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ABSTRACT

We study the problem of generating adversarial examples in a black-box setting in
which only loss-oracle access to a model is available. We introduce a framework
that conceptually unifies much of the existing work on black-box attacks, and we
demonstrate that the current state-of-the-art methods are optimal in a natural sense.
Despite this optimality, we show how to improve black-box attacks by bringing a
new element into the problem: gradient priors. We give a bandit optimization-based
algorithm that allows us to seamlessly integrate any such priors, and we explicitly
identify and incorporate two examples. The resulting methods use two to four
times fewer queries and fail two to five times less than the current state-of-the-art. 1

1 INTRODUCTION

Recent research has shown that neural networks exhibit significant vulnerability to adversarial exam-
ples, or slightly perturbed inputs designed to fool the network prediction. This vulnerability is present
in a wide range of settings, from situations in which inputs are fed directly to classifiers (Szegedy et al.,
2013; Carlini et al., 2016) to highly variable real-world environments (Kurakin et al., 2016; Athalye
et al., 2017). Researchers have developed a host of methods to construct such attacks (Goodfellow
et al., 2014; Moosavi-Dezfooli et al., 2015; Carlini & Wagner, 2017; Madry et al., 2017), most of
which correspond to first order (i.e., gradient based) methods. These attacks turn out to be highly
effective: in many cases, only a few gradient steps suffice to construct an adversarial perturbation.

A significant shortcoming of many of these attacks, however, is that they fundamentally rely on the
white-box threat model. That is, they crucially require direct access to the gradient of the classification
loss of the attacked network. In many real-world situations, expecting this kind of complete access is
not realistic. In such settings, an attacker can only issue classification queries to the targeted network,
which corresponds to a more restrictive black box threat model.

Recent work (Chen et al., 2017; Bhagoji et al., 2017; Ilyas et al., 2017) provides a number of
attacks for this threat model. Chen et al. (2017) show how to use a basic primitive of zeroth
order optimization, the finite difference method, to estimate the gradient from classification queries
and then use it (in addition to a number of optimizations) to mount a gradient based attack. The
method indeed successfully constructs adversarial perturbations. It comes, however, at the cost of
introducing a significant overhead in terms of the number of queries needed. For instance, attacking an
ImageNet (Russakovsky et al., 2015) classifier requires hundreds of thousands of queries. Subsequent
work (Ilyas et al., 2017) improves this dependence significantly, but still falls short of fully mitigating
this issue (see Section 4.1 for a more detailed analysis).

1.1 OUR CONTRIBUTIONS

We revisit zeroth-order optimization in the context of adversarial example generation, both from
an empirical and theoretical perspective. We propose a new approach for generating black-box
adversarial examples, using bandit optimization in order to exploit prior information about the
gradient, which we show is necessary to break through the optimality of current methods. We

1The code for reproducing our work is available at https://git.io/fAjOJ.
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evaluate our approach on the task of generating black-box adversarial examples, where the methods
obtained from integrating two example priors significantly outperform state-of-the-art approaches.

Concretely, in this work:

1. We formalize the gradient estimation problem as the central problem in the context of
query-efficient black-box attacks. We then show how the resulting framework unifies the
previous attack methodology. We prove that the least squares method, a classic primitive in
signal processing, not only constitutes an optimal solution to the general gradient estimation
problem but also is essentially equivalent to the current-best black-box attack methods.

2. We demonstrate that, despite this seeming optimality of these methods, we can still improve
upon them by exploiting an aspect of the problem that has been not considered previously:
the priors we have on the distribution of the gradient. We identify two example classes of
such priors, and show that they indeed lead to better predictors of the gradient.

3. Finally, we develop a bandit optimization framework for generating black-box adversarial
examples which allows for the seamless integration of priors. To demonstrate its effective-
ness, we show that leveraging the two aforementioned priors yields black-box attacks that
are 2-5 times more query efficient and less failure-prone than the state of the art.

Table 1: Summary of effectiveness of ℓ2 and ℓ∞ ImageNet attacks on Inception v3 using NES,
bandits with time prior (BanditsT ), and bandits with time and data-dependent priors (BanditsTD).
Note that in the first column, the average number of queries is calculated only over successful attacks,
and we enforce a query limit of 10,000 queries. For purposes of direct comparison, the last column
calculates the average number of queries used for only the images that NES (previous SOTA) was
successful on. Our most powerful attack uses 2-4 times fewer queries, and fails 2-5 times less often.

Attack
Avg. Queries Failure Rate Queries on NES Success

ℓ∞ ℓ2 ℓ∞ ℓ2 ℓ∞ ℓ2

NES 1735 2938 22.2% 34.4% 1735 2938
BanditsT 1781 2690 11.6% 30.4% 1214 2421

BanditsTD 1117 1858 4.6% 15.5% 703 999

2 BLACK-BOX ATTACKS AND THE GRADIENT ESTIMATION PROBLEM

Adversarial examples are natural inputs to a machine learning system that have been carefully
perturbed in order to induce misbehaviour of the system, under a constraint on the magnitude of the
pertubation (under some metric). For image classifiers, this misbehaviour can be either classification
as a specific class other than the original one (the targeted attack) or misclassification (the untargeted
attack). For simplicity and to make the presentation of the overarching framework focused, in this
paper we restrict our attention to the untargeted case. Both our algorithms and the whole framework
can be, however, easily adapted to the targeted setting. Also, we consider the most standard threat
model in which adversarial perturbations must have ℓp-norm, for some fixed p, less than some ǫp.

