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Abstract

The study of adversarial robustness has so far

largely focused on perturbations bound in ℓp-

norms. However, state-of-the-art models turn

out to be also vulnerable to other, more natural

classes of perturbations such as translations and

rotations. In this work, we thoroughly investigate

the vulnerability of neural network–based clas-

sifiers to rotations and translations. While data

augmentation offers relatively small robustness,

we use ideas from robust optimization and test-

time input aggregation to significantly improve

robustness. Finally we find that, in contrast to the

ℓp-norm case, first-order methods cannot reliably

find worst-case perturbations. This highlights spa-

tial robustness as a fundamentally different setting

requiring additional study.

1. Introduction

Neural networks are now widely embraced as dominant

solutions in computer vision (Krizhevsky et al., 2012; He

et al., 2016), speech recognition (Graves et al., 2013), and

natural language processing (Collobert & Weston, 2008).

While their accuracy scores often match (and sometimes go

beyond) human-level performance on key benchmarks (He

et al., 2015; Taigman et al., 2014), we still do not understand

how robust neural networks are. A prominent issue in this

context is the existence of so-called adversarial examples,

i.e., inputs that are almost indistinguishable from natural

data to a human but cause state-of-the-art classifiers to make

incorrect predictions with high confidence (Szegedy et al.,

2013; Goodfellow et al., 2014). This raises concerns about

the use of neural networks in contexts where reliability,

dependability, and security are important desiderata.
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There is a long line of work on methods for constructing

adversarial perturbations in various settings (Szegedy et al.,

2013; Goodfellow et al., 2014; Kurakin et al., 2016a;b;

Sharif et al., 2016; Moosavi-Dezfooli et al., 2016; Carlini

& Wagner, 2016; Papernot et al., 2017; Madry et al., 2017;

Athalye et al., 2017). However, these methods are quite so-

phisticated, and, since they often rely on having fine-tuned

control over a large number of input pixels or audio samples,

end up creating fairly contrived perturbations. As such, one

may suspect that adversarial examples constitute a problem

only in the presence of a truly malicious attacker and are

unlikely to arise in more benign environments. However,

recent work has shown that neural network–based vision

classifiers are vulnerable to input images that have been

spatially transformed through small rotations, translations,

shearing, scaling, and other natural transformations (Fawzi

& Frossard, 2015; Kanbak et al., 2017; Xiao et al., 2018;

Tramèr & Boneh, 2017). The vulnerability of neural net-

works to such transformations raises a natural question:

How can we build classifiers robust to such naturally

occurring transformations?

We address this question by first performing an in-depth

study of neural network–based classifier robustness to two

basic image transformations: translations and rotations.

While these transformations appear natural to a human,

we show that small rotations and translations alone can

significantly degrade accuracy. These transformations are

particularly relevant for computer vision applications since

real-world objects do not always appear centered and can

often be significantly rotated.

1.1. Our Methodology and Results

We start with standard, near state-of-the-art image classifiers

for the MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky

& Hinton, 2009), and ImageNet (Russakovsky et al., 2015)

datasets. We find that small rotations and translations con-

sistently and significantly degrade accuracy across these

classifiers in a number of settings, as shown in Figure 1.

We then perform a thorough analysis comparing the abilities

of various adversaries – first-order, random, and grid–based

– to fool models with small rotations and translations. Our

results suggest that classifiers are even more brittle than
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2. Related Work

The fact that small rotations and translation can fool neu-

ral networks on MNIST and CIFAR10 was first observed

in (Fawzi & Frossard, 2015). They compute the minimum

transformation required to fool the model and use it as a

measure for a quantitative comparison of different architec-

tures and training procedures. The main difference to our

work is that we focus on the optimization aspect of the prob-

lem. We show that a few random queries usually suffice for

a successful attack, while first-order methods are ineffective.

Moreover, we go beyond standard data augmentation and

evaluate the effectiveness of natural baseline defenses.

