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Abstract

Investigating attacks across multiple hosts is challeng-

ing. The true dependencies between security-sensitive

files, network endpoints, or memory objects from dif-

ferent hosts can be easily concealed by dependency ex-

plosion or undefined program behavior (e.g., memory

corruption). Dynamic information flow tracking (DIFT)

is a potential solution to this problem, but, existing DIFT

techniques only track information flow within a single

host and lack an efficient mechanism to maintain and

synchronize the data flow tags globally across multiple

hosts.

In this paper, we propose RTAG, an efficient data flow

tagging and tracking mechanism that enables practical

cross-host attack investigations. RTAG is based on three

novel techniques. First, by using a record-and-replay tech-

nique, it decouples the dependencies between different

data flow tags from the analysis, enabling lazy synchro-

nization between independent and parallel DIFT instances

of different hosts. Second, it takes advantage of system-

call-level provenance information to calculate and allocate

the optimal tag map in terms of memory consumption.

Third, it embeds tag information into network packets to

track cross-host data flows with less than 0.05% network

bandwidth overhead. Evaluation results show that RTAG

is able to recover the true data flows of realistic cross-host

attack scenarios. Performance wise, RTAG reduces the

memory consumption of DIFT-based analysis by up to

90% and decreases the overall analysis time by 60%–90%

compared with previous investigation systems.

1 Introduction

Advanced attacks tend to involve multiple hosts to conceal

real attackers and attack methods by using command-and-

control (C&C) channels or proxy servers. For example,

in the Operation Aurora [22] attack, a compromised vic-

tim’s machine connected to a C&C server that resided in

the stolen customers’ account, and exfiltrated proprietary

source code from the source code repositories. Gibler

and Beddome demonstrated GitPwnd [32], an attack that

takes advantage of the git [11] synchronization mech-

anism to exfiltrate victim’s private data through a public

git server. Unlike common data exfiltration attacks that

only involve a victim host, GitPwnd leverages two hosts

(victim’s host and public git server) to complete the

exfiltration.

Unfortunately, existing attack investigation systems,

also known as provenance systems, are inadequate to

figure out the true origin and impact of cross-host at-

tacks. Many provenance analysis systems (such as

[19, 35, 45]) are designed to monitor the system-call-level

or instruction-level events within each host while ignoring

cross-host interactions. In contrast, network provenance

systems [64, 68, 69] focus on the interaction between mul-

tiple hosts, but, because they lack detailed system-level

information, their analysis could result in a dependency

explosion problem [35, 42]. To fully understand the steps

and end-to-end information flow of a cross-host attack,

it is necessary to collect accurate flow information from

individual hosts and correctly associate them to figure out

the real dependency.

Extending existing provenance systems to investigate

cross-host attacks is challenging because problems of

accuracy, performance, or both can be worse with mul-

tiple hosts. Although collecting coarse-grained prove-

nance information (e.g., system-call-level information)

introduces negligible performance overhead, it cannot

accurately track dependency explosion and undefined pro-

gram behaviors (e.g., memory corruption) even within a

single host. That is, if we associate the coarse-grained

provenance information from different hosts using another

vague link (e.g., network session [64, 68, 69]), the result

will contain too many false dependencies. Fine-grained

provenance information, (e.g., instruction-level informa-

tion from dynamic information flow tracking (DIFT)), is

free from such accuracy problems. However, it demands
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many additional computations and consumes huge mem-

ory, which will increase according to the number of hosts.

More seriously, existing cross-host DIFT mechanisms

piggyback metadata (i.e., tags) on network packets and

associate them during runtime [50, 67], which is another

source of huge performance degradation.

To perform efficient and accurate information flow anal-

ysis in the investigation of cross-host attacks, we propose

a record-and-replay-based data flow tagging and tracking

system, called RTAG. Performing cross-host information

flow analysis using a record-and-replay approach intro-

duces new challenges that cannot be easily addressed

using existing solutions [25, 35, 50, 67]: that is, long

analysis time and huge memory consumption. First, the

communication between different hosts (e.g., through

socket communication) introduces information flows that

require additional information and procedure for proper

analysis. Namely, the DIFT analysis requires transfer of

the analysis data (i.e., tags) between the hosts in a syn-

chronized manner. Existing record-and-replay solutions

have to serialize the communication between hosts to

transfer tags because no synchronization mechanism is

implemented, leading to longer than necessary analysis

time. Second, because a number of processes can run on

multiple hosts under analysis, the memory requirement

for DIFT instances could become tremendous, especially

when multiple processes on different hosts interact with

each other.

To overcome these two challenges, RTAG decouples

the tag dependency (i.e., information flow between hosts)

from the analysis with tag overlay and tag switch tech-

niques (§6), and enables DIFT to be independent of any

order imposed by the communication. This new approach

enables the DIFT analysis to happen for multiple pro-

cesses on multiple hosts in parallel leading to a more

efficient analysis. Also, RTAG reduces the memory con-

sumption of the DIFT analysis by carefully designing the

tag map data structure that tracks the association between

tags and associated values. Evaluation results show sig-

nificant improvement both in analysis time, decreased by

60%–90%, and memory costs, reduced by up to 90%,

with realistic cross-host attack scenarios including GitP-

wnd and SQL injection.

