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ABSTRACT

We show that there exists an inherent tension between the goal of adversarial
robustness and that of standard generalization. Specifically, training robust models
may not only be more resource-consuming, but also lead to a reduction of standard
accuracy. We demonstrate that this trade-off between the standard accuracy of a
model and its robustness to adversarial perturbations provably exists even in a fairly
simple and natural setting. These findings also corroborate a similar phenomenon
observed in practice. Further, we argue that this phenomenon is a consequence
of robust classifiers learning fundamentally different feature representations than
standard classifiers. These differences, in particular, seem to result in unexpected
benefits: the features learned by robust models tend to align better with salient data
characteristics and human perception.

1 INTRODUCTION

Deep learning models have achieved impressive performance on a number of challenging benchmarks
in computer vision, speech recognition and competitive game playing (Krizhevsky et al., 2012; Graves
et al., 2013; Mnih et al., 2015; Silver et al., 2016; He et al., 2015a). However, it turns out that these
models are actually quite brittle. In particular, one can often synthesize small, imperceptible perturba-
tions of the input data and cause the model to make highly-confident but erroneous predictions (Dalvi
et al., 2004; Biggio & Roli, 2017; Szegedy et al., 2013).

This problem of so-called adversarial examples has garnered significant attention recently and
resulted in a number of approaches both to finding these perturbations, and to training models that are
robust to them (Goodfellow et al., 2014b; Nguyen et al., 2015; Moosavi-Dezfooli et al., 2016; Carlini
& Wagner, 2016; Sharif et al., 2016; Kurakin et al., 2016a; Evtimov et al., 2017; Athalye et al., 2017).
However, building such adversarially robust models has proved to be quite challenging. In particular,
many of the proposed robust training methods were subsequently shown to be ineffective (Carlini
& Wagner, 2017; Athalye et al., 2018; Uesato et al., 2018). Only recently, has there been progress
towards models that achieve robustness that can be demonstrated empirically and, in some cases, even
formally verified (Madry et al., 2017; Kolter & Wong, 2017; Sinha et al., 2017; Tjeng & Tedrake,
2017; Raghunathan et al., 2018; Dvijotham et al., 2018a; Xiao et al., 2018b).

The vulnerability of models trained using standard methods to adversarial perturbations makes
it clear that the paradigm of adversarially robust learning is different from the classic learning
setting. In particular, we already know that robustness comes at a cost. This cost takes the form
of computationally expensive training methods (more training time), but also, as shown recently in
Schmidt et al. (2018), the potential need for more training data. It is natural then to wonder: Are
these the only costs of adversarial robustness? And, if so, once we choose to pay these costs, would
it always be preferable to have a robust model instead of a standard one? The goal of this work is
to explore these questions and thus, in turn, to bring us closer to understanding the phenomenon of
adversarial robustness.

Our contributions It might be natural to expect that training models to be adversarially robust,
albeit more resource-consuming, can only improve performance in the standard classification setting.
In this work, we show, however, that the picture here is much more nuanced: these two goals might
be fundamentally at odds. Specifically, even though applying adversarial training, the leading method
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for training robust models, can be beneficial in some regimes of training data size, in general, there is
a trade-off between the standard accuracy and adversarially robust accuracy of a model. In fact, we
show that this trade-off provably exists even in a fairly simple and natural setting.

At the root of this trade-off is the fact that features learned by the optimal standard and optimal
robust classifiers are fundamentally different and, interestingly, this phenomenon persists even in the
limit of infinite data. This thus also goes against the natural expectation that given sufficient data,
classic machine learning tools would be sufficient to learn robust models and emphasizes the need for
techniques specifically tailored to training robust models.

Our exploration also uncovers certain unexpected benefit of adversarially robust models. In particular,
adversarially robust learning tends to equip the resulting models with invariances that we would
expect to be also present in human vision. This, in turn, leads to features that align better with human
perception, and could also pave the way towards building models that are easier to understand. Con-
sequently, the feature embeddings learnt by robust models yield also clean inter-class interpolations,
similar to those found by generative adversarial networks (GANs) (Goodfellow et al., 2014b) and
other generative models. This hints at the existence of a stronger connection between GANs and
adversarial robustness.