2.1 FIRST-ORDER ADVERSARIAL ATTACKS

Suppose that we have some classifier C(x) with a corresponding classification loss function L(x, y),
where x is some input and y its corresponding label. In order to generate a misclassified input from
some input-label pair (x, y), we want to find an adversarial example x′ which maximizes L(x′, y)
but still remains ǫp-close to the original input. We can thus formulate our adversarial attack problem
as the following constrained optimization task:

x′ = argmax
x′:‖x′−x‖p≤ǫp

L(x′, y)

First order methods tend to be very successful at solving the problem despite its non-convexity (Good-
fellow et al., 2014; Carlini & Wagner, 2017; Madry et al., 2017). A first order method used as the
backbone of some of the most powerful white-box adversarial attacks for ℓp bounded adversaries is
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projected gradient descent (PGD). This iterative method, given some input x and its correct label y,
computes a perturbed input xk by applying k steps of the following update (with x0 = x)

xl = ΠBp(x,ǫ)(xl−1 + ηsl) with sl = Π∂Bp(0,1)∇xL(xl−1, y) (1)

Here, ΠS is the projection onto the set S, Bp(x
′, ε′) is the ℓp ball of radius ε′ around x′, η is the step

size, and ∂U is the boundary of a set U . Also, as is standard in continuous optimization, we make
sl be the projection of the gradient∇xL(xl−1, y) at xl−1 onto the unit ℓp ball. This way we ensure
that sl corresponds to the unit ℓp-norm vector that has the largest inner product with∇xL(xl−1, y).
(Note that, in the case of the ℓ2-norm, sl is simply the normalized gradient but in the case of, e.g., the
ℓ∞-norm, sl corresponds to the sign vector, sgn (∇xL(xl−1, y)) of the gradient.)

So, intuitively, the PGD update perturbs the input in the direction that (locally) increases the loss the
most. Observe that due to the projection in (1), xk is always a valid perturbation of x, as desired.

2.2 BLACK-BOX ADVERSARIAL ATTACKS

The projected gradient descent (PGD) method described above is designed to be used in the context of
so-called white-box attacks. That is, in the setting where the adversary has full access to the gradient
∇xL(x, y) of the loss function of the attacked model. In many practical scenarios, however, this kind
of access is not available—in the corresponding, more realistic black-box setting, the adversary has
only access to an oracle that returns for a given input (x, y), only the value of the loss L(x, y).

One might expect that PGD is thus not useful in such black-box setting. It turns out, however, that this
intuition is incorrect. Specifically, one can still estimate the gradient using only such value queries.
(In fact, this kind of estimator is the backbone of so-called zeroth-order optimization frameworks
(Spall, 2005).) The most canonical primitive in this context is the finite difference method. This
method estimates the directional derivative Dvf(x) = 〈∇xf(x), v〉 of some function f at a point x
in the direction of a vector v as

Dvf(x) = 〈∇xf(x), v〉 ≈ (f(x+ δv)− f(x)) /δ. (2)

Here, the step size δ > 0 governs the quality of the gradient estimate. Smaller δ gives more accurate
estimates but also decreases reliability, due to precision and noise issues. Consequently, in practice, δ
is a tunable parameter. Now, we can just use finite differences to construct an estimate of the gradient.
To this end, one can find the d components of the gradient by estimating the inner products of the
gradient with all the standard basis vectors e1, . . . , ed:

∇̂xL(x, y) =

d∑

k=1

ek (L(x+ δek, y)− L(x, y)) /δ ≈
d∑

k=1

ek〈∇xL(x, y), ek〉 (3)

We can then easily implement the PGD attack (c.f. (1)) using this estimator:

xl = ΠBp(x,ǫ)(xl−1 + ηŝl) with ŝl = Π∂Bp(0,1)∇̂xL(xl−1, y) (4)

Indeed, Chen et al. (2017) were the first to use finite differences methods in this basic form to power
PGD–based adversarial attack in the black-box setting. This basic attack was shown to be successful
but, since its query complexity is proportional to the dimension, its resulting query complexity was
prohibitively large. For example, the Inception v3 (Szegedy et al., 2015) classifier on the ImageNet
dataset has dimensionality d=268,203 and thus this method would require 268,204 queries. (It is
worth noting, however, that Chen et al. (2017) developed additional methods to, at least partially,
reduce this query complexity.)

2.3 BLACK-BOX ATTACKS WITH IMPERFECT GRADIENT ESTIMATORS

In the light of the above discussion, one can wonder if the algorithm (4) can be made more query-
efficient. A natural idea here would be to avoid fully estimating the gradient and rely instead only
on its imperfect estimators. This gives rise to the following question: How accurate of an gradient
estimate is necessary to execute a successful PGD attack?

We examine this question first in the simplest possible setting: one in which we only take a single
PGD step (i.e., the case of k = 1). Previous work (Goodfellow et al., 2014) indicates that such an
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problem posed in (5) by casting it as an undetermined linear regression problem of the form Ag∗ = b,
where we can choose the matrix A (the rows of A correspond to inner product queries with g∗). Then,
it obtains the solution ĝ to the regression problem by solving:

min
ĝ
‖ĝ‖2 s.t. Aĝ = y. (6)

A reasonable choice for A (via Johnson & Lindenstrauss (1984) and related results) is the distance-
preserving random Gaussian projection matrix, i.e. Aij normally distributed.

The resulting algorithm turns out to yield solutions that are approximately those given by Natural
Evolution Strategies (NES), which (Ilyas et al., 2017) previously applied to black-box attacks. In
particular, in Appendix A, we prove the following theorem.

Theorem 1 (NES and Least Squares equivalence). Let x̂NES be the Gaussian k-query NES estimator
of a d-dimensional gradient g and let x̂LSQ be the minimal-norm k-query least-squares estimator of
g. For any p > 0, with probability at least 1− p we have that

〈x̂LSQ, g〉 − 〈x̂NES , g〉 ≤ O

(√
(k/d) · log3 ((k/p))

)
||g||2 .