This paper makes the following contributions:

• A tagging system that supports refinable cross-

host investigation. RTAG solves “tag dependency

coupling,” a key challenge in using refinable investi-

gation systems for cross-host attack scenarios. RTAG

decouples the tag dependency from the analysis

which spares the error-prone orchestrating effort on

replayed DIFTs and enables DIFT to be performed

independently and in parallel.

• DIFT runtime optimization. RTAG improves the

runtime performance of doing DIFT tasks at replay

time in terms of both time and memory. By per-

forming DIFT tasks in parallel, RTAG reduces the

analysis time by over 60% in our experiments. By

allocating an optimal tag size for DIFT based on

system-call-level reachability analysis, RTAG also

reduces the memory consumption of DIFT by up to

90% compared with previous DIFT engines.
The rest of paper is organized as follows: §2 describes

the background of the techniques that supported RTAG’s

realization. §3, §4, and §5 present the challenges, an

overview and the threat model of RTAG; §6 presents the

design of RTAG; More specifically, §6.1 describes the data

structure of RTAG, §6.3 explains how RTAG facilitates the

independent DIFT; §6.4 describes how RTAG conducts

tag switch for DIFT, and §6.6 presents the tag association

module and how RTAG tracks the traffic of IPC. §7 gives

implementation details and the complexity. §8 presents

the results of evaluation. §9 summarizes related work,

and §10 concludes this paper.

2 Background

RTAG utilizes concepts from a variety of research ar-

eas. This section provides an overview of these concepts

needed to understand our system.

2.1 Execution Logging

Attack investigation systems most often rely on logged

information to perform their analyses. Different systems

use different levels of granularity when logging infor-

mation for their analyses (e.g., system-call level versus

instruction level) as the cost of collecting this informa-

tion changes based on the selected granularity level. A

first category of systems [6, 8, 19, 45] collects informa-

tion at a high-level of granularity (e.g., system-call level)

and generally have low runtime overhead. However, the

information collected at this level of granularity might

affect the accuracy of their analyses as it does not always

provide all of the execution details. A second category of

systems improves accuracy by analyzing program execu-

tions at the instruction level [24, 44, 66]. These systems

provide very accurate results in their analyses. However,

they introduce a runtime overhead that is not suitable

for production software. Finally, a third category of sys-

tems [25, 35] combines the benefits of systems from the

previous two categories using record and replay. These

systems perform high-level logging/analysis while record-

ing the execution of programs and perform low-level log-

ging/analysis in a replayed execution of the programs.

More specifically, RAIN [35] logs system call informa-

tion about user-level processes using a kernel instrumen-

tation approach. The system then analyzes instructions in

a replayed execution of the processes.
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the attack with DIFT instrumentation. However, existing

refinable systems are subject to a tag-dependency chal-

lenge that requires the replay and DIFT of every process

to be performed in the same order as the recording if a

dependency exists in tags involved in different replayed

processes. The enforcement of the order requires the

DIFT tasks to wait for their upstream DIFTs to update the

tag values that they depend on. Although the record-and-

replay function can faithfully re-construct the program

states at replay time, it still takes non-trivial (and error-

prone) efforts to serialize and orchestrate the replays of

different processes to re-establish the dependencies for

tag propagation between different hosts.

The tag-dependency challenge becomes outstanding

when we aim to replay processes on multiple hosts to

investigate cross-host attacks. This is because the interac-

tive two-way communication (for the purpose of network

or application-level protocol) demands the replays to be

paused and waiting iteratively for enforcing the same tag

dependency as the recording, which further lengthens

the waiting time (i.e., analysis time consumption), and

increases the complexity of replay orchestration.

Let us look into one example of replay from the Gitp-

wnd attack [32] (detailed in §3.1) for the communication

between the client-side ssh and the server-side sshd in

Figure 1(a). At the server side, the replay of sshd needs

to be paused to wait for the replay of ssh-client at

the client side to fulfill the propagation results in the tag

map for the traffic. Furthermore, this traffic will be used

by sshd to respond to ssh as an ssh protocol response,

which means the replay of ssh needs to be paused and

wait for sshd as well.

This challenge is exacerbated when many parties are in-

volved in group communication. For example, to enforce

the tag dependencies for the operation of searching and

downloading a file from a peer-to-peer (P2P) file sharing

network (e.g., Gnutella [7]), we need to orchestrate the

replays of P2P clients on each node, in which case the

approach becomes infeasible particularly when we are

faced with hundreds or thousands of nodes. §8 shows the

DIFT time cost and compares it with RTAG in Table 1.

To systematically overcome the tag-dependency chal-

lenge, we propose RTAG that decouples the tag depen-

dencies from the replays by using symbolized tags with

optimal size for each independent DIFT. We show RTAG

effectively solves the challenge while significantly speed-

ing up DIFT tasks and reducing their memory consump-

tion.

4 Overview

We propose a tagging system, RTAG, that decouples the

tag dependency from the analysis (i.e., DIFT tasks), which

previously was inlined along with the program execu-

tion or its replayed DIFT, and enables DIFT to be in-

dependent of any required order—allowing performing

DIFT for different processes on multiple hosts in parallel.