2 ON THE PRICE OF ADVERSARIAL ROBUSTNESS

Recall that in the canonical classification setting, the primary focus is on maximizing standard
accuracy, i.e. the performance on (yet) unseen samples from the underlying distribution. Specifically,
the goal is to train models that have low expected loss (also known as population risk):

E
(x,y)∼D

[L(x, y; θ)]. (1)

Adversarial robustness The existence of adversarial examples largely changed this picture. In
particular, there has been a lot of interest in developing models that are resistant to them, or, in other
words, models that are adversarially robust. In this context, the goal is to train models that have low
expected adversarial loss:

E
(x,y)∼D

[

max
δ∈∆

L(x+ δ, y; θ)

]

. (2)

Here, ∆ represents the set of perturbations that the adversary can apply to induce misclassification.
In this work, we focus on the case when ∆ is the set of ℓp-bounded perturbations, i.e. ∆ = {δ ∈
R

d | ‖δ‖p ≤ ε}. This choice is the most common one in the context of adversarial examples and

serves as a standard benchmark. It is worth noting though that several other notions of adversarial
perturbations have been studied. These include rotations and translations (Fawzi & Frossard, 2015;
Engstrom et al., 2017), and smooth spatial deformations (Xiao et al., 2018a). In general, determining
the “right” ∆ to use is a domain specific question.

Adversarial training The most successful approach to building adversarially robust models so
far (Madry et al., 2017; Kolter & Wong, 2017; Sinha et al., 2017; Raghunathan et al., 2018) was so-
called adversarial training (Goodfellow et al., 2014b). Adversarial training is motivated by viewing
(2) as a statistical learning question, for which we need to solve the corresponding (adversarial)
empirical risk minimization problem:

min
θ

E
(x,y)∼D̂

[

max
δ∈S

L(x+ δ, y; θ)

]

.

The resulting saddle point problem can be hard to solve in general. However, it turns out to be
often tractable in practice, at least in the context of ℓp-bounded perturbations (Madry et al., 2017).
Specifically, adversarial training corresponds to a natural robust optimization approach to solving this
problem (Ben-Tal et al., 2009). In this approach, we repeatedly find the worst-case input perturbations
δ (solving the inner maximization problem), and then update the model parameters to reduce the loss
on these perturbed inputs.

Though adversarial training is effective, this success comes with certain drawbacks. The most obvious
one is an increase in the training time (we need to compute new perturbations each parameter update
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2.1 ADVERSARIAL ROBUSTNESS MIGHT BE INCOMPATIBLE WITH STANDARD ACCURACY

As we discussed above, we often observe that employing adversarial training leads to a decrease in
a model’s standard accuracy. In what follows, we show that this phenomenon is a manifestation of
an inherent tension between standard accuracy and adversarially robust accuracy. In particular, we
present a theoretical model that demonstrates it. In fact, this phenomenon can be illustrated in a fairly
simple setting which suggests that it is quite prevalent.

Our binary classification task Our data model consists of input-label pairs (x, y) sampled from a
distribution D as follows:

y
u.a.r∼ {−1,+1}, x1 =

{

+y, w.p. p

−y, w.p. 1− p
, x2, . . . , xd+1

i.i.d∼ N (ηy, 1), (3)

where N (µ, σ2) is a normal distribution with mean µ and variance σ2, and p ≥ 0.5. We chose η to

be large enough so that a simple classifier attains high standard accuracy (>99%) – e.g. η = Θ(1/
√
d)

will suffice. The parameter p quantifies how correlated the feature x1 is with the label. For the sake
of example, we can think of p as being 0.95. This choice is fairly arbitrary; the trade-off between
standard and robust accuracy will be qualitatively similar for any p < 1.

