017).
Training against such an adversary increases the overall time
by a factor of roughly six.?

Aggregating Random Transformations. As Section 5
shows, the accuracy against a random transformation is sig-
nificantly higher than the accuracy against the worst trans-
formation in the allowed attack space. This motivates the
following inference procedure: compute a (typically small)
number of random transformations of the input image and
output the label that occurs the most in the resulting set of
predictions. We constrain these random transformations to
be within 5% of the input image size in each translation
direction and up to 15° of rotation. * The training proce-
dure and model can remain unchanged while the inference
time is increased by a small factor (equal to the number of
transformations we evaluate on).

3We need to perform 10 forward passes and one backwards
pass instead of one forward and one backward pass required for
standard training.

“Note that if an adversary rotates an image by 30° (a valid
attack in our threat model), we may end up evaluating the image
on rotations of up to 45°.
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Figure 2. Loss landscape of a random example for each dataset when performing left-right translations and rotations. Translations and
rotations are restricted to 10% of the image pixels and 30°, respectively. We observe that the landscape is significantly non-concave,
rendering first-order methods to generate adversarial example ineffective. Figure 12 in the appendix shows additional examples.

Combining Both Methods. The two methods outlined
above are orthogonal and in some sense complementary.
We can therefore combine robust training (using a worst-of-
k adversary) and majority inference to further increase the
robustness of our models.

5. Experiments

We evaluate standard image classifiers for the MNIST (Le-
Cun et al., 1998), CIFAR10 (Krizhevsky & Hinton, 2009)
and ImageNet (Russakovsky et al., 2015) datasets. In order
to determine the extent to which misclassification is caused
by insufficient data augmentation during training, we exam-
ine various data augmentation methods. We begin with a
description of our experimental setup.

Model Architecture. For MNIST, we use a convolutional
neural network derived from the TensorFlow Tutorial (tft).
In order to obtain a fully convolutional version of the net-
work, we replace the fully-connected layer by two convo-
lutional layers with 128 and 256 filters each, followed by
a global average pooling. For CIFAR10, we consider a
standard ResNet (He et al., 2016) model with 4 groups of
residual layers with filter sizes [16, 16, 32, 64] and 5 residual
units each. We use standard and ¢.-adversarially trained
models similar to those studied by (Madry et al., 2017).5-¢
For ImageNet, we use a ResNet-50 (He et al., 2016) archi-
tecture implemented in the tensorpack repository (Wu
et al., 2016). We did not modify the model architectures or
training procedures.

Attack Space. In order to maintain the visual similarity of
images to the natural ones we restrict the space of allowed

Shttps://github.com/MadryLab/cifarl0_
challenge

Shttps://github.com/MadryLab/mnist_
challenge

perturbations to be relatively small. We consider rotations
of at most 30° and translations of at most (roughly) 10%
percent of the image size in each direction. This corresponds
to 3 pixels for MNIST (image size 28 x 28) and CIFAR10
(image size 32 x 32), and 24 pixels for ImageNet (image
size 299 x 299). For grid search attacks, we consider 5
values per translation direction and 31 values for rotations,
equally spaced. For first-order attacks, we use 200 steps
of projected gradient descent of step size 0.01 times the
parameter range. When rotating and translating the images,
we fill the empty space with zeros (black pixels).

Data Augmentation. We consider five variants of training

for our models.

e Standard training: The standard training procedure for
the respective model architecture.

e /.,-bounded adversarial training: The classifier is
trained on {.-bounded adversarial examples that are
generated with projected gradient descent.

e No random cropping: Standard training for CIFAR-10
and ImageNet includes data augmentation via random
crops. We investigate the effect of this data augmenta-
tion scheme by also training a model without random
crops.

e Random rotations and translations: At each training
step, we perform a uniformly random perturbation
from the attack space on each training example.

e Random rotations and translations from larger intervals:
As before, we perform uniformly random perturbations,
but now from a superset of the attack space (40°, &+
13% pixels).
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Figure 3. Fine-grained dataset analysis. For each model, we visualize what percent of the test set can be fooled via various methods. We
compute how many examples can be fooled with either translations or rotations ("any"), how many can be fooled only by one of these,

and how many require a combination to be fooled ("both").

5.1. Evaluating Model Robustness

We evaluate all models against random and grid search ad-
versaries with rotations and translations considered both
separately and together. We report the results in Table 1.
We visualize a random subset of successful attacks in Fig-
ures 5, 6, and 7 of Appendix A.

Despite the high accuracy of standard models on unper-
turbed examples and their reasonable performance on ran-
dom perturbations, a grid search can significantly lower the
classifiers’ accuracy on the test set. For the standard models,
accuracy drops from 99% to 26% on MNIST, 93% to 3% on
CIFARI10, and 76% to 31% on ImageNet (Top 1 accuracy).