The concurrent work of (Kanbak et al., 2017) proposes a

different first-order method to evaluate the robustness of

classifiers based on geodesic distances on a manifold. This

metric is harder to interpret than our parametrized attack

space. Moreover, given our findings on the non-concavity

of the optimization landscape, it is unclear how close their

method is to the ground truth (exhaustive enumeration).

While they perform a limited study of defenses (adversarial

fine-tuning) using their method, it appears to be less effec-

tive than our baseline worst-of-10 training. We attribute this

difference to the inherent obstacles first-order methods face

in this optimization landscape.

Recently, (Xiao et al., 2018) and (Tramèr & Boneh, 2017)

observed independently that it is possible to use various

spatial transformations to construct adversarial examples

for naturally and adversarially trained models. The main

difference from our work is that we show even very simple

transformations (translations and rotations) are sufficient

to break a variety of classifiers, while the transformations

employed in (Xiao et al., 2018) and (Tramèr & Boneh, 2017)

are more involved. The transformation in (Xiao et al., 2018)

is based on performing a displacement of individual pixels

in the original image constrained to be globally smooth and

then optimized for misclassification probability. (Tramèr &

Boneh, 2017) consider an ℓ∞-bounded pixel-wise perturba-

tion of a version of the original image that has been slightly

rotated and in which a few random pixels have been flipped.

Both of these methods require direct access to the attacked

model (or a surrogate) to compute (or at least estimate) the

gradient of the loss function with respect to the model’s

input. In contrast, our attacks can be implemented using

only a small number of random, non-adaptive inputs.

3. Adversarial Rotations and Translations

Recall that in the context of image classification, an adver-

sarial example for a given input image x and a classifier

C is an image x′ that satisfies two properties: (i) on the

one hand, the adversarial example x′ causes the classifier

C to output a different label on x′ than on x, i.e., we have

C(x) 6= C(x′). (ii) On the other hand, the adversarial

example x′ is “visually similar” to x.

Clearly, the notion of visual similarity is not precisely de-

fined here. In fact, providing a precise and rigorous defini-

tion is extraordinarily difficult as it would require formally

capturing the notion of human perception. Consequently,

previous work largely settled on the assumption that x′ is a

valid adversarial example for x if and only if ‖x−x′‖p ≤ ε

for some p ∈ [0,∞] and ε small enough. This convention is

based on the fact that two images are indeed visually similar

when they are close enough in some ℓp norm. However,

the converse is not necessarily true. A small rotation or

translation of an image usually appears visually similar to

a human, yet can lead to a large change when measured in

an ℓp norm. We aim to expand the range of similarity mea-

sures considered in the adversarial examples literature by

investigating robustness to small rotations and translations.

Attack methods. Our first goal is to develop sufficiently

strong methods for generating adversarial rotations and

translations. In the context of pixel-wise ℓp perturbations,

the most successful approach for constructing adversarial

examples so far has been to employ optimization methods

on a suitable loss function (Szegedy et al., 2013; Goodfel-

low et al., 2014; Carlini & Wagner, 2016). Following this

approach, we parametrize our attack method with a set of

tunable parameters and then optimize over these parameters.

First, we define the exact range of attacks we want to opti-

mize over. For the case of rotation and translation attacks,

we wish to find parameters (δu, δv, θ) such that rotating

the original image by θ degrees around the center and then

translating it by (δu, δv) pixels causes the classifier to make

a wrong prediction. Formally, the pixel at position (u, v) is

moved to the following position (assuming the point (0, 0)
is the center of the image):

[

u′

v′

]

=

[

cos θ − sin θ
sin θ cos θ

]

·

[

u

v

]

+

[

δu

δv

]

.

We implement this transformation in a differentiable man-

ner using the spatial transformer blocks of (Jaderberg et al.,

2015) 1. In order to handle pixels that are mapped to non-

integer coordinates, the transformer units include a differen-

tiable bilinear interpolation routine. Since our loss function

is differentiable with respect to the input and the transforma-

tion is in turn differentiable with respect to its parameters,

we can obtain gradients of the model’s loss function w.r.t.

the perturbation parameters. This enables us to apply a

first-order optimization method to our problem.