Note that when we work in the underdetermined setting, i.e., when k ≪ d (which is the setting we
are interested in), the right hand side bound becomes vanishingly small. Thus, the equivalence indeed
holds. In fact, using the precise statement (given and proved in Appendix A), we can show that
Theorem 1 provides us with a non-vacuous equivalence bound. Further, it turns out that one can
exploit this equivalence to prove that the algorithm proposed in Ilyas et al. (2017) is not only natural
but optimal, as the least-squares estimate is an information-theoretically optimal gradient estimate in
the regime where k = d, and an error-minimizing estimator in the regime where k << d.

Theorem 2 (Least-squares optimality (Proof in Appendix A)). For a linear regression problem
y = Ag with known A and y, unknown g, and isotropic Gaussian errors, the least-squares estimator
is finite-sample efficient, i.e. the minimum-variance unbiased (MVU) estimator of the latent vector g.

Theorem 3 (Least-squares optimality (Proof in Meir (1994))). In the underdetermined setting, i.e.
when k << d, the minimum-norm least squares estimate (x̂LSQ in Theorem 1) is the minimum-
variance (and thus minimum-error, since bias is fixed) estimator with no empirical loss.

3 BLACK-BOX ADVERSARIAL ATTACKS WITH PRIORS

The optimality of least squares strongly suggests that we have reached the limit of query-efficiency of
black-box adversarial attacks. But is this really the case? Surprisingly, we show that an improvement
is still possible. The key observation is that the optimality we established of least-squares (and by
Theorem 1, the NES approach in (Ilyas et al., 2017)) holds only for the most basic setting of the
gradient estimation problem, a setting where we assume that the target gradient is a truly arbitrary
and completely unknown vector.

However, in the context we care about this assumption does not hold – there is actually plenty of
prior knowledge about the gradient available. Firstly, the input with respect to which we compute the
gradient is not arbitrary and exhibits locally predictable structure which is consequently reflected in
the gradient. Secondly, when performing iterative gradient attacks (e.g. PGD), the gradients used in
successive iterations are likely to be heavily correlated.

The above observations motivate our focus on prior information as an integral element of the gradient
estimation problem. Specifically, we enhance Definition 1 by making its objective

E
[
ĝT g∗

∣∣ I], where I is prior information available to us. (7)

This change in perspective gives rise to two important questions: does there exist prior information
that can be useful to us?, and does there exist an algorithmic way to exploit this information? We
show that the answer to both of these questions is affirmative.

3.1 GRADIENT PRIORS

Consider a gradient∇xL(x, y) of the loss function corresponding to some input (x, y). Does there
exist some kind of prior that can be extracted from the dataset {xi}, in general, and the input (x, y)
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proposed method builds on the framework of bandit optimization, a fundamental tool in online convex
optimization Hazan (2016). In the bandit optimization framework, an agent plays a game that consists
of a sequence of rounds. In round t, the agent must choose a valid action, and then by playing the
action incurs a loss given by a loss function ℓt(·) that is unknown to the agent. After playing the
action, he/she only learns the loss that the chosen action incurs; the loss function is specific to the
round t and may change arbitrarily between rounds. The goal of the agent is to minimize the average
loss incurred over all rounds, and the success of the agent is usually quantified by comparing the total
loss incurred to that of the best expert in hindsight (the best single-action policy). By the nature of
this formulation, the rounds of this game can not be treated as independent — to perform well, the
agent needs to keep track of some latent record that aggregates information learned over a sequence
of rounds. This latent record usually takes a form of a vector vt that is constrained to a specified
(convex) set K. As we will see, this aspect of the bandit optimization framework will provide us with
a convenient way to incorporate prior information into our gradient prediction.

An overview of gradient estimation with bandits. We can cast the gradient estimation problem as
an bandit optimization problem in a fairly direct manner. Specifically, we let the action at each round
t be a gradient estimate gt (based on our latent vector vt), and the loss ℓt correspond to the (negative)
inner product between this prediction and the actual gradient. Note that we will never have a direct
access to this loss function ℓt but we are able to evaluate its value on a particular prediction vector gt
via the finite differences method (2) (which is all that the bandits optimization framework requires us
to be able to do).

Just as this choice of the loss function ℓt allows us to quantify performance on the gradient estimation
problem, the latent vector vt will allow us to algorithmically incorporate prior information into our
predictions. Looking at the two example priors we consider, the time-dependent prior will be reflected
by carrying over the latent vector between the gradient estimations at different points. Data-dependent
priors will be captured by enforcing that our latent vector has a particular structure. For the specific
prior we quantify in the preceding section (data-dependent prior for images), we will simply reduce
the dimensionality of the latent vector via average-pooling (“tiling“), removing the need for extra
queries to discern components of the gradient that are spatially close.

3.3 IMPLEMENTING GRADIENT ESTIMATION IN THE BANDIT FRAMEWORK

We now describe our bandit framework for adversarial example generation in more detail. Note
that the algorithm is general and can be used to construct black-box adversarial examples where the
perturbation is constrained to any convex set (ℓp-norm constraints being a special case). We discuss
the algorithm in its general form, and then provide versions explicitly applied to the ℓ2 and ℓ∞ cases.

As previously mentioned, the latent vector vt ∈ K serves as a prior on the gradient for the corre-
sponding round t – in fact, we make our prediction gt be exactly vt projected onto the appropriate
space, and thus we set K to be an extension of the space of valid adversarial perturbations (e.g. Rn

for ℓ2 examples, [−1, 1]n for ℓ∞ examples). Our loss function ℓt is defined as

ℓt(g) = −〈∇L(x, y),
g

||g|| 〉, (9)

for a given gradient estimate g, where we access this inner product via finite differences. Here,
L(x, y) is the classification loss on an image x with true class y.