Standard classification is easy Note that samples from D consist of a single feature that is
moderately correlated with the label and d other features that are only very weakly correlated
with it. Despite the fact that each one of the latter type of features individually is hardly predictive of
the correct label, this distribution turns out to be fairly simple to classify from a standard accuracy
perspective. Specifically, a natural (linear) classifier

favg(x) := sign(w⊤
unifx), where wunif :=

[

0,
1

d
, . . . ,

1

d

]

, (4)

achieves standard accuracy arbitrarily close to 100%, for d large enough. Indeed, observe that

Pr[favg(x) = y] = Pr[sign(wunifx) = y] = Pr

[

y

d

d
∑

i=1

N (ηy, 1) > 0

]

= Pr

[

N
(

η,
1

d

)

> 0

]

,

which is > 99% when η ≥ 3/
√
d.

Adversarially robust classification Note that in our discussion so far, we effectively viewed the
average of x2, . . . , xd+1 as a single “meta-feature” that is highly correlated with the correct label. For
a standard classifier, any feature that is even slightly correlated with the label is useful. As a result, a
standard classifier will take advantage (and thus rely on) the weakly correlated features x2, . . . , xd+1

(by implicitly pooling information) to achieve almost perfect standard accuracy.

However, this analogy breaks completely in the adversarial setting. In particular, an ℓ∞-bounded
adversary that is only allowed to perturb each feature by a moderate ε can effectively override the
effect of the aforementioned meta-feature. For instance, if ε = 2η, an adversary can shift each weakly-
correlated feature towards −y. The classifier would now see a perturbed input x′ such that each of the
features x′

2, . . . , x
′
d+1 are sampled i.i.d. from N (−ηy, 1) (i.e., now becoming anti-correlated with

the correct label). Thus, when ε ≥ 2η, the adversary can essentially simulate the distribution of the
weakly-correlated features as if belonging to the wrong class.

Formally, the probability of the meta-feature correctly predicting y in this setting (4) is

min
‖δ‖∞≤ε

Pr[sign(x+ δ) = y] = Pr [N (η, 1)− ε > 0] = Pr [N (−η, 1) > 0] .

As a result, the simple classifier in (4) that relies solely on these features cannot get adversarial
accuracy better than 1%.

Intriguingly, this discussion draws a distinction between robust features (x1) and non-robust features
(x2, . . . , xd+1) that arises in the adversarial setting. While the meta-feature is far more predictive of
the true label, it is extremely unreliable in the presence of an adversary. Hence, a tension between
standard and adversarial accuracy arises. Any classifier that aims for high accuracy (say > 99%) will
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have to heavily rely on non-robust features (the robust feature provides only, say, 95% accuracy).
However, since the non-robust features can be arbitrarily manipulated, this classifier will inevitably
have low adversarial accuracy. We make this formal in the following theorem proved in Appendix C.

Theorem 2.1 (Robustness-accuracy trade-off). Any classifier that attains at least 1 − δ standard
accuracy on D has robust accuracy at most

p
1−p

δ against an ℓ∞-bounded adversary with ε ≥ 2η.

This bound implies that if p < 1, as standard accuracy approaches 100% (δ → 0), adversarial
accuracy falls to 0%. As a concrete example, consider p = 0.95, then any classifier with standard
accuracy more than 1 − δ will have robust accuracy at most 19δ1. Also it is worth noting that the
theorem is tight. If δ = 1− p, both the standard and adversarial accuracies are bounded by p which
is attained by the classifier that relies solely on the first feature. Additionally, note that compared to
the scale of the features ±1, the value of ε required to manipulate the standard classifier is very small

(ε = O(η), where η = O(1/
√
d)).

On the (non-)existence of an accurate and robust classifier It might be natural to expect that in
the regime of infinite data, the standard classifier itself acts as a robust classifier. Note however, that
this is not true for the setting we analyze above. Here, the trade-off between standard and adversarial
accuracy is an inherent trait of the data distribution itself and not due to having insufficient samples.
In this particular classification task, we (implicitly) assumed that there does not exist a classifier that
is both robust and very accurate (i.e. > 99% standard and robust accuracy). Thus, for this task, any
classifier that is very accurate (including the Bayes classifier – the classifier minimizing classification
error having full-information about the distribution) will necessarily be non-robust.