Such independence spares the complex enforcement of

orders during the offline analysis. Note that our parallel

DIFT concerns inter-process (or host) DIFT, which is

orthogonal to the intra-process parallel DIFT techniques

in [46, 47, 55].

RTAG maintains a tagging overlay on top of a con-

ventional provenance graph, enabling independent and

accurate tag management. First, when DIFT is to be per-

formed, RTAG uses a tag switch technique to interchange

a global tag that is unique across hosts and a local tag that

is unique for a DIFT instance. Using a local tag for each

DIFT disentangles the coupling of tags shared by different

DIFT tasks. After the DIFT is complete, RTAG switches

the local symbol back to its original global tag. Second,

to ensure no tag as well as their propagation to other tags

is lost when the tag of a piece of data is updated more

than once, RTAG keeps track of each change (version)

of the data according to system-wide write operations.

Each data version has its own tag(s) and each version of

tag values can be correctly propagated to other pieces

of data. Figure 1(b) depicts how RTAG facilitates the

independent replay and DIFT for the cross-host ssh dae-

mon and client example with the tag overlay and a set of

techniques (i.e., tag switch, allocation, and association).

RTAG not only speeds up the analysis by enabling inde-

pendent DIFT, but also reduces the memory consumption

when DIFT is performed. We allocate local symbols of

each DIFT with the optimal symbol size that is sufficient

to represent the entropy of data involved in the memory

overlap (i.e., “interference”) in each DIFT (§6.5). For

tracking the data communication across hosts, RTAG ap-

plies a tag association method (§6.6) to map the data that

are sent from one host and the ones that are received at an-

other host at byte level, which facilitates the identification

of tag propagation across hosts.

5 Threat Model and Assumptions

In this section, we discuss our threat model and assump-

tions. The goal of our work is to provide a system for

refinable cross-host attack investigation through DIFT.

This work is under a threat model in which an adver-

sary has a chance to gain remote access to a network of

hosts, and will attempt to exfiltrate sensitive data from

the hosts or to propagate misinformation (i.e., manipu-

late data) across the hosts. Our trusted computing base

(TCB) consists of the kernel in which RTAG is running,

and the storage and network infrastructure used by RTAG

to analyze the information collected from the hosts under
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analysis. Our TCB surface is similar to the one assumed

by other studies [19, 35, 45, 48].

We make the following assumptions. First, attacks will

happen only after RTAG is initiated (for collecting the

information about attacks from the beginning to the end).

Note that partial information about attacks can still be

collected even if this assumption is not in place. Second,

attacks relying on hardware trojans and side/covert chan-

nels are outside the scope of this paper. Although RTAG

does not yet consider these attacks, we believe a record-

and-replay approach has the potential to detect similar

attacks as presented in related work [21, 65]. Third, we

assume that although an attacker could compromise the

OS or RTAG itself, the analysis for previous executions

is still reliable. That is, we assume the attacker cannot

tamper with the data collected and stored from program

executions of the past. This can be realized by leveraging

secure logging mechanisms [18, 68] or by managing the

provenance data in a remote analysis server. Finally, we

assume that the attacker cannot propagate misinformation

by changing the payload of network packets while they

are being transferred between two hosts (i.e., there is no

man-in-the-middle attack).

6 Tagging System

We present the design of RTAG tagging system in this

section. First, we describe the design of the tag overlay

and how it represents and tracks the data provenance in

the cross-host scope §6.1. Second, in §6.2, we recall

the reachability analysis from RAIN [35] and how it is

extended for the cross-host case and benefits the tag al-

location. Third, we explain how RTAG decouples the tag

dependencies from the replays (§6.3), and the tag switch

technique (§6.4). Fourth, we explain how we optimize

the local tag size in pursuit of memory cost reduction in

the DIFT. Fifth, we describe how to associate tags in the

cross-host communication §6.6. Finally, we present the

investigation query interface in §6.7.

6.1 Representing Data Flow and Causality

To track the data flow between files and network flow

across different hosts, we build the model of tags as an

overlay graph on top of an existing provenance graph

(such as RAIN [35]). Within the overlay graph, RTAG as-

sociates globally unique tags with interesting files to track

their origin and flows at byte-level granuality. The tags

allow RTAG to trace back to the origin of a file including

from a remote host and to track the impacts of a file in

the forward direction even to a remote host. With this

capability, RTAG extends the coverage of the refinable at-

tack investigation [35] to multiple hosts. The provenance

graph is still necessary to track the data flows: 1) from

a process to a file; 2) from a process to another process;

and 3) from a file to a process. An edge indicates an event

between two nodes (e.g., a system call such as one that a

process node reads from a file node).

In the overlay tag graph, each byte of a file corresponds

to a tag key, which uniquely identifies this byte. Each tag

key is associated with a vector of origin value for this key

(i.e., this byte). By recursively retrieving the value of a

key, one obtains all of the upstream origins starting from

this byte of data in a tree shape extending to the ones at a

remote host. Reversely, by recursively retrieving the tag

key of a value, the analyst is able to find all the impacts

in a tree shape including the ones at a remote host (see

Figure 2(b) as an example).