The crucial element of our algorithm will thus be the method of updating the latent vector vt. We will
adapt here the canonical “reduction from bandit information” (Hazan, 2016). Specifically, our update
procedure is parametrized by an estimator ∆t of the gradient∇vℓt(v), and a first-order update step

A (K×R
dim(K) → K), which maps the latent vector vt and the estimated gradient of ℓt with respect

to vt (which we denote ∆t) to a new latent vector vt+1. The resulting general algorithm is presented
as Algorithm 1.

In our setting, we make the estimator ∆ of the gradient −∇v〈∇L(x, y), v〉 of the loss ℓ be the
standard spherical gradient estimator (see Hazan (2016)). We take a two-query estimate of the
expectation, and employ antithetic sampling which results in the estimate being computed as

∆ =
ℓ(v + δu)− ℓ(v − δu)

δ
u, (10)
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Algorithm 1 Gradient Estimation with Bandit Optimization

1: procedure BANDIT-OPT-LOSS-GRAD-EST(x, yinit)
2: v0 ← A(φ)
3: for each round t = 1, . . . , T do
4: // Our loss in round t is ℓt(gt) = −〈∇xL(x, yinit), gt〉
5: gt ← vt−1

6: ∆t ← GRAD-EST(x, yinit, vt−1) // Estimated Gradient of ℓt
7: vt ← A(vt−1,∆t)

8: g ← vT
9: return Π∂K [g]

where u is a Gaussian vector sampled from N (0, 1
dI). The resulting algorithm for calculating the

gradient estimate given the current latent vector v, input x and the initial label y is Algorithm 2.

Algorithm 2 Single-query spherical estimate of ∇v〈∇L(x, y), v〉
1: procedure GRAD-EST(x, y, v)
2: u← N (0, 1

dI) // Query vector
3: {q1, q2} ← {v + δu, v − δu} // Antithetic samples

4: ℓt(q1) = −〈∇L(x, y), q1〉 ≈ L(x,y)−L(x+ǫ·q1,y)
ǫ // Gradient estimation loss at q1

5: ℓt(q2) = −〈∇L(x, y), q2〉 ≈ L(x,y)−L(x+ǫ·q2,y)
ǫ // Gradient estimation loss at q2

6: ∆← ℓt(q1)−ℓt(q2)
δ u = L(x+ǫq2,y)−L(x+ǫq1,y)

δǫ u
7: // Note that due to cancellations we can actually evaluate ∆ with only two queries to L
8: return ∆

A crucial point here is that the above gradient estimator ∆t parameterizing the bandit reduction has
no direct relation to the “gradient estimation problem” as defined in Section 2.4. It is simply a general
mechanism by which we can update the latent vector vt in bandit optimization. It is the actions gt
(equal to vt) which provide proposed solutions to the gradient estimation problem from Section 2.4.

The choice of the update rule A tends to be natural once the convex set K is known. For K = R
n, we

can simply use gradient ascent:

vt = A(vt−1,∆t) := vt−1 + η ·∆t (11)

and the exponentiated gradients (EG) update when the constraint is an ℓ∞ bound (i.e. K = [−1, 1]n):

pt−1 =
1

2
(vt−1 + 1)

pt = A(gt−1,∆t) :=
1

Z
pt−1 exp(η ·∆t) s.t. Z = pt−1 exp(η ·∆t) + (1− pt−1) exp(−η ·∆t)

vt = 2pt − 1

Finally, in order to translate our gradient estimation algorithm into an efficient method for constructing
black-box adversarial examples, we interleave our iterative gradient estimation algorithm with an
iterative update of the image itself, using the boundary projection of gt in place of the gradient
(c.f. (1)). This results in a general, efficient, prior-exploiting algorithm for constructing black-box
adversarial examples. The resulting algorithm in the ℓ2-constrained case is shown in Algorithm 3.

4 EXPERIMENTS AND EVALUATION

We evaluate our bandit approach described in Section 3 and the natural evolutionary strategies (NES)
approach of Ilyas et al. (2017) on their effectiveness in generating untargeted adversarial examples.
We consider both the ℓ2 and ℓ∞ threat models on the ImageNet (Russakovsky et al., 2015) dataset,
in terms of success rate and query complexity. We further investigate loss and gradient estimate
quality over the optimization trajectory in each method. To show the method extends to other datasets,
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Algorithm 3 Adversarial Example Generation with Bandit Optimization for ℓ2 norm perturbations

1: procedure ADVERSARIAL-BANDIT-L2(xinit, yinit)
2: // C(·) returns top class
3: v0 ← 01×d // If data prior, d < dim(x); vt (∆t) up (down)-sampled before (after) line 8
4: x0 ← xinit // Adversarial image to be constructed
5: while C(x) = yinit do
6: gt ← vt−1

7: xt ← xt−1 + h · gt
||gt||2

// Boundary projection g
||gt||

standard PGD: c.f. (Rigollet, 2015)

8: ∆t ← GRAD-EST(xt−1, yinit, vt−1) // Estimated Gradient of ℓt
9: vt ← vt−1 + η ·∆t

10: t← t+ 1
return xt−1

we also compare to NES in the CIFAR-ℓ∞ threat model; in all threat models, we show results on
Inception-v3, Resnet-50, and VGG16 classifiers.

In evaluating our approach, we test both the bandit approach with time prior (BanditsT ), and our
bandit approach with the given examples of both the data and time priors (BanditsTD). We use
10,000 and 1,000 randomly selected images (scaled to [0, 1]) to evaluate all approaches on ImageNet
and CIFAR-10 respectively. For NES, BanditsT , and BanditsTD we found hyperparameters (given in
Appendix C, along with the experimental parameters) via grid search.