This seemingly goes against the common assumption in adversarial ML that humans are such perfect
robust and accurate classifiers for standard datasets. However, note that there is no concrete evidence
supporting this assumption. In fact, humans often have far from perfect performance in vision
benchmarks (Karpathy, 2011; 2014; Russakovsky et al., 2015) and are outperformed by ML models
in certain tasks (He et al., 2015b; Gastaldi, 2017). It is plausible that standard ML models are able to
outperform humans in these tasks by relying on brittle features that humans are naturally invariant to
and the observed decrease in performance might be the manifestation of that.

2.2 THE IMPORTANCE OF ADVERSARIAL TRAINING

As we have seen in the distributional model D (3), a classifier that achieves very high standard
accuracy (1) will inevitably have near-zero adversarial accuracy. This is true even when a classifier
with reasonable standard and robust accuracy exists. Hence, in an adversarial setting (2), where
the goal is to achieve high adversarial accuracy, the training procedure needs to be modified. We
now make this phenomenon concrete for linear classifiers trained using the soft-margin SVM loss.
Specifically, in Appendix D we prove the following theorem.

Theorem 2.2 (Adversarial training matters). For η ≥ 4/
√
d and p ≤ 0.975 (the first feature is not

perfect), a soft-margin SVM classifier of unit weight norm minimizing the distributional loss achieves
a standard accuracy of > 99% and adversarial accuracy of < 1% against an ℓ∞-bounded adversary
of ε ≥ 2η. Minimizing the distributional adversarial loss instead leads to a robust classifier that has
standard and adversarial accuracy of p against any ε < 1.

This theorem shows that if our focus is on robust models, adversarial training is crucial to achieve
non-trivial adversarial accuracy in this setting. Simply optimizing the standard accuracy of the model
(i.e. standard training) leads to poor robust accuracy. Soft-margin SVM classifiers and the constant
0.975 are chosen for mathematical convenience. Our proofs do not depend on them in a crucial way
and can be adapted, in a straightforward manner, to other natural settings, e.g. logistic regression.

Transferability An interesting implication of our analysis is that standard training produces clas-
sifiers that rely on features that are weakly correlated with the correct label. This will be true for
any classifier trained on the same distribution. Hence, the adversarial examples that are created by
perturbing each feature in the direction of −y will transfer across classifiers trained on independent

1Hence, any classifier with standard accuracy ≥ 99% has robust accuracy ≤ 19% and any classifier with
standard accuracy ≥ 96% has robust accuracy ≤ 76%.
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of this phenomenon is that the set of adversarial perturbations encodes some prior for human
perception. Thus, classifiers that are robust to these perturbations are also necessarily invariant to
input modifications that we expect humans to be invariant to. We demonstrate a striking consequence
of this phenomenon: robust models yield clean feature interpolations similar to those obtained from
generative models such as GANs (Goodfellow et al., 2014b). This emphasizes the possibility of a
stronger connection between GANs and adversarial robustness.

Finally, our findings show that the interplay between adversarial robustness and standard classification
might be more nuanced that one might expect. This motivates further work to fully undertand the
relative costs and benefits of each of these notions.
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A EXPERIMENTAL SETUP

A.1 DATASETS

We perform our experimental analysis on the MNIST (LeCun et al., 2010), CIFAR-10 (Krizhevsky
& Hinton, 2009) and (restricted) ImageNet (Deng et al., 2009) datasets. For binary classification,
we filter out all the images from the MNIST dataset other than the “5” and “7” labelled examples.
For the ImageNet dataset, adversarial training is significantly harder since the classification problem
is challenging by itself and standard classifiers are already computationally expensive to train. We
thus restrict our focus to a smaller subset of the dataset. We group together a subset of existing,
semantically similar ImageNet classes into 8 different super-classes, as shown in Table 1. We train
and evaluate only on examples corresponding to these classes.