As we log the system-wide executions, RTAG needs

to uniquely identify each byte of data in the file sys-

tem on each host as a “global tag.” For this require-

ment, RTAG uses a physical hardware address (i.e.,

mac address) to identify a host, identifiers such as

inode, dev, crtime to identify a file, and an offset

value to indicate the byte-level offset in the file. For exam-

ple, the physical hardware address (i.e., mac address) is

48 bits long. The inode, dev, crtime are 64 bits,

32 bits, and 32 bits consecutively. The offset is 32-bits

long, which supports a file as large as 4GB. Thus, in total,

the size of a global tag can be 208 bits.

6.2 Cross-host Reachability Analysis

RTAG follows the design of reachability analysis in

RAIN [35], and extends it to cope with the cross-host sce-

narios. Given a starting point(s), RTAG prunes the original

system-wide provenance graph to extract a subgraph re-

lated to the designated attack investigation that contains

the causal relations between processes and file/network

flow. RTAG relies on the coarse-level data flows in this

subgraph to maintain the tag overlay while performing

tag switch and optimal allocation. The reachability anal-

ysis first follows the time-based data flow to understand

the potential processes involved in the attack. Next, it

captures the memory overlap of file or network inputs/out-

puts inside each process and labels them as “interference,”

to be resolved by DIFT. With accurate interference infor-

mation, the replay and DIFT are fast forwarded to the

beginning of the interference (e.g., a read syscall) and

early terminated at the end (e.g., a write syscall).

For the network communication crossing different

hosts, RTAG links the data flow from one host to another

by identifying and monitoring the socket session. As

we present in §6.6, RTAG tracks the session by match-

ing the IP and port pairing between two hosts. RTAG

further tracks the data transfer at byte level via socket

communication for both TCP and UDP protocols, which

enables the extension of tag propagation across hosts.
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Unlike the runtime DIFT system, RTAG has the compre-

hensive knowledge of source and sink from the recorded

file/network IO system-call trace, thus is able to allocate

an optimal size of tag for each individual DIFT task. We

show in §6.5 that this optimization significantly reduces

the memory consumption of DIFT tasks. In addition, to

avoid losing any intermediate tag updates to the same

resource performed by different processes, RTAG partic-

ularly monitors the “overwrite” operations to the same

offset of a file and tracks this versioning info, so it accu-

rately knows which version of the tag should be used in

the propagation.

6.3 Decoupling Tag Dependency

As a refinable provenance system, RTAG aims to per-

form DIFT at the offline replay time without adding high

overhead to the runtime of the program. The replay recon-

structs the same program status as the recording time by

enforcing the recorded non-determinism to the replay of

process execution. The non-determinism includes the file,

network, and IPC inputs which are saved and maintained

with a B-tree [25]. Such enforcement enables the program

to be faithfully replay-able at process level.

To extend this approach to capture the end-to-end data

flow across multiple hosts, we need to figure out how to

coordinate replay programs on different hosts to track

tag dependencies between them. One possible method

is decoupling tag dependencies from each replay of the

process, so it can be performed independently with no

dependency on other replays. We achieve the decoupling

by using local (i.e., symbolized) tags for each DIFT. Such

symbolization needs to distinguish the change of a tag be-

fore and after the write operation on it, and synchronize

the change to other related tags as well. In other words,

RTAG needs to track the dynamic change of origin(s) of

each tag after each IO operation (i.e., multiple versions

of the tag are tracked).

Let us illustrate with the data exfiltration in the Gitp-

wnd attack example in Figure 2(a). The client-hook

daemon keeps reading data from different files (e.g.,

/etc/passwd, id_rsa) and saves them into a

results file which is recycled over a period of time.

Meanwhile the git pack application copies from the

results file whenever the victim does git commit

operation, and shares data with ssh via the pipe IPC,

which will be shipped off the host. To correctly differ-

entiate the two data flows, id_rsa→results→pipe

and /etc/passwd→results→pipe, RTAG needs

to maintain two versions of the tags for results.

The DIFT on client-hook stores the origin of

results.v1 to be id_rsa, and the origin of

results.v2 to be /etc/passwd (circled with red

dash line), while the DIFT on git pack is able to

discriminate the source of the IPC traffic git:ssh at

offset 0 from results.v1 and further from id_rsa,

and the source of the IPC traffic at offset 1024 from

results.v2 and further from /etc/passwd. Most

importantly, now the client-hook and git pack

DIFT tasks can be performed independently without los-

ing intermediate tag values because of the overwriting on

results.

To facilitate the versioning, we append a 32-bit “ver-

sion” field to indicate the version of the data in the file

with regards to the file IO operation. According to the

sequential system-call trace, the version is incremented

at every event in which there is a write operation against

this certain byte (e.g., write(), writev()). In the

case of memory mapped file operation (e.g., mmap()),

the version is incremented at the mmap() if the prot

argument is set to be PROT_WRITE. The version field is

only used when this tag is included in the data interfer-

ence determined by the reachability analysis. We assign

32 bits for this field that can pinpoint a file IO syscall in

around 500 days based on our desktop experiment.

6.4 Switching Global and Local Tags

The entropy of the global tag defined in §6.1 is sufficient

enough to identify a byte of a file at a certain version

across multiple hosts. However, using the global tag for

each DIFT task is a waste of memory because each DIFT

task of RTAG only covers a process group such that a local

tag ensuring process-group-level uniqueness is enough.