By defining the spatial transformation for some x as

1We used the open source implementation found here:
https://github.com/tensorflow/models/tree/

master/research/transformer.
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T (x; δu, δv, θ), we construct an adversarial perturbation

for x by solving the problem

max
δu,δv,θ

L(x′, y), for x′ = T (x; δu, δv, θ) , (1)

where L is the loss function of the neural network2, and y is

the correct label for x.

We compute the perturbation from Equation 1 in three dis-

tinct ways:

• First-Order Method (FO): Starting from a random

choice of parameters, we iteratively take steps in the

direction of the gradient of the loss function. This is

the direction that locally maximizes the loss of the clas-

sifier (as a surrogate for misclassification probability).

Since the maximization problem we are optimizing is

non-concave, there are no guarantees for global opti-

mality, but the hope is that the local maximum solution

closely approximates the global optimum. Note that

unlike the ℓp-norm case, we are not optimizing in the

pixel space but in the latent space of rotation and trans-

lation parameters.

• Grid Search: We discretize the parameter space and

exhaustively examine every possible parametrization

of the attack to find one that causes the classifier to give

a wrong prediction (if such a parametrization exists).

Since our parameter space is low-dimensional enough,

this method is computationally feasible (in contrast to

a grid search for ℓp-based adversaries).

• Worst-of-k: We randomly sample k different choices

of attack parameters and choose the one on which the

model performs worst. As we increase k, this attack

interpolates between a random choice and grid search.

We remark that while a first-order attack requires full knowl-

edge of the model to compute the gradient of the loss with

respect to the input, the other two attacks do not. They only

require the outputs corresponding to chosen inputs, which

can be done with only query access to the target model.

4. Improving Invariance to Spatial

Transformations

As we will see in Section 5, augmenting the training set

with random rotations and translations does improve the ro-

bustness of the model against such random transformations.

However, data augmentation does not significantly improve

the robustness against worst-case attacks and sometimes

2The loss L of the classifier is a function from images to real
numbers that expresses the performance of the network on the
particular example x (e.g., the cross-entropy between predicted
and correct distributions).

leads to a drop in accuracy on unperturbed images. To ad-

dress these issues, we explore two simple baselines that turn

out to be surprisingly effective.

Robust Optimization. Instead of performing standard

empirical risk minimization to train the classification model,

we utilize ideas from robust optimization. Robust optimiza-

tion has a rich history (Ben-Tal et al., 2009) and has recently

been applied successfully in the context of defending neural

networks against adversarial examples (Madry et al., 2017;

Sinha et al., 2017; Raghunathan et al., 2018; Kolter & Wong,

2017). The main barrier to applying robust optimization for

spatial transformations is the lack of an efficient procedure

to compute the worst-case perturbation of a given exam-

ple. Performing a grid search (as described in Section 3)

is prohibitive as this would increase the training time by a

factor close to the grid size, which can easily be a factor

100 or 1,000. Moreover, the non-convexity of the loss land-

scape prevents potentially more efficient first-order methods

from discovering (approximately) worst-case transforma-

tions (see Section 5 for details).

Given that we cannot fully optimize over the space of trans-

lations and rotations, we instead use a coarse approximation

provided by the worst-of-10 adversary (as described in Sec-

tion 3). So each time we use an example during training, we

first sample 10 transformations of the example uniformly

at random from the space of allowed transformations. We

then evaluate the model on each of these transformations

and train on the one perturbation with the highest loss. This

corresponds to approximately minimizing a min-max for-

mulation of robust accuracy similar to (Madry et al., 2017).

Training against such an adversary increases the overall time

by a factor of roughly six.3

Aggregating Random Transformations. As Section 5

shows, the accuracy against a random transformation is sig-

nificantly higher than the accuracy against the worst trans-

formation in the allowed attack space. This motivates the

following inference procedure: compute a (typically small)

number of random transformations of the input image and

output the label that occurs the most in the resulting set of

predictions. We constrain these random transformations to

be within 5% of the input image size in each translation

direction and up to 15◦ of rotation. 4 The training proce-

dure and model can remain unchanged while the inference

time is increased by a small factor (equal to the number of

transformations we evaluate on).

