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Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

1 Introduction

Over the last decade, deep learning has made impressive progress on a variety of notoriously
difficult tasks in computer vision [16, 7], speech recognition [5], machine translation [29], and
game-playing [18, 25]. This progress hinged on a number of major advances in terms of hardware,
datasets [15, 23], and algorithmic and architectural techniques [27, 12, 20, 28]. One of the most
prominent examples of such advances was batch normalization (BatchNorm) [10].

At a high level, BatchNorm is a technique that aims to improve the training of neural networks by
stabilizing the distributions of layer inputs. This is achieved by introducing additional network layers
that control the first two moments (mean and variance) of these distributions.

The practical success of BatchNorm is indisputable. By now, it is used by default in most deep learning
models, both in research (more than 6,000 citations) and real-world settings. Somewhat shockingly,
however, despite its prominence, we still have a poor understanding of what the effectiveness of
BatchNorm is stemming from. In fact, there are now a number of works that provide alternatives to
BatchNorm [1, 3, 13, 31], but none of them seem to bring us any closer to understanding this issue.
(A similar point was also raised recently in [22].)

Currently, the most widely accepted explanation of BatchNorm’s success, as well as its original
motivation, relates to so-called internal covariate shift (ICS). Informally, ICS refers to the change in
the distribution of layer inputs caused by updates to the preceding layers. It is conjectured that such
continual change negatively impacts training. The goal of BatchNorm was to reduce ICS and thus
remedy this effect.

Even though this explanation is widely accepted, we seem to have little concrete evidence supporting
it. In particular, we still do not understand the link between ICS and training performance. The chief
goal of this paper is to address all these shortcomings. Our exploration lead to somewhat startling
discoveries.

∗Equal contribution.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.











an even stronger effect at play. Namely, BatchNorm’s reparametrization makes gradients of the loss
more Lipschitz too. In other words, the loss exhibits a significantly better “effective” β-smoothness3.

These smoothening effects impact the performance of the training algorithm in a major way. To
understand why, recall that in a vanilla (non-BatchNorm), deep neural network, the loss function
is not only non-convex but also tends to have a large number of “kinks”, flat regions, and sharp
minima [17]. This makes gradient descent–based training algorithms unstable, e.g., due to exploding
or vanishing gradients, and thus highly sensitive to the choice of the learning rate and initialization.

Now, the key implication of BatchNorm’s reparametrization is that it makes the gradients more
reliable and predictive. After all, improved Lipschitzness of the gradients gives us confidence that
when we take a larger step in a direction of a computed gradient, this gradient direction remains a
fairly accurate estimate of the actual gradient direction after taking that step. It thus enables any
(gradient–based) training algorithm to take larger steps without the danger of running into a sudden
change of the loss landscape such as flat region (corresponding to vanishing gradient) or sharp local
minimum (causing exploding gradients). This, in turn, enables us to use a broader range of (and thus
larger) learning rates (see Figure 10 in Appendix B) and, in general, makes the training significantly
faster and less sensitive to hyperparameter choices. (This also illustrates how the properties of
BatchNorm that we discussed earlier can be viewed as a manifestation of this smoothening effect.)

3.2 Exploration of the optimization landscape

To demonstrate the impact of BatchNorm on the stability of the loss itself, i.e., its Lipschitzness, for
each given step in the training process, we compute the gradient of the loss at that step and measure
how the loss changes as we move in that direction – see Figure 4(a). We see that, in contrast to the
case when BatchNorm is in use, the loss of a vanilla, i.e., non-BatchNorm, network has a very wide
range of values along the direction of the gradient, especially in the initial phases of training. (In the
later stages, the network is already close to convergence.)

Similarly, to illustrate the increase in the stability and predictiveness of the gradients, we make
analogous measurements for the ℓ2 distance between the loss gradient at a given point of the training
and the gradients corresponding to different points along the original gradient direction. Figure 4(b)
shows a significant difference (close to two orders of magnitude) in such gradient predictiveness
between the vanilla and BatchNorm networks, especially early in training.

To further demonstrate the effect of BatchNorm on the stability/Lipschitzness of the gradients of the
loss, we plot in Figure 4(c) the “effective” β-smoothness of the vanilla and BatchNorm networks
throughout the training. (“Effective” refers here to measuring the change of gradients as we move in
the direction of the gradients.). Again, we observe consistent differences between these networks.
We complement the above examination by considering linear deep networks: as shown in Figures 9
and 12 in Appendix B, the BatchNorm smoothening effect is present there as well.

Finally, we emphasize that even though our explorations were focused on the behavior of the loss
along the gradient directions (as they are the crucial ones from the point of view of the training
process), the loss behaves in a similar way when we examine other (random) directions too.