4.1 RESULTS

For ImageNet, we record the effectiveness of the different approaches in both threat models in Table 1
(ℓ2 and ℓ∞ perturbation constraints), where we show the attack success rate and the mean number of
queries (of the successful attacks) needed to generate an adversarial example for the Inception-v3
classifier (results for other classifiers in Appendix F). For all attacks, we limit the attacker to at most
10,000 oracle queries. As shown in Table 1, our bandits framework with both data-dependent and
time prior (BanditsTD), is six and three times less failure-prone than the previous state of the art
(NES (Ilyas et al., 2017)) in the ℓ∞ and ℓ2 settings, respectively. Despite the higher success rate, our
method actually uses around half as many queries as NES. In particular, when restricted to the inputs
on which NES is successful in generating adversarial examples, our attacks are 2.5 and 5 times as
query-efficient for the ℓ∞ and ℓ2 settings, respectively. In Appendix G, we also compare against the
AutoZOOM method of Tu et al. (2018), where we show that our BanditsTD method at a higher 100%
success rate is over 6 times as query-efficient. Finally, we also have similar results for CIFAR-10
under the ℓ∞ threat model, which can be found in Appendix E.

We also further quantify the performance of our methods in terms of black-box attacks, and gradient
estimation. Specifically, we first measure average queries per success after reaching a certain success
rate (Figure 4a), which indicates the dependence of the query count on the desired success rate. The
data shows that for any fixed success rate, our methods are more query-efficient than NES, and (due
to the exponential trend) suggest that the difference may be amplified for higher success rates. We
then plot the loss of the classifier over time (averaged over all images), and performance on the
gradient estimation problem for both ℓ∞ and ℓ2 cases (which, crucially, corresponds directly to the
expectation we maximize in (7). We show these three plots for ℓ∞ in Figure 4, and show the results
for ℓ2 (which are extremely similar) in Appendix D, along with CDFs showing the success of each
method as a function of the query limit. We find that on every metric in both threat models, our
methods strictly dominate NES in terms of performance.

5 RELATED WORK

All known techniques for generating adversarial examples in the black-box setting so far rely on
either iterative optimization schemes (our focus) or so-called substitute networks and transferability.

In the first line of work, algorithms use queries to gradually perturb a given input to maximize a
corresponding loss, causing misclassification. Nelson et al. (2012) presented the first such iterative
attack on a special class of binary classifiers. Later, Xu et al. (2016) gave an algorithm for fooling a
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Figure 4: (left) Average number of queries per successful image as a function of the number of
total successful images; at any desired success rate, our methods use significantly less queries per
successful image than NES, and the trend suggests that this gap increases with the desired success
rate. (center) The loss over time, averaged over all images; (right) The correlation of the latent
vector with the true gradient g, which is precisely the gradient estimation objective we define.

real-world system with black-box attacks. Specifically, they fool PDF document malware classifier by
using a genetic algorithms-based attack. Soon after, Narodytska & Kasiviswanathan (2017) described
the first black-box attack on deep neural networks; the algorithm uses a greedy search algorithm that
selectively changes individual pixel values. Chen et al. (2017) were the first to design black-box
attack based on finite-differences and gradient based optimization. The method uses coordinate
descent to attack black-box neural networks, and introduces various optimizations to decrease sample
complexity. Building on the work of Chen et al. (2017), Ilyas et al. (2017) designed a black-box attack
strategy that also uses finite differences but via natural evolution strategies (NES) to estimate the
gradients. They then used their algorithm as a primitive in attacks on more restricted threat models.

In a concurrent line of work, Papernot et al. (2017) introduce a method for attacking models with
so-called substitute networks. Here, the attacker trains a model – called a substitute network – to
mimic the target network’s decisions (obtained with black-box queries) , then uses (white-box)
adversarial examples for the substitute network to attack the original model. Adversarial examples
generated with these methods Papernot et al. (2017); Liu et al. (2016) tend to transfer to a target
MNIST or CIFAR classifier. We note, however, that for attacking single inputs, the overall query
efficiency of this type of methods tends to be worse than that of the gradient estimation based ones.
Substitute models are also thus far unable to make targeted black-box adversarial examples.

6 CONCLUSION

We develop a new, unifying perspective on black-box adversarial attacks. This perspective casts the
construction of such attacks as a gradient estimation problem. We prove that a standard least-squares
estimator both captures the existing state-of-the-art approaches to black-box adversarial attacks, and
actually is, in a certain natural sense, an optimal solution to the problem.

We then break the barrier posed by this optimality by considering a previously unexplored aspect of
the problem: the fact that there exists plenty of extra prior information about the gradient that one
can exploit to mount a successful adversarial attack. We identify two examples of such priors: a
“time-dependent” prior that corresponds to similarity of the gradients evaluated at similar inputs, and
a “data-dependent” prior derived from the latent structure present in the input space.

Finally, we develop a bandit optimization approach to black-box adversarial attacks that allows for a
seamless integration of such priors. The resulting framework significantly outperforms state-of-the-art
by a factor of two to six in terms of success rate and query efficiency. Our results thus open a new
avenue towards finding priors for construction of even more efficient black-box adversarial attacks.
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A PROOFS

Theorem 1 (NES and Least Squares equivalence). Let x̂NES be the Gaussian k-query NES estimator
of a d-dimensional gradient g and let x̂LSQ be the minimal-norm k-query least-squares estimator of
g. For any p > 0, with probability at least 1− p we have that

〈x̂LSQ, g〉 − 〈x̂NES , g〉 ≤ O

(√
k

d
· log3

(
k

p

))
||g||2 ,

and in particular,

〈x̂LSQ, g〉 − 〈x̂NES , g〉 ≤ 8

√
2k

d
· log3

(
2k + 2

p

)(
1 +

κ√
d

)
||g||2

with probability at least 1− p, where

κ ≤ 2

√
log

(
2k(k + 1)

p

)
.