Thus, for each DIFT task, we use a different tag size based

on the entropy of its source symbols. RTAG switches the

tags from global to local before doing DIFT, and switches

them back when the DIFT is done. The tag for DIFT is

local because it only needs to uniquely identify every byte

of the source in the current in-process DIFT, rather than

identify a single byte of data across multiple hosts.

Further, the number of sources in each DIFT depends

on the reachability analysis result, which is usually largely

reduced by data pruning. In other words, the local tag

size depends on the interference situation. Therefore, the

entropy for the local tag is much lower than the global tag.

For example, if the program reads only 10 bytes from a

file marked as a source in DIFT, in fact as low as four bits

are sufficient to represent each of these bytes. Compared

against the global tag size (i.e., 208 bits §6.1), the switch

brings 52× reduction in tag size (in practice, the reduction

can be as large as 26× capped by the compiler-enforced

byte-level granuality, which we discuss in detail in §7).

Moreover, the tag size affects not only the symbols for the

source and sink, but also all the intermediate memory lo-

cations and registers because the tags are copied, unioned,

or updated along with the execution of each instruction ac-

cording to the propagation policy of DIFT. Therefore, the
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more straightforward when identifying and managing the

tags across hosts, it requires additional bookkeeping that

incurs both complexity and overhead to the hosts. In

contrast, we propose an “in-band” method to track the

data flow among hosts, which particularly fits the system-

level reachability analysis as well as the DIFT.

We design the cross-host tagging method based on the

characteristics of the socket protocols. Our current tag-

ging scheme supports the two major types of protocols

(i.e., TCP [54] and UDP [53]). For TCP, as the data stream

delivery is guaranteed between the two hosts, we rely on

the order of bytes in the TCP session between source and

destination to identify the data flow at byte level, which

can be uniquely identified using a pair of IP addresses

and port numbers. Such tracking silently links the out-

bound traffic from the source host with the inbound traffic

at the destination host, which does not incur additional

traffic. Note that although TCP regulates the data stream

order, the sender or receiver may run different numbers

of system calls in sending and receiving the data. For ex-

ample, the sender may perform five writev() system

calls to send 10,000 bytes of data (2,000 bytes each call),

while the receiver may conduct 10 read() calls (1,000

bytes each call) to retrieve the complete data. This is why

counting sent or received bytes is necessary, instead of

counting the number of system calls.

In the case of UDP, since the data delivery is not guaran-

teed, some UDP packets could be lost during transmission.

So we cannot rely on the order of transferred bytes be-

cause the destination host has no knowledge of which

data are supposed to arrive and which have been lost. To

support UDP, we embed a small “cross-host” tag at each

send related system call by the source host, and parse the

tag at receive related system calls by the destination

host. The tag is inserted into the beginning of the data-

gram as a part of the user datagram before the checksum

is calculated. If the datagram is transferred successfully,

RTAG knows a certain length of data goes from the source

to the destination. If the destination host finds the re-

ceived datagram is broken, or totally lost, it will discard

this datagram, hence RTAG is also aware of the loss and

erases this inbound data from the reachability analysis

and DIFT. As we will show in §8, the communication cost

for TCP case is 0, while the cost for UDP is also marginal

in the benchmark measurement.

The cross-host tag represents the byte-level data in

the socket communication between two processes across

hosts. Each tag key represents the data traffic in one

socket session using the source and destination process

credentials, plus the offset that indicates the data at

byte level. For the uniqueness of session, we use the

process identifier (pid) and the process creation time

(start_time in the task structure) to identify each

process. The tag values represent the origin of the tag

key, which is determined by the DIFT and updated to the

global tag map. The cross-host tags are also switched

away before DIFT is performed and restored afterward.

For the hosts on which RTAG does not run, we treat them

as a black box, and identify them using the IP address

and port number. The IP and port are retrieved from the

socket structure inside the kernel.
Handling IPC. RTAG tracks the data transfer of IPC

communication between two processes as well. For

the IPC that uses system call as a controlling interface

(e.g., pipe, and System V IPC: message queues,

semaphores), RTAG hooks these system calls to track

the data being transferred. When a process uses pipe to

send data to the child process, RTAG monitors the read

and write system calls to track the transferred data in

bytes. During reachability analysis, we create tag keys

to label every byte sent from the parent to the child. The

tag values are fulfilled by DIFT. For example, in Figure 2,

although the git pack and ssh processes have IPC de-

pendency, RTAG is able to perform the replay and DIFT

independently on them since RTAG caches the inbound

data reads from the pipe and feeds them back during the

replay. Also, by tracking the inode associated with the

file descriptors (rather than tracking pipe, dup(2)

and child inheritance relationships), we identify the data

transmitted via the pipe at byte level and the processes

at its two ends. RTAG implicitly tracks the IPC based

on shared memory. Instead of trapping the replay of a

process for each read from a shared memory, RTAG re-

plays the processes having shared memory as a group as

RAIN [35] and Arnold [25] do, so that the tag propagation

of this shared memory is performed within the process’

memory locations. No separate tag allocation is needed

for these processes.