Table 1: Classes used in the Restricted ImageNet model. The class ranges are inclusive.

Class Corresponding ImageNet Classes

“Dog” 151 to 268
“Cat” 281 to 285

“Frog” 30 to 32
“Turtle” 33 to 37
“Bird” 80 to 100

“Primate” 365 to 382
“Fish” 389 to 397
“Crab” 118 to 121
“Insect” 300 to 319

A.2 MODELS

• Binary MNIST (Section 2.2): We train a linear classifier with parameters w ∈ R
784, b ∈ R

on the dataset described in Section A.1 (labels −1 and +1 correspond to images labelled as
“5” and “7” respectively). We use the cross-entropy loss and perform 100 epochs of gradient
descent in training.
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• MNIST: We use the simple convolution architecture from the TensorFlow tutorial (TFM,
2017) 3.

• CIFAR-10: We consider a standard ResNet model (He et al., 2015a). It has 4 groups of
residual layers with filter sizes (16, 16, 32, 64) and 5 residual units each 4.

• Restricted ImageNet: We use a ResNet-50 (He et al., 2015a) architecture using the code from
the tensorpack repository (Wu et al., 2016). We do not modify the model architecture,
and change the training procedure only by changing the number of examples per “epoch”
from 1,280,000 images to 76,800 images.

A.3 ADVERSARIAL TRAINING

We perform adversarial training to train robust classifiers following Madry et al. (2017). Specifically,
we train against a projected gradient descent (PGD) adversary, starting from a random initial per-
turbation of the training data. We consider adversarial perturbations in ℓp norm where p = {2,∞}.
Unless otherwise specified, we use the values of ε provided in Table 2 to train/evaluate our models.

Table 2: Value of ε used for adversarial training/evaluation of each dataset and ℓp-norm.

Adversary Binary MNIST MNIST CIFAR-10 Restricted Imagenet

ℓ∞ 0.2 0.3 4/255 0.005
ℓ2 - 1.5 0.314 1

A.4 ADVERSARIAL EXAMPLES FOR LARGE ε

The images we generated for Figure 3 were allowed a much larger perturbation from the original
sample in order to produce visible changes to the images. These values are listed in Table 3. Since

Table 3: Value of ε used for large-ε adversarial examples of Figure 3.

Adversary MNIST CIFAR-10 Restricted Imagenet

ℓ∞ 0.3 0.125 0.25
ℓ2 4 4.7 40

these levels of perturbations would allow to truly change the class of the image, training against such
strong adversaries would be impossible. Still, we observe that smaller values of ε suffices to ensure
that the models rely on the most robust (and hence interpretable) features.

B MIXING NATURAL AND ADVERSARIAL EXAMPLES IN EACH BATCH

In order to make sure that the standard accuracy drop in Figure 7 is not an artifact of only training on
adversarial examples, we experimented with including unperturbed examples in each training batch,
following the recommendation of (Kurakin et al., 2016a). We found that while this slightly improves
the standard accuracy of the classifier, it decreases it’s robust accuracy by a roughly proportional
amount, see Table 4.

C PROOF OF THEOREM 2.1

The main idea of the proof is that an adversary with ε = 2η is able to change the distribution of
features x2, . . . , xd+1 to reflect a label of −y instead of y by subtracting εy from each variable. Hence

3https://github.com/MadryLab/mnist_challenge/
4https://github.com/MadryLab/cifar10_challenge/
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Table 4: Standard and robust accuracy corresponding to robust training with half natural and half
adversarial samples. The accuracies correspond to standard, robust and half-half training.