The addition of random rotations and translations during
training greatly improves both the random and adversarial
accuracy of the classifier for MNIST and CIFAR10, but less
so for ImageNet. For the first two datasets, data augmenta-
tion increases the accuracy against a grid adversary by 60%
to 70%, while the same data augmentation technique adds
less than 3% accuracy on ImageNet.

We perform a fine-grained investigation of our findings:

e In Figure 3 we examine how many examples can be
fooled by (i) rotations only, (ii) translations only, (iii)
neither transformation, or (iv) both.

e We visualize the set of fooling angles for a random
sample of the rotations-only grid in Figure 4 on Ima-
geNet, and provide more examples in the appendix in
Figure 10. We observe that the set of fooling angles is
nonconvex and not contiguous.

e To investigate how many transformations are adver-
sarial per image, we analyze the percentage of mis-
classified grid points for each example in Figure 11.
While the majority of images has only a small number
of adversarial transformations, a significant fraction of
images is fooled by 20% or more of the transforma-
tions.

Padding Experiments. A natural question is whether the
reduced accuracy of the models is due to the cropping ap-
plied during the transformation. We verify that this is not the
case by applying zero and reflection padding to the image
datasets. We note that the zero padding creates a “black
canvas” version of the dataset, ensuring that no information
from the original image is lost after a transformation. We
show a random set of adversarial examples in this setting
in Figure 8 and a full evaluation in Table 4. We also pro-
vide more details regarding reflection padding in Section B
and provide an evaluation in Table 6. All of these are in
Appendix A.

5.2. Comparing Attack Methods

In Table 2 we compare different attack methods on vari-
ous classifiers and datasets. We observe that worst-of-10
is a powerful adversary despite its limited interaction with
the target classifier. The first-order adversary performs sig-
nificantly worse. It fails to approximate the ground-truth
accuracy of the models and performs significantly worse
than the grid adversary and even the worst-of-10 adversary.

Understanding the Failure of First-Order Methods.
The fact that first-order methods fail to reliably find adversar-
ial rotations and translations is in sharp contrast to previous
work on £,-robustness (Carlini & Wagner, 2016; Madry
et al., 2017). For £,-bounded perturbations parametrized di-
rectly in pixel space, prior work found the optimization land-
scape to be well-behaved which allowed first-order methods
to consistently find maxima with high loss. In the case of
spatial perturbations, we observe that the non-concavity of
the problem is a significant barrier for first-order methods.
We investigate this issue by visualizing the loss landscape.
For a few random examples from the three datasets, we plot
the cross-entropy loss of the examples as a function of trans-
lation and rotation. Figure 2 shows one example for each
dataset and additional examples are visualized in Figure 12
of the appendix. The plots show that the loss landscape is
indeed non-concave and contains many local maxima of
low value. The low-dimensional problem structure seems
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Figure 4. Visualizing which angles fool ImageNet classifiers for 50 random examples. For each dataset and model, we visualize one
example per row. Red corresponds to misclassification of the images. We observe that the angles fooling the models form a highly
non-convex set. Figure 10 in the appendix shows additional examples for CIFAR10 and MNIST.

Table 1. Accuracy of different classifiers against rotation and translation adversaries on MNIST, CIFAR10, and ImageNet. The allowed
transformations are translations by (roughly) 10% of the image size and £30° rotations. The attack parameters are chosen through
random sampling or grid search with rotations and translations considered both together (“Rand.”, “Grid”) and separately (“Rand. T.”
and “Grid T.” for transformations, “Rand R.” and “Grid R.” for rotations). We consider networks that are trained with (i) the respective
standard setup, (ii) no data augmentation (if data augmentation is present in standard setup), (iii) with an £, adversary, (iv) with data
augmentation corresponding to the attack space (+3px, +30°) and an enlarged space (+4px, £40°), and (v) with worst-of-10 training

for both types of augmentations.

Angle

Angle

Angle

Model Nat. Rand. Grid Rand. T. Grid T. | Rand. R. Grid R.
Standard | 99.31% 94.23% 26.02% | 98.61% 89.80% | 95.68%  70.98%
loo-Adv | 98.65% 88.02% 1.20% | 93.72% 34.13% | 95.27% 72.03%