6.7 Query Results

The query result will be returned after all the tag values of

the interfering data are updated. The result represents the

data causalities of involved objects in a tree structure. For

example, in Figure 2, a backward query on the attacker’s

controlled host 5.5.5.5:22 will return the tree-shape

data flow overlay depicted in Figure 2(b), consisting of

all the segments of the flow from the key to all of its

upstream origins. Also, a forward query returns every

segment of the data flow from the queried tag key to all

of its impact(s). It relies on a reversed map where the

tag key and value are swapped to locate the downstream

impact from a file. For example, a forward query on the

private key id_rsa on the client side returns a flow:

id_rsa→results.v1→objects→5.5.5.5:22.

A point-to-point query gives the detailed data flow be-

tween two nodes in the provenance graph by performing

a forward and backward query on these two nodes, then

computing the intersection of the two resulting trees.
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7 Implementation

The implementation of RTAG is based on a single-host re-

finable information flow tracking system RAIN [35], with

extended development of the tagging system. Specifi-

cally, our implementation adds 830 lines of C code to

the Linux kernel for the tag association module, 2,500

lines of C++ code to the DIFT engine for the tag switch

mechanism, 1,100 lines of C++ code for the maintenance

of tags, 900 lines of C++ code for the query handler, and

500 lines of Python code for the reachability analysis for

tag allocation. Currently, RTAG runs on both the 32-bit

and 64-bit Ubuntu 12.04 LTS. Accordingly, our DIFT en-

gine supports both x86 and x86_64 architectures, which

is based on libdft [37] and its extended x86_64 version

from [43]. We use a graph database Neo4j [10] for stor-

ing and analyzing coarse-level provenance graphs, and a

relational database PostgreSQL [3] for global tags with

multiple indexing on host (i.e., MAC address) and file

credentials (i.e., inode, dev, crtime). Particularly,

we supplement the tag data structure §6.4 and how we

track socket session §6.6 with implementation details in

the following.

Tag Data Structure. In the current implementation,

RTAG maintains local tags for individual bytes. RTAG

uses C++’s vector as the multi-tag container for one

memory location or register and uses sorting and bi-

nary search in the case of insert operation. vector

has storage efficiency, although its insertion overhead is

higher than that of the set data structure, which was

used by DataTracker [61]. We make this choice based on

x86 instruction statistics [4] that show the most popularly

used instructions are mov, push, and pop of which the

propagation policy copies the tag(s), while instructions

that involve insertion, such as add and and, are much

less frequent. Our evaluation affirms this choice that the

time overhead for single DIFT is similar between RTAG

and previous work [61].

Tracking Socket Session. The implementation of

tracking the socket communication session refers to the

socket structure inside the kernel for IP and port of the

host and the peer. If the type of socket is SOCK_STREAM

(i.e., TCP), we use a counter counting the total num-

ber of bytes sent or received by tracking the return

value of send or write system calls. If the type is

SOCK_DGRAM (i.e., UDP), our implementation embeds

a four-byte incrementing sequence number within the

same peer IP and port number at the beginning of the

payload buffer inside an in-kernel function sendmsg

rather than the system call functions such as send and

recv to avoid affecting the interface to the user program

as well as the checksum computation. At the receiver

side, we strip the sequence number in the recvmsg after

the checksum verification and present the original pay-

load to the program. As shown in §8.2.3, the hooking at

this level incurs almost no overhead in either bandwidth

or socket handling time. It also avoids the complicated

fragmentation procedure at the lower level.

8 Evaluation

Our evaluation addresses the following questions:

• How well does RTAG handle the data flow queries

(forward, backward, and point-to-point) for cross-

host attack investigations? (§8.1)

• How well does RTAG improve the efficiency of DIFT-

based analysis in terms of time and memory con-

sumption? (§8.2.1)

• How much overhead does RTAG cause to system

runtime including the network bandwidth? (§8.2.2,

§8.2.3) What is the storage footprint of running

RTAG? (§8.2.4)

Settings. We run RTAG based on the Ubuntu 12.04

64-bit LTS with 4-core Intel Xeon CPU, 4GB RAM and

1TB SSD hard drive on a virtual machine using KVM [14]

for the target hosts where system-wide executions are

recorded. On the analysis host, we use a machine with

8-core Intel Xeon CPU W3565, 192 GB RAM, and 2TB

SSD hard drive installed with Ubuntu 12.04 64-bits for

handling the query and performing DIFT tasks in parallel.

We use NFS [15] to share the log data between the target

and the analysis host.

8.1 Security Applications

Table 1 summarizes the statistics in every stage of pro-

cessing a query for an attack investigation: the original

provenance graph covering all the hosts, the pruned graph

where the unrelated causalities are filtered out by the

reachability analysis, and the data flow overlay where the

tags store the origins of each byte of data involved in the

query. Table 2 also summarizes how long each of the

queries took and their memory consumption.