Proof. Let us first recall our estimation setup. We have k query vectors δi ∈ R
d drawn from an i.i.d

Gaussian distribution whose expected squared norm is one, i.e. δi ∼ N (0, 1
dI), for each 1 ≤ i ≤ k.

Let the vector y ∈ R
k denote the inner products of δis with the gradient, i.e.

yi := 〈δi, g〉,
for each 1 ≤ i ≤ k. We define the matrix A to be a k × d matrix with the δis being its rows. That is,
we have

Ag = y.

Now, recall that the closed forms of the two estimators we are interested in are given by

x̂NES = ATy = ATAg

x̂LSQ = AT (AAT )−1y = AT (AAT )−1Ag,

which implies that

〈x̂NES , g〉 = gTATAg

〈x̂LSQ, g〉 = gTAT (AAT )−1Ag.

We can bound the difference between these two inner products as

〈x̂LSQ, g〉 − 〈x̂NES , g〉 = gTAT
[
(AAT )−1 − I

]
Ag

≤
∣∣∣∣gTAT

∣∣∣∣ ∣∣∣∣(AAT )−1 − I
∣∣∣∣ ||Ag||

≤
∣∣∣∣(AAT )−1 − I

∣∣∣∣ ||Ag||2 . (12)

Now, to bound the first term in (12), observe that

(AAT )−1 =
(
I − (I −AAT )

)−1
=

∞∑

l=0

(I −AAT )l

and thus

I − (AAT )−1 =

∞∑

l=1

(AAT − I)l.

(Note that the first term in the above sum has been canceled out.) This gives us that

∣∣∣∣I − (AAT )−1
∣∣∣∣ ≤

∞∑

l=1

∣∣∣∣AAT − I
∣∣∣∣l
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≤
∣∣∣∣AAT − I

∣∣∣∣
1− ||AAT − I||

≤ 2
∣∣∣∣AAT − I

∣∣∣∣ ,

as long as
∣∣∣∣AAT − I

∣∣∣∣ ≤ 1
2 (which, as we will see, is indeed the case with high probability).

Our goal thus becomes bounding
∣∣∣∣AAT − I

∣∣∣∣ = λmax(AAT − I), where λmax(·) denotes the

largest (in absolute value) eigenvalue. Observe that AAT and −I commute and are simultaneously
diagonalizable. As a result, for any 1 ≤ i ≤ k, we have that the i-th largest eigenvalue λi(AAT − I)
of AAT − I can be written as

λi(AAT − I) = λi(AAT ) + λi(−I)i = λi(AAT )− 1.

So, we need to bound

λmax(AAT − I) = max
{
λ1(AAT )− 1, 1− λk(AAT )

}

To this end, recall that E[AAT ] = I (since the rows of A are sampled from the distributionN (0, 1
dI)),

and thus, by the covariance estimation theorem of Gittens and Tropp Gittens & Tropp (2011) (see
Corollary 7.2) (and union bounding over the two relevant events), we have that

Pr(λmax(AAT − I) ≥ ε) = Pr(λ1(AA
T ) ≥ 1 + ε or λk(AAT ) ≥ 1− ε)

= Pr(λ1(AAT ) ≥ λ1(I) + ε or λk(AAT ) ≥ λk(I)− ε) ≤ 2k · exp
(
− dε2

32k

)
.

Setting

ε =

√
32k log(2(k + 1)/p)

d
,

ensuring that ε ≤ 1
2 , gives us

Pr

(
λmax(AAT )− 1 ≥

√
32k log(2(k + 1)/p)

d

)
≤ k

k + 1
p.

and thus
∣∣∣∣(AAT )−1 − I

∣∣∣∣ ≤
√

32k log(2(k + 1)/p)

d
, (13)

with probability at least 1− k
k+1p.

To bound the second term in (12), we note that all the vectors δi are chosen independently of the

vector g and each other. So, if we consider the set {ĝ, δ̂1, . . . , δ̂k} of k+1 corresponding normalized
directions, we have (see, e.g., (Gorban et al., 2016)) that the probability that any two of them have the

(absolute value of) their inner product be larger than some ε′ =
√

2 log(2(k+1)/p)
d is at most

exp
{
−(k + 1)2e−d(ε′)2/2

}
= exp

{
−2k + 1

p

}
≤ p

2(k + 1)
.

On the other hand, we note that each δi is a random vector sampled from the distribution N (0, 1
dId),

so we have that (see, e.g., Lemma 1 in (Laurent & Massart, 2000)), for any 1 ≤ i ≤ k and any
ε′′ > 0,

Pr
(
||δi||2 ≥ 1 + ε′′

)
≤ exp

{
− (ε′′)2d

4

}
.

Setting

ε′′ = 2

√
log(2k(k + 1)/p)

d
yields

P

(
||δi||2 ≥ 1 + 2

√
log(2(k + 1)k/p)

d

)
≤ p

2k(k + 1)
.
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Applying these two bounds (and, again, union bounding over all the relevant events), we get that

||Ag||2 =
k∑

i=1

(Ag)2i

≤ d ·



2 log

(
2(k+1)

p

)

d





1 + 2

√√√√ log
(

2k(k+1)
p

)

d


 ||g||

2

≤ 2 log

(
2(k + 1)

p

)

1 + 2

√√√√2 log
(

2(k+1)
p

)

d


 ||g||

2

with probability at most p
k+1 .