Standard Accuracy Robust Accuracy
Norm ε Standard Half-half Robust Standard Half-half Robust

M
N

IS
T

ℓ∞

0 99.31% - - - - -
0.1 99.31% 99.43% 99.36% 29.45% 95.29% 95.05%
0.2 99.31% 99.22% 98.99% 0.05% 90.79% 92.86%
0.3 99.31% 99.17% 97.37% 0.00% 89.51% 89.92%

ℓ2

0 99.31% - - - - -
0.5 99.31% 99.35% 99.41% 94.67% 97.60% 97.70%
1.5 99.31% 99.29% 99.24% 56.42% 87.71% 88.59%
2.5 99.31% 99.12% 97.79% 46.36% 60.27% 63.73%

C
IF

A
R

1
0

ℓ∞

0 92.20% - - - - -
2/255 92.20% 90.13% 89.64% 0.99% 69.10% 69.92%
4/255 92.20% 88.27% 86.54% 0.08% 55.60% 57.79%
8/255 92.20% 84.72% 79.57% 0.00% 37.56% 41.93%

ℓ2

0 92.20% - - - - -
20/255 92.20% 92.04% 91.77% 45.60% 83.94% 84.70%
80/255 92.20% 88.95% 88.38% 8.80% 67.29% 68.69%
320/255 92.20% 81.74% 75.75% 3.30% 34.45% 39.76%

any information that is used from these features to achieve better standard accuracy can be used by
the adversary to reduce adversarial accuracy. We define G+ to be the distribution of x2, . . . , xd+1

when y = +1 and G− to be that distribution when y = −1. We will consider the setting where
ε = 2η and fix the adversary that replaces xi by xi − yε for each i ≥ 2. This adversary is able to
change G+ to G− in the adversarial setting and vice-versa.

Consider any classifier f(x) that maps an input x to a class in {−1,+1}. Let us fix the probability
that this classifier predicts class +1 for some fixed value of x1 and distribution of x2, . . . , xd+1.
Concretely, we define pij to be the probability of predicting +1 given that the first feature has sign i
and the rest of the features are distributed according to Gj . Formally,

p++ = Pr
x2,...,d+1∼G+

(f(x) = +1 | x1 = +1),

p+− = Pr
x2,...,d+1∼G−

(f(x) = +1 | x1 = +1),

p−+ = Pr
x2,...,d+1∼G+

(f(x) = +1 | x1 = −1),

p−− = Pr
x2,...,d+1∼G−

(f(x) = +1 | x1 = −1).

Using these definitions, we can express the standard accuracy of the classifier as

Pr(f(x) = y) = Pr(y = +1) (p · p++ + (1− p) · p−+)

+ Pr(y = −1) (p · (1− p−−) + (1− p) · (1− p+−))

=
1

2
(p · p++ + (1− p) · p−+ + p · (1− p−−) + (1− p) · (1− p+−))

=
1

2
(p · (1 + p++ − p−−) + (1− p) · (1 + p−+ − p+−))) .
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Similarly, we can express the accuracy of this classifier against the adversary that replaces G+ with
G− (and vice-versa) as

Pr(f(xadv) = y) = Pr(y = +1) (p · p+− + (1− p) · p−−)

+ Pr(y = −1) (p · (1− p−+) + (1− p) · (1− p++))

=
1

2
(p · p+− + (1− p) · p−− + p · (1− p−+) + (1− p) · (1− p++))

=
1

2
(p · (1 + p+− − p−+) + (1− p) · (1 + p−− − p++))) .

For convenience we will define a = 1− p++ + p−− and b = 1− p−+ + p+−. Then we can rewrite

standard accuracy :
1

2
(p(2− a) + (1− p)(2− b))

= 1− 1

2
(pa+ (1− p)b),

adversarial accuracy :
1

2
((1− p)a+ pb).

We are assuming that the standard accuracy of the classifier is at least 1− δ for some small δ. This
implies that

1− 1

2
(pa+ (1− p)b) ≥ 1− δ =⇒ pa+ (1− p)b ≤ 2δ.