3We need to perform 10 forward passes and one backwards
pass instead of one forward and one backward pass required for
standard training.

4Note that if an adversary rotates an image by 30◦ (a valid
attack in our threat model), we may end up evaluating the image
on rotations of up to 45◦.
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Table 2. Comparison of attack methods across datasets and models. Worst-of-10 is very effective and significantly reduces the model

accuracy despite the limited interaction. The first-order (FO) adversary performs poorly, despite the large number of steps allowed. We

compare standard training to Augmentation (±3px,±30◦). For the full table, see Figure 3 of Appendix A.

MNIST CIFAR-10 ImageNet

Standard Aug. Standard Aug. Standard Aug.

Natural 99.31% 99.53% 92.62% 90.02% 75.96% 65.96%

Worst-of-10 73.32% 98.33% 20.13% 79.92% 47.83% 50.62%

First-Order 79.84% 98.78% 62.69% 85.92% 63.12% 66.05%

Grid 26.02% 95.79% 2.80% 58.92% 31.42% 32.90%

to make non-concavity a crucial obstacle. Even for MNIST,

where we observe fewer local maxima, the large flat regions

prevent first-order methods from finding transformations of

high loss.

Relation to Black-Box Attacks. Given its limited inter-

action with the model, the worst-of-10 adversary achieves a

significant reduction in classification accuracy. It performs

only 10 random, non-adaptive queries to the model and is

still able to find adversarial examples for a large fraction

of the inputs (see Table 2). The low query complexity is

an important baseline for black-box attacks on neural net-

works, which recently gained significant interest (Papernot

et al., 2017; Chen et al., 2017; Bhagoji et al., 2017; Ilyas

et al., 2017). Black-box attacks rely only function evalua-

tions of the target classifier, without additional information

such as gradients. The main challenge is to construct an

adversarial example from a small number of queries. Our

results show that it is possible to find adversarial rotations

and translations for a significant fraction of inputs with very

few queries.

Combining Spatial and ℓ∞-Bounded Perturbations

Table 1 shows that models trained to be robust to ℓ∞ per-

turbations do not achieve higher robustness to spatial per-

turbations. This provides evidence that the two families of

perturbation are orthogonal to each other. We further inves-

tigate this possibility by considering a combined adversary

that utilizes ℓ∞ bounded perturbations on top of rotations

and translations. The results are shown in Figure 13. We

indeed observe that these combined attacks reduce classifi-

cation accuracy in an (approximately) additive manner.

5.3. Evaluating Our Defense Methods.

As we see in Table 1, training with a worst-of-10 adversary

significantly increases the spatial robustness of the model,

also compared to data augmentation with random transfor-

mations. We conjecture that using more reliable methods

to compute the worst-case transformations will further im-

prove these results. Unfortunately, increasing the number

of random transformations per training example quickly

becomes computationally expensive. And as pointed out

above, current first-order methods also appear to be insuffi-

cient for finding worst-case transformations efficiently.

Our results for majority-based inference are presented in

Table 5 of Appendix A. By combining these two defenses,

we improve the worst-case performance of the models from

26% to 98% on MNIST, from 3% to 82% on CIFAR10, and

from 31% to 56% on ImageNet (Top 1).

6. Conclusions

We examined the robustness of state-of-the-art image clas-

sifiers to translations and rotations. We observed that even

a small number of randomly chosen perturbations of the

input are sufficient to considerably degrade the classifier’s

performance.

The fact that common neural networks are vulnerable to

simple and naturally occurring spatial transformations (and

that these transformations can be found easily from just

a few random tries) indicates that adversarial robustness

should be a concern not only in a fully worst-case security

setting. We conjecture that additional techniques need to be

incorporated in the architecture and training procedures of

modern classifiers to achieve worst-case spatial robustness.

Also, our results underline the need to consider broader

notions of similarity than only pixel-wise distances when

studying adversarial misclassification attacks. In particular,

we view combining the pixel-wise distances with rotations

and translations as a next step towards the “right” notion of

similarity in the context of images.
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