Finally, by plugging the above bound and the bound (13) into the bound (12), we obtain that

〈x̂LSQ, g〉 − 〈x̂NES , g〉 ≤
(√

32k log(2(k + 1)/p)

d

)
· 2 log

(
2(k + 1)

p

)

1 + 2

√√√√2 log
(

2(k+1)
p

)

d


 ||g||

2

≤ 8

√
2k

d
· log3

(
2k + 2

p

)(
1 +

κ√
d

)
||g||2,

with probability 1− p, where

κ = 2

√
log

(
2k(k + 1)

p

)
.

This completes the proof.
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Theorem 2 (Least-Squares Optimality). For a fixed projection matrix A and under the following
observation model of isotropic Gaussian noise: y = Ag+~ε where ε ∼ N (0, εId), the least-squares
estimator as in Theorem 1, x̂LSQ = AT (AAT )−1y is a finite-sample efficient (minimum-variance
unbiased) estimator of the parameter g.

Proof. Proving the theorem requires an application of the Cramer-Rao Lower Bound theorem:

Theorem 3 (Cramer-Rao Lower Bound). Given a parameter θ, an observation distribution p(x; θ),

and an unbiased estimator θ̂ that uses only samples from p(x; θ), then (subject to Fisher regularity
conditions trivially satisfied by Gaussian distributions),

Cov
[
θ̂ − θ

]
= E

[
(θ̂ − θ)(θ̂ − θ)T

]
≥ [I(θ)]

−1
where I(θ) is the Fisher matrix: [I(θ)]ij = −E

[
∂ log p(x; θ)

∂θi∂θj

]

Now, note that the Cramer-Rao bound implies that if the variance of the estimator θ̂ is the inverse of

the Fisher matrix, θ̂ must be the minimum-variance unbiased estimator. Recall the following form of
the Fisher matrix:

I(θ) = E

[(
∂ log p(x; θ)

∂θ

)(
∂ log p(x; θ)

∂θ

)T
]

(14)

Now, suppose we had the following equality, which we can then simplify using the preceding
equation:

I(θ)
(
θ̂ − θ

)
=

∂ log p(x; θ)

∂θ
(15)

(
I(θ)

(
θ̂ − θ

))(
I(θ)

(
θ̂ − θ

))T
=

(
∂ log p(x; θ)

∂θ

)(
∂ log p(x; θ)

∂θ

)T

(16)

E

[(
I(θ)

(
θ̂ − θ

))(
I(θ)

(
θ̂ − θ

))T ]
= E

[(
∂ log p(x; θ)

∂θ

)(
∂ log p(x; θ)

∂θ

)T
]

(17)

I(θ)E
[
(θ̂ − θ)(θ̂ − θ)T

]
I(θ) = I(θ) (18)

Multiplying the preceding by [I(θ)]
−1

on both the left and right sides yields:

E

[
(θ̂ − θ)(θ̂ − θ)T

]
= [I(θ)]

−1
, (19)

which tells us that (15) is a sufficient condition for finite-sample efficiency (minimal variance). We

show that this condition is satisfied in our case, where we have y ∼ Ag + ε, θ̂ = x̂LSQ, and θ = g.
We begin by computing the Fisher matrix directly, starting from the distribution of the samples y:

p(y; g) =
1√

(2πε)d
exp

{
1

2ε
(y −Ag)T (y −Ag)

}
(20)

log p(y; g) =
d

2
log (2πε) +

1

2ε
(y −Ag)T (y −Ag) (21)

∂ log p(y; g)

∂g
=

1

2ε

(
2AT (y −Ag)

)
(22)

=
1

ε
AT (y −Ag) (23)

(24)

Using (14),

I(g) = E

[(
1

ε
AT (y −Ag)

)(
1

ε
AT (y −Ag)

)T
]

(25)

=
1

ε2
AT

E
[
(y −Ag)(y −Ag)T

]
A (26)
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=
1

ε2
AT (εId)A (27)

=
1

ε
ATA (28)

Finally, note that we can write:

I(g)(x̂LSQ − g) =
1

ε
ATA(AT (AAT )−1y − g) (29)

=
1

ε
(AT y −ATAg) (30)

=
∂ log p(y; g)

∂g
, (31)

which concludes the proof, as we have shown that x̂LSQ satisfies the condition (15), which in turn
implies finite-sample efficiency.

Claim 1. Applying the precise bound that we can derive from Theorem 1 on an ImageNet-sized
dataset (d = 300000) and using k = 100 queries (what we use in our ℓ∞ threat model and ten times
that used for our ℓ2 threat model),

〈x̂LSQ, g〉 − 〈x̂NES , g〉 ≤
5

4
||g||2.

For 10 queries,

〈x̂LSQ, g〉 − 〈x̂NES , g〉 ≤
1

2
||g||2.
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C HYPERPARAMETERS

Table 2: Hyperparameters for the NES approach.

Hyperparameter
Value

ImageNet ℓ∞ ImageNet ℓ2 CIFAR10 ℓ∞

Samples per step 100 10 50
Learning Rate 0.01 0.3 0.01

Table 3: Hyperparameters for the bandits approach (variables names as used in pseudocode).