Since pij are probabilities, we can guarantee that a ≥ 0. Moreover, since p ≥ 0.5, we have
p/(1− p) ≥ 1. We use these to upper bound the adversarial accuracy by

1

2
((1− p)a+ pb) ≤ 1

2

(

(1− p)
p2

(1− p)2
a+ pb

)

=
p

2(1− p)
(pa+ (1− p)b)

≤ p

1− p
δ.

D PROOF OF THEOREM 2.2

We consider the problem of fitting the distribution D of (3) by using a standard soft-margin SVM
classifier. Specifically, this can be formulated as:

min
w

E
[

max(0, 1− yw⊤x)
]

+
1

2
λ‖w‖22 (5)

for some value of λ. We will assume that we tune λ such that the optimal solution w∗ has ℓ2-norm of
1. This is without much loss of generality since our proofs can be adapted to the general case. We
will refer to the first term of (5) as the margin term and the second term as the regularization term.

First we will argue that, due to symmetry, the optimal solution will assign equal weight to all the
features xi for i = 2, . . . , d+ 1.

Lemma D.1. Consider an optimal solution w∗ to the optimization problem (5). Then,

w∗
i = w∗

j ∀ i, j ∈ {2, ..., d+ 1}.

Proof. Assume that ∃ i, j ∈ {2, ..., d + 1} such that w∗
i 6= w∗

j . Since the distribution of xi and xj

are identical, we can swap the value of wi and wj , to get an alternative set of parameters ŵ that has
the same loss function value (ŵj = wi, ŵi = wj , ŵk = wk for k 6= i, j).

Moreover, since the margin term of the loss is convex in w, using Jensen’s inequality, we get
that averaging w∗ and ŵ will not increase the value of that margin term. Note, however, that

‖w∗+ŵ
2 ‖2 < ‖w∗‖2, hence the regularization loss is strictly smaller for the average point. This

contradicts the optimality of w∗.
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Since every optimal solution will assign equal weight to all xi for k ≥ 2, we can replace these

features by their sum (and divide by
√
d for convenience). We will define

z =
1√
d

d+1
∑

i=2

xi,

which, by the properties of the normal distribution, is distributed as

z ∼ N (yη
√
d, 1).

By assigning a weight of v to that combined feature the optimal solutions can be parametrized as

w⊤x = w1x1 + vz,

where the regularization term of the loss is λ(w2
1 + v2)/2.

Recall that our chosen value of η is 4/
√
d, which implies that the contribution of vz is distributed

normally with mean 4yv and variance v2. By the concentration of the normal distribution, the
probability of vz being larger than v is large. We will use this fact to show that the optimal classifier
will assign on v at least as much weight as it assigns on w1.

Lemma D.2. Consider the optimal solution (w∗
1 , v

∗) of the problem (5). Then

v∗ ≥ 1√
2
.

Proof. Assume for the sake of contradiction that v∗ < 1/
√
2. Then, with probability at least 1− p,

the first feature predicts the wrong label and without enough weight, the remaining features cannot
compensate for it. Concretely,

E[max(0, 1− yw⊤x)] ≥ (1− p) E
[

max
(

0, 1 + w1 −N
(

4v, v2
))]

≥ (1− p) E

[

max

(

0, 1 +
1√
2
−N

(

4√
2
,
1

2

))]

> (1− p) · 0.016.

We will now show that a solution that assigns zero weight on the first feature (v = 1 and w1 = 0),
achieves a better margin loss.

E[max(0, 1− yw⊤x)] = E [max (0, 1−N (4, 1))]

< 0.0004.

Hence, as long as p ≤ 0.975, this solution has a smaller margin loss than the original solution. Since
both solutions have the same norm, the solution that assigns weight only on v is better than the
original solution (w∗

1 , v
∗), contradicting its optimality.

We have established that the learned classifier will assign more weight to v than w1. Since z will be
at least y with large probability, we will show that the behavior of the classifier depends entirely on z.

Lemma D.3. The standard accuracy of the soft-margin SVM learned for problem (5) is at least 99%.