8.1.1 GitPwnd

We first present how RTAG handles the queries on the

Gitpwnd example (described in §3.1). To handle a query,

we replay the involved processes independently based on

reachability analysis results while performing DIFT on

the interfering parts. We run RTAG on both client and

server hosts involved in this attack, while treating the

attacker-controlled host as a black box. We perform three

queries: a forward query asking for where the leaked

/etc/passwd goes to, a backward query inquiring the

sources of data flow that reaches the attacker’s controlled

host, and a point-to-point query aiming to particular data
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Items Prov Graph Pruned Graph DF Overlay
Accuracy

Attack Query Node Edge Node Edge Tags C-Tags

FW: /etc/passwd

8.3K 109K

39 557 28,960 10,700 100%

GitPwnd BW: attacker host 55 1,661 32,660 18,032 100%

PP: results - objects 22 418 23,193 7,317 100%

FW: exploit html

5.3K 89K

33 711 6,799 882 100%

SQLi-1 BW: payroll record 29 683 8,257 882 100%

PP: html - db file 27 490 3,197 882 100%

SQLi-2
FW: db file

5.2K 87K
80 2,251 510,466 420,121 100%

BW: dump file 72 1,997 530,004 420,121 100%

CSRF
FW: exploit html

2.8K 34K
89 2,379 9,224 1,766 100%

BW: salary record 97 2,270 7,700 1,766 100%

FW: exploit html

2.9K 24K

71 1,145 432,845 420,755 100%

XSS BW: attacker host 63 863 435,716 420,700 100%

PP: html - a-host 55 782 421,106 420,700 100%

P2P
BW: mp4@12th node

13K 730K
74 240K 759,302 630,228 100%

FW: mp4@1st node 182 490K 3,088,102 2,532,920 100%

Table 1: Statistics in terms of the effectiveness and performance of cross-host attack investigation. Prov Graph are the original

graph containing the system-wide executions of every process. Pruned Graph are the subgraph where nodes and edges that are

unrelated to the attack are pruned out; DF Overlay are results from the RTAG tagging system; Tags gives the number of generated

tag entries; C-Tags gives the number of tags of which the key and value(s) are Cross-host (i.e., from different hosts); Accuracy

shows the percentage of how many data flows are matched with the ground truth.

flow paths between the results file on the client side

and the objects file on the server side. In Table 1,

we show the statistics of using RTAG in every step. Par-

ticularly, we show the number of tags RTAG creates at

the tag overlay. In the forward query, RTAG generates

28,960 tag entries totally, 10,700 of which are cross-host

ones meaning the tag key and value are from different

hosts. We compare the query result with ground truth of

the attack and RTAG achieves 100% accuracy in every

query. We also evaluate the performance improvement

for DIFT, summarized in Table 2. In general, thanks to

the parallelizing of DIFT tasks, RTAG reduces the time

cost by more than 70% in most cases.

8.1.2 Web-based Attacks

We also use a set of web-based attacks to evaluate the ef-

fectiveness of RTAG in tracking the data flow between the

server (e.g., a web server Apache), and the client (e.g., a

browser Firefox). The web app facilitates the checking

and updating of employees’ personal financial informa-

tion. The employees typically manage their bank account

number and routing number via the web app. The attacks

include two SQL injections, one cross-site request forgery

(CSRF), and one cross-site scripting (XSS). We set up

RTAG on both server and client. We run an Apache

server with SQLite as its database. At the client, we

load exploit pages with either a data transfer tool Curl

or the Firefox browser. For each attack, we perform

three types of queries and compare the query results with

the ground truth.

Items DIFT Perf

Attack Query Tasks Mem(MB) Time(s) TReduc%

FW 10 497 95 87%

GitPwnd BW 27 912 113 86%

PP 8 322 79 72%

FW 14 2,513 342 70%

SQLi-1 BW 11 2,336 339 64%

PP 9 1,997 309 76%

SQLi-2
FW 41 7,655 695 83%

BW 39 6,804 677 82%

CSRF
FW 33 6,537 499 78%

BW 49 7,122 504 84%

FW 26 4,850 687 77%

XSS BW 28 5,391 705 77%

PP 19 4,107 677 72%

P2P
BW 12 6,371 201 92%

FW 12 9,855 236 91%

Table 2: DIFT performance using RTAG. Tasks stands for the

number of processes that are replayed with DIFT; Memory

gives the sum of virtual memory cost for each task; Time gives

the time duration RTAG spends to perform the DIFT tasks in

parallel; TReduc% shows the reduction rate from the time of

performing the same DIFT tasks serially.

SQL injections. The exploit takes advantage of a vulner-

ability at the server’s SQL parsing filter to execute illegal

query statements that steal or tamper the server database.

The first attack (SQLi-1) injects an entry of user profile to

the database. The added profile is further used by another
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financial program to generate payroll records. The ana-

lyst performs a forward query from the loaded html file

with the exploit, and RTAG returns the data flows from

the file at the client to the data in the payroll records. The

second attack (SQLi-2) steals data entries in the database

from the user and exploits a vulnerability in Firefox to

dump the entries to a file. With a backward query from the

dump file at the user side, RTAG pinpoints the segments

of the database file that has been exfiltrated.

Cross-site request forgery. The exploit uses a vulner-

ability of the server that miscalculates the CSRF chal-

lenge response to submit a form impersonating the user.

The form updates the profile contents (e.g., account num-

ber), and later the tampered profile is accessed by several

other programs that process the user’s payroll information.

RTAG helps determine the data flow between the user’s

loaded file and one of the payroll record that is considered

to have been tampered.