Hyperparameter
Value

ImageNet ℓ∞ ImageNet ℓ2 CIFAR10 ℓ∞

η (OCO learning rate) 100 0.1 100
h (Image ℓp learning rate) 0.005 0.5 0.0001
δ (Bandit exploration) 0.01 0.01 0.01

η (Finite difference probe) 0.01 0.01 0.01
Tile size (Data-dependent prior only) (6px)2 (6px)2 (10px)2

Table 4: Experimental setup for comparing Bandits-NES. Setup and results for comparison with Tu
et al. (2018) in Appendix G

Parameter
Value

ImageNet ℓ∞ ImageNet ℓ2 CIFAR10 ℓ∞

Max allowed queries 10, 000
Test set size 10, 000 10, 000 1, 000

Allowed perturbation ε 0.05 5.0 0.05
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D FULL RESULTS
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Figure 8: Average loss and cosine distance versus number of queries used over the approaches’
optimization trajectories in the two threat models. We average each cosine distance and loss point at
each query number over 100 images from the evaluation set.
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Figure 9: Cumulative distribution functions for the number of queries required to create an adversarial
example in the ℓ2 and ℓ∞ settings for the NES, bandits with time prior (BanditsT ), and bandits with
time and data-dependent priors (BanditsTD) approaches. Note that the CDFs do not converge to one,
as the approaches sometimes cannot find an adversarial example in less than 10,000 queries.
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Figure 10: The average number of queries used per successful image for each method when reaching
a specified success rate: we compare NES Ilyas et al. (2017), BanditsT (our method with time
prior only), and BanditsTD (our method with both data and time priors) and find that our methods
strictly dominate NES—that is, for any desired sucess rate, our methods take strictly less queries per
successful image than NES.
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E RESULTS FOR CIFAR-10

Here, we give results for the CIFAR-10 dataset, comparing our best method (BanditsTD) and NES. We
train Inception-v3, ResNet-50, and VGG16 classifiers by fine-tuning the standard PyTorch ImageNet
classifiers. As such, all images are upsampled to 224× 224 (299× 299) for ResNet-50 and VGG16
(and Inception-v3). Just as for ImageNet, we use a maximum ℓ∞ perturbation of 0.05, where images
are scaled to [0, 1].

Table 5: Summary of effectiveness of ℓ∞ CIFAR10 attacks on Inception v3, ResNet-50, and VGG16
(I, R, V) using NES and bandits with time and data-dependent priors (BanditsTD). Note that in the
first column, the average number of queries is calculated only over successful attacks, and we enforce
a query limit of 10,000 queries. For purposes of direct comparison, the last column calculates the
average number of queries used for only the images that NES (previous SOTA) was successful on.
Our most powerful attack uses 2-4 times fewer queries, and fails 2-22 times less often.

Attack
Avg. Queries Failure Rate Queries on NES Success

I R V I R V I R V

NES 1202 1317 879 22% 31% 27% 1202 1317 879
BanditsTD 602 554 509 0.6% 12% 18% 439 399 388
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F RESULTS FOR OTHER CLASSIFIERS

Here, we give results for the ImageNet dataset, comparing our best method (BanditsTD) and NES
for Inception-v3 (also shown in Table 1), VGG16, and ResNet50 classifiers. Note that we do not
fine-tune the hyperparameters to the new classifiers, but simply use the hyperparameters found for
Inception-v3. Nevertheless, our best method consistently outperforms NES on black-box attacks.

Table 6: Summary of effectiveness of ℓ∞ and ℓ2 ImageNet attacks on Inception v3, ResNet-50, and
VGG16 (I, R, V) using NES and bandits with time and data-dependent priors (BanditsTD). Note that
in the first column, the average number of queries is calculated only over successful attacks, and we
enforce a query limit of 10,000 queries. For purposes of direct comparison, the last column calculates
the average number of queries used for only the images that NES (previous SOTA) was successful on.
Our most powerful attack uses 2-4 times fewer queries, and fails 2-5 times less often.

Attack
Avg. Queries Failure Rate #Q on NES Success

I R V I R V I R V

ℓ2
NES 2938 2193 1244 34.4% 10.1% 11.6% 2938 2193 1244

BanditsTD 1858 993 594 15.5% 9.7% 17.2% 999 1195 1219

ℓ∞
NES 1735 1397 764 22.2% 10.4% 10.5% 1735 1397 764

BanditsTD 1117 722 370 4.6% 3.4% 8.4% 703 594 339
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G COMPARISON TO (TU ET AL, 2018)

To compare with the method of Tu et al. (2018), we consider the same classifier and dataset (Inception-
v3 and Imagenet) under the same ℓ2 threat model. Note that Tu et al. (2018) use mean rather than
maximum ℓ2 perturbation to evaluate their attacks (since the method is based on a Lagrangian
relaxation). To ensure a fair comparison we compare against the average number of queries to reach
the adversarial examples bounded within a pertubation budget of 2 ·10−4, which is explicitly reported
byTu et al. (2018).

For the bandits approach, we used BanditsT , (the bandits method with the time prior) and BanditsTD

(the bandits method with both time and data prior) and run the methods until 100% success is reached.
We use the same hyperparameters from the untargeted ImageNet experiments (given in Appendix C).
Our findings, given in Table 7 show that our best method achieves an 100% success rate, and an over
6-fold reduction in queries. Note that the method of Tu et al. (2018) achieves 100% success rate in
general, but only constrains the mean ℓ2 perturbation, and thus actually achieves a strictly less than
100% success rate with this perturbation threshold.

Table 7: Comparison against coordinate-based query efficient finite differences attacks from Tu et al.
(2018), using the ImageNet dataset, with a maximum ℓ2 constraint of 0.0002 per-pixel normalized
(which is equal to a max-ℓ2 threshold reported by Tu et al. (2018)). For our methods (BanditsT
and BanditsTD) we use the same hyperparameters as in our comparison to NES, which are given in
Appendix C.

Attack Avg. Queries Success Rate

AutoZOOM-BiLin (Tu et al., 2018) 15,064 <100%
AutoZOOM-AE (Tu et al., 2018) 14,914 <100%
BanditsT (Ours) 4455 100%
BanditsTD (Ours) 2297 100%
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