Proof. By Lemma D.2, the classifier predicts the sign of w1x1 + vz where vz ∼ N (4yv, v2) and

v ≥ 1/
√
2. Hence with probability at least 99%, vzy > 1/

√
2 ≥ w1 and thus the predicted class is y

(the correct class) independent of x1.

We can utilize the same argument to show that an adversary that changes the distribution of z has
essentially full control over the classifier prediction.

Lemma D.4. The adversarial accuracy of the soft-margin SVM learned for (5) is at most 1% against
an ℓ∞-bounded adversary of ε = 2η.
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Proof. Observe that the adversary can shift each feature xi towards y by 2η. This will cause z to be
distributed as

zadv ∼ N (−yη
√
d, 1).

Therefore with probability at least 99%, vyz < −y ≤ −w1 and the predicted class will be −y (wrong
class) independent of x1.

It remains to show that adversarial training for this classification task with ε > 2η will results in a
classifier that has relies solely on the first feature.

Lemma D.5. Minimizing the adversarial variant of the loss (5) results in a classifier that assigns 0
weight to features xi for i ≥ 2.

Proof. The optimization problem that adversarial training solves is

min
w

max
‖δ‖∞≤ε

E
[

max(0, 1− yw⊤(x+ δ))
]

+
1

2
λ‖w‖22,

which is equivalent to

min
w

E
[

max(0, 1− yw⊤x+ ε‖w‖1)
]

+
1

2
λ‖w‖22.

Consider any optimal solution w for which wi > 0 for some i > 2. The contribution of terms
depending on wi to 1 − yw⊤x + ε‖w‖1 is a normally-distributed random variable with mean
2η − ε ≤ 0. Since the mean is non-positive, setting wi to zero can only decrease the margin term of
the loss. At the same time, setting wi to zero strictly decreases the regularization term, contradicting
the optimality of w.

Clearly, such a classifier will have standard and adversarial accuracy of p against any ε < 1 since
such a value of ε is not sufficient to change the sign of the first feature. This concludes the proof of
the theorem.

E ROBUSTNESS-ACCURACY TRADE-OFF: AN EMPIRICAL EXAMINATION

Our theoretical analysis shows that there is an inherent tension between standard accuracy and
adversarial robustness. At the core of this trade-off is the concept of robust and non-robust features.
The robustness of a feature is characterized by the strength of its correlation with the correct label. It
is natural to wonder whether this concept of robust features is an artifact of our theoretical analysis
or if it manifests more broadly. We thus investigate this issue experimentally on a dataset that is
amenable to linear classifiers, MNIST (LeCun et al., 1998) (details in Appendix A).

Recall the goal of standard classification for linear classifiers is to predict accurately, i.e. y =
sign(w⊤x). Hence the correlation of a feature i with the true label, computed as |E[yxi]|, quantifies
how useful this feature is for classification. In the adversarial setting, against an ε ℓ∞-bounded
adversary we need to ensure that y = sign(w⊤x− εy‖w‖1). In that case we expect a feature i to be
helpful if |E[yxi]| ≥ ε.

This calculation suggests that in the adversarial setting, there is an implicit threshold on feature
correlations imposed by the threat model (the perturbation allowed to the adversary). While standard
models may utilize all features with non-zero correlations, a robust model cannot rely on features with
correlation below this threshold. In Figure 5(b), we visualize the correlation of each pixel (feature) in
the MNIST dataset along with the learned weights of the standard and robust classifiers. As expected,
we see that the standard classifier assigns weights even to weakly-correlated pixels so as to maximize
prediction confidence. On the other hand, the robust classifier does not assign any weight below a
certain correlation threshold which is dictated by the adversary’s strength (ε) (Figures 5(a, b))

Interestingly, the standard model assigns non-zero weight even to very weakly correlated pixels
(Figure 5(a)). In settings with finite training data, such non-robust features could arise from noise.
(For instance, in N tosses of an unbiased coin, the expected imbalance between heads and tails

is O(
√
N) with high probability.) A standard classifier would try to take advantage of even this

“hallucinated” information by assigning non-zero weights to these features.
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