3.3 Is BatchNorm the best (only?) way to smoothen the landscape?

Given this newly acquired understanding of BatchNorm and the roots of its effectiveness, it is natural
to wonder: Is this smoothening effect a unique feature of BatchNorm? Or could a similar effect be
achieved using some other normalization schemes?

To answer this question, we study a few natural data statistics-based normalization strategies. Specifi-
cally, we study schemes that fix the first order moment of the activations, as BatchNorm does, and then
normalizes them by the average of their ℓp-norm (before shifting the mean), for p = 1, 2,∞. Note
that for these normalization schemes, the distributions of layer inputs are no longer Gaussian-like
(see Figure 14). Hence, normalization with such ℓp-norm does not guarantee anymore any control
over the distribution moments nor distributional stability.

3Recall that f is β-smooth if its gradient is β-Lipschitz. It is worth noting that, due to the existence of
non-linearities, one should not expect the β-smoothness to be bounded in an absolute, global sense.
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landscape exhibits a better Lipschitz constant. Moreover, the Lipschitz constant is significantly

reduced whenever the activations ŷj correlate with the gradient ∇ŷj
L̂ or the mean of the gradient

deviates from 0. Note that this reduction is additive, and has effect even when the scaling of BN is
identical to the original layer scaling (i.e. even when σj = γ).

Theorem 4.1 (The effect of BatchNorm on the Lipschitzness of the loss). For a BatchNorm network

with loss L̂ and an identical non-BN network with (identical) loss L,
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First, note that 〈1, ∂L/∂y〉2 grows quadratically in the dimension, so the middle term above is
significant. Furthermore, the final inner product term is expected to be bounded away from zero, as
the gradient with respect to a variable is rarely uncorrelated to the variable itself. In addition to the
additive reduction, σj tends to be large in practice (cf. Appendix Figure 8), and thus the scaling by γ

σ
may contribute to the relative “flatness" we see in the effective Lipschitz constant.

We now turn our attention to the second-order properties of the landscape. We show that when a
BatchNorm layer is added, the quadratic form of the loss Hessian with respect to the activations in the
gradient direction, is both rescaled by the input variance (inducing resilience to mini-batch variance),
and decreased by an additive factor (increasing smoothness). This term captures the second order
term of the Taylor expansion of the gradient around the current point. Therefore, reducing this term
implies that the first order term (the gradient) is more predictive.

Theorem 4.2 (The effect of BN to smoothness). Let ĝj = ∇yj
L and Hjj =
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Note that if the quadratic forms involving the Hessian and the inner product 〈ŷj , ĝj〉 are non-negative
(both fairly mild assumptions), the theorem implies more predictive gradients. The Hessian is positive
semi-definite (PSD) if the loss is locally convex which is true for the case of deep networks with
piecewise-linear activation functions and a convex loss at the final layer (e.g. standard softmax
cross-entropy loss or other common losses). The condition 〈ŷj , ĝj〉 > 0 holds as long as the negative
gradient ĝj is pointing towards the minimum of the loss (w.r.t. normalized activations). Overall, as
long as these two conditions hold, the steps taken by the BatchNorm network are more predictive
than those of the standard network (similarly to what we observed experimentally).

Note that our results stem from the reparametrization of the problem and not a simple scaling.

Observation 4.3 (BatchNorm does more than rescaling). For any input data X and network configu-
ration W , there exists a BN configuration (W,γ, β) that results in the same activations yj , and where
γ = σj . Consequently, all of the minima of the normal landscape are preserved in the BN landscape.

Our theoretical analysis so far studied the optimization landscape of the loss w.r.t. the normalized
activations. We will now translate these bounds to a favorable worst-case bound on the landscape
with respect to layer weights. Note that a (near exact) analogue of this theorem for minimax gradient
predictiveness appears in Theorem C.1 of Appendix C.

Theorem 4.4 (Minimax bound on weight-space Lipschitzness). For a BatchNorm network with loss

L̂ and an identical non-BN network (with identical loss L), if
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Finally, in addition to a desirable landscape, we find that BN also offers an advantage in initialization:
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Lemma 4.5 (BatchNorm leads to a favourable initialization). Let W ∗ and Ŵ ∗ be the set of local
optima for the weights in the normal and BN networks, respectively. For any initialization W0
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,

if 〈W0,W
∗〉 > 0, where Ŵ ∗ and W ∗ are closest optima for BN and standard network, respectively.

5 Related work

A number of normalization schemes have been proposed as alternatives to BatchNorm, including
normalization over layers [1], subsets of the batch [31], or across image dimensions [30]. Weight
Normalization [24] follows a complementary approach normalizing the weights instead of the
activations. Finally, ELU [3] and SELU [13] are two proposed examples of non-linearities that have
a progressively decaying slope instead of a sharp saturation and can be used as an alternative for
BatchNorm. These techniques offer an improvement over standard training that is comparable to that
of BatchNorm but do not attempt to explain BatchNorm’s success.