Z Aug. 30 | 99.53% 99.35% 95.79% | 99.47% 98.66% | 99.34%  98.23%
é Aug. 40 | 99.34% 99.31% 96.95% | 99.39% 98.65% | 99.40%  98.49%
W-10 (30) | 99.48% 99.37% 97.32% | 99.50% 99.01% | 99.39%  98.62%
W-10 (40) | 99.42% 99.39% 97.88% | 99.45% 98.89% | 99.36%  98.85%
Standard | 92.62% 60.93% 2.80% | 88.54% 66.17% | 75.36% 24.71%
NoCrop | 90.34% 54.64% 1.86% | 81.95% 46.07% | 69.23%  18.34%
S| loo-Adv | 80.21% 5833% 6.02% | 78.15% 59.02% | 62.85%  20.98%
g Aug. 30 | 90.02% 90.92% 58.90% | 91.76% 79.01% | 91.14%  76.33%
O Aug. 40 | 88.83% 91.18% 61.69% | 91.53% 77.42% | 91.10% 76.80%
W-10 (30) | 91.34% 92.35% 69.17% | 92.43% 83.01% | 92.33% 81.82%
W-10 (40) | 91.00% 92.11% 71.15% | 92.28% 82.15% | 92.53% 82.25%
Standard | 75.96% 63.39% 31.42% | 73.24% 60.42% | 67.90% 44.98%
g NoCrop | 70.81% 59.09% 16.52% | 66.75% 45.17% | 62.78%  34.17%
gﬂ Aug. 30 | 65.96% 68.60% 32.90% | 70.27% 45.72% | 69.28%  47.25%
£ Aug. 40 | 66.19% 67.58% 33.86% | 69.50% 44.60% | 68.88%  48.72%
W-10 (30) | 76.14% 73.19% 52.76% | 74.42% 61.18% | 73.74% 61.06%
W-10 (40) | 74.64% 71.36% 50.23% | 72.86% 59.34% | 71.95% 59.23%
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Table 2. Comparison of attack methods across datasets and models. Worst-of-10 is very effective and significantly reduces the model
accuracy despite the limited interaction. The first-order (FO) adversary performs poorly, despite the large number of steps allowed. We
compare standard training to Augmentation (+3px, £30°). For the full table, see Figure 3 of Appendix A.

MNIST CIFAR-10 ImageNet
Standard Aug. Standard Aug. Standard  Aug.
Natural 99.31%  99.53% | 92.62%  90.02% | 75.96%  65.96%
Worst-of-10 | 73.32%  98.33% | 20.13%  79.92% | 47.83%  50.62%
First-Order | 79.84%  98.78% | 62.69% 85.92% | 63.12%  66.05%
Grid 26.02% 95.79% | 2.80%  58.92% | 31.42% 32.90%

to make non-concavity a crucial obstacle. Even for MNIST,
where we observe fewer local maxima, the large flat regions
prevent first-order methods from finding transformations of
high loss.

Relation to Black-Box Attacks. Given its limited inter-
action with the model, the worst-of-10 adversary achieves a
significant reduction in classification accuracy. It performs
only 10 random, non-adaptive queries to the model and is
still able to find adversarial examples for a large fraction
of the inputs (see Table 2). The low query complexity is
an important baseline for black-box attacks on neural net-
works, which recently gained significant interest (Papernot
et al., 2017; Chen et al., 2017; Bhagoji et al., 2017; Ilyas
et al., 2017). Black-box attacks rely only function evalua-
tions of the target classifier, without additional information
such as gradients. The main challenge is to construct an
adversarial example from a small number of queries. Our
results show that it is possible to find adversarial rotations
and translations for a significant fraction of inputs with very
few queries.

Combining Spatial and /..-Bounded Perturbations
Table 1 shows that models trained to be robust to /., per-
turbations do not achieve higher robustness to spatial per-
turbations. This provides evidence that the two families of
perturbation are orthogonal to each other. We further inves-
tigate this possibility by considering a combined adversary
that utilizes /., bounded perturbations on top of rotations
and translations. The results are shown in Figure 13. We
indeed observe that these combined attacks reduce classifi-
cation accuracy in an (approximately) additive manner.

5.3. Evaluating Our Defense Methods.

As we see in Table 1, training with a worst-of-10 adversary
significantly increases the spatial robustness of the model,
also compared to data augmentation with random transfor-
mations. We conjecture that using more reliable methods
to compute the worst-case transformations will further im-
prove these results. Unfortunately, increasing the number
of random transformations per training example quickly

becomes computationally expensive. And as pointed out
above, current first-order methods also appear to be insuffi-
cient for finding worst-case transformations efficiently.

Our results for majority-based inference are presented in
Table 5 of Appendix A. By combining these two defenses,
we improve the worst-case performance of the models from
26% t0 98% on MNIST, from 3% to 82% on CIFAR10, and
from 31% to 56% on ImageNet (Top 1).

6. Conclusions

We examined the robustness of state-of-the-art image clas-
sifiers to translations and rotations. We observed that even
a small number of randomly chosen perturbations of the
input are sufficient to considerably degrade the classifier’s
performance.

The fact that common neural networks are vulnerable to
simple and naturally occurring spatial transformations (and
that these transformations can be found easily from just
a few random tries) indicates that adversarial robustness
should be a concern not only in a fully worst-case security
setting. We conjecture that additional techniques need to be
incorporated in the architecture and training procedures of
modern classifiers to achieve worst-case spatial robustness.
Also, our results underline the need to consider broader
notions of similarity than only pixel-wise distances when
studying adversarial misclassification attacks. In particular,
we view combining the pixel-wise distances with rotations
and translations as a next step towards the “right” notion of
similarity in the context of images.
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