Cross-site scripting. The reflection-based cross-

scripting relies on dependency of an html element to user

input to append a script that reads the sensitive data from

the DOM tree of a page, packs some of the data, and sends

an email to the attacker’s external host. After the investi-

gation determines the attacker’s host to be malicious, it

makes a backward query from that host and finds the data

exfiltration from the user’s loaded page, as well as from

a certain offset of the database storage file at the server.

Notably, the resulting overlay shows the route of some

tags tracing back first to the server side (i.e., Apache),

then further back to the client side browser and the ex-

ploit html file, which recovers the reflection nature of the

attack.

8.1.3 Attacks Involving Memory Corruptions

To evaluate RTAG for the cases when the attacker exploits

memory corruptions, we additionally modified the Git-

Pwnd attack §3.1 by compiling the ssh daemon with

earlier versions containing memory-based vulnerabilities:

one integer overflow based on CVE-2001-0144 and one

buffer overflow based on CVE-2002-0640. For the integer

overflow, we patched the ssh client side code to exploit

the vulnerability [1] and remotely executed scp com-

mand at the server to copy files to the attacker’s controlled

host. For the buffer overflow, we crafted a malicious re-

sponse for the OpenSSH (v3.0) challenge-response mech-

anism and remotely executed commands [2]. We note that

memory-corruption-based attacks usually involve unde-

fined behavior of the program that violates the assumption

of many previous investigation systems using source or

binary semantics (e.g., [34, 42, 47]). However, RTAG suc-

cessfully reconstructs the program state of the overflow

for the DIFT to recover the fine-grained data flow.

8.1.4 File Spreading in Peer-to-Peer Network

We also run RTAG to track the data flows in a malicious-

file-spreading incident on top of a P2P network, which

is regarded an increasing threat in the decentralized file

sharing, according to a report by BitSight Insight [5].

This allows us to demonstrate RTAG’s ability to handle a

complex cross-host data-flow analysis involving multiple

parties, which is infeasible with existing approaches. We

use Gtk-Gnutella [7](v1.1.13) to set up a P2P network

in a local network of 12 nodes with RTAG running on

them. We perform two operations. First, we have two

nodes online; one node shares a malicious audio mp4 file,

and another node searches for the file, discovers it and

downloads it. Later, we shutdown the first node and let a

third node download the file from the second node. We

performed this type of single-hop relay iteratively until

five nodes have this file. Second, we use these five nodes

as “seeds” and let the remaining nodes search, discover,

and download the file. During this process, we intention-

ally shutdown parts of the nodes to introduce “resume”

procedures. Finally, we perform a backward query from

the audio file at the last node to search for the origin of the

file, and a forward query from the first node to uncover

how the file spread across the network with fine-grained-

level data flows. RTAG returns the results with 100%

accuracy. Particularly, the result also shows the data flow

between each pair of nodes for each iteration of the file

sharing procedure. The statistics of this experiment are

summarized in Table 1.

8.2 Performance

8.2.1 DIFT Runtime Performance

We compare the memory consumption and execution time

of RTAG with previous DIFT systems. For the memory

efficiency, we evaluated two state-of-the-art DIFT en-

gines that provide multi-color symbols, Dytan [24] and

DataTracker [61]. Table 3 shows the peak memory con-

sumption of the tag map for various DIFT tasks we used

in evaluating the security application in §8.1. The peak

memory consumption is useful as it indicates the required

resource for a certain type of DIFT. Notably, all the tag

sizes for representing the DIFT symbols determined by

reachability analysis are within three bytes (i.e., up to

16,777,216 symbols), with a majority being two bytes

(i.e., up to 65,536 symbols). This means the data prun-

ing and reachability analysis effectively narrow down the

scope of the DIFT symbols and pinpoint the exact bytes

of data that causes the data confusion for DIFT to resolve.

The savings from the tag map consumption of RTAG is

between 70% and 95%. The effect of improvement on

the general memory consumption varies across different

programs in terms of their own memory usage.

1716    27th USENIX Security Symposium USENIX Association





Protocol Setting Bandwidth% RTT%

TCP

Window: 128KB 0% +0.03%

256KB 0% +0.01%

512KB 0% +0.012%

UDP

Buffer: 512B -0.8% +0.02%

8KB -0.05% +0.01%

128KB -0.01% +0.012%

Table 4: Bandwidth impact of RTAG. The bandwidth and round-

trip-time (RTT) are measured with iperf3 benchmark using

different settings for TCP and UDP protocols.

8.2.3 Network Performance Impact

We use iperf3 [13] to test the bandwidth impact of ap-

plying RTAG to typical network protocol settings. For

TCP, we measure the bandwidth both with and without

having RTAG running at different window sizes. For UDP,

we set the buffer size to be similar with real applications

such as DNS (512B), RTP (128KB). We also measure the

performance impact in the term of the end-to-end round-

trip-time (RTT) for one datagram to be delivered to the

server and echoed back to the client. Both impacts are

negligible. The results are summarized in Table 4.

8.2.4 Storage Footprint

As a refinable system, RTAG has the storage overhead for

the non-deterministic logs that are used for faithful replay

of the recorded system-wide process executions. This en-

sures the completeness of retroactive analysis particularly

for the advanced low and slow attacks. The storage foot-

print varies according to the workload on each host and is

comparable with the upstream system RAIN [35]. Note

that only the input data are stored as non-determinism,