Additionally, work on topics related to DNN optimization has uncovered a number of other Batch-
Norm benefits. Li et al. [9] observe that networks with BatchNorm tend to have optimization
trajectories that rely less on the parameter initialization. Balduzzi et al. [2] observe that models
without BatchNorm tend to suffer from small correlation between different gradient coordinates
and/or unit activations. They report that this behavior is profound in deeper models and argue how it
constitutes an obstacle to DNN optimization. Morcos et al. [19] focus on the generalization properties
of DNN. They observe that the use of BatchNorm results in models that rely less on single directions
in the activation space, which they find to be connected to the generalization properties of the model.

Recent work [14] identifies simple, concrete settings where a variant of training with BatchNorm
provably improves over standard training algorithms. The main idea is that decoupling the length and
direction of the weights (as done in BatchNorm and Weight Normalization [24]) can be exploited to
a large extent. By designing algorithms that optimize these parameters separately, with (different)
adaptive step sizes, one can achieve significantly faster convergence rates for these problems.

6 Conclusions

In this work, we have investigated the roots of BatchNorm’s effectiveness as a technique for training
deep neural networks. We find that the widely believed connection between the performance of
BatchNorm and the internal covariate shift is tenuous, at best. In particular, we demonstrate that
existence of internal covariate shift, at least when viewed from the – generally adopted – distributional
stability perspective, is not a good predictor of training performance. Also, we show that, from an
optimization viewpoint, BatchNorm might not be even reducing that shift.

Instead, we identify a key effect that BatchNorm has on the training process: it reparametrizes the
underlying optimization problem to make it more stable (in the sense of loss Lipschitzness) and
smooth (in the sense of “effective” β-smoothness of the loss). This implies that the gradients used in
training are more predictive and well-behaved, which enables faster and more effective optimization.
This phenomena also explains and subsumes some of the other previously observed benefits of
BatchNorm, such as robustness to hyperparameter setting and avoiding gradient explosion/vanishing.
We also show that this smoothing effect is not unique to BatchNorm. In fact, several other natural
normalization strategies have similar impact and result in a comparable performance gain.

We believe that these findings not only challenge the conventional wisdom about BatchNorm but
also bring us closer to a better understanding of this technique. We also view these results as an
opportunity to encourage the community to pursue a more systematic investigation of the algorithmic
toolkit of deep learning and the underpinnings of its effectiveness.

Finally, our focus here was on the impact of BatchNorm on training but our findings might also shed
some light on the BatchNorm’s tendency to improve generalization. Specifically, it could be the case
that the smoothening effect of BatchNorm’s reparametrization encourages the training process to
converge to more flat minima. Such minima are believed to facilitate better generalization [8, 11].
We hope that future work will investigate this intriguing possibility.
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supported in part by an Alfred P. Sloan Research Fellowship, a Google Research Award, and the NSF
grants CCF-1553428 and CNS-1815221.

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[2] David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? arXiv preprint
arXiv:1702.08591, 2017.

[3] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[4] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256, 2010.

[5] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent
neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international conference
on, pages 6645–6649. IEEE, 2013.

[6] Moritz Hardt and Tengyu Ma. Identity matters in deep learning. arXiv preprint arXiv:1611.04231, 2016.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

[9] Daniel Jiwoong Im, Michael Tao, and Kristin Branson. An empirical analysis of deep network loss surfaces.
arXiv preprint arXiv:1612.04010, 2016.

[10] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[11] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[13] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural
networks. In Advances in Neural Information Processing Systems, pages 972–981, 2017.

[14] Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Ming Zhou, Klaus Neymeyr, and Thomas Hofmann.
Towards a theoretical understanding of batch normalization. arXiv preprint arXiv:1805.10694, 2018.

[15] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[17] Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets. arXiv
preprint arXiv:1712.09913, 2017.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529, 2015.

[19] Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and Matthew Botvinick. On the importance of single
directions for generalization. arXiv preprint arXiv:1803.06959, 2018.

[20] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), 2010.

10



[21] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2013.

[22] Ali Rahimi and Ben Recht. Back when we were kids. In NIPS Test-of-Time Award Talk, 2017.

[23] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3), 2015.

[24] Tim Salimans and Diederik P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems, 2016.

[25] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

[26] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[27] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research,
15(1), 2014.

[28] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization and
momentum in deep learning. In International conference on machine learning, 2013.

[29] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In
Advances in neural information processing systems, pages 3104–3112, 2014.

[30] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[31] Yuxin Wu and Kaiming He. Group normalization. arXiv preprint arXiv:1803.08494, 2018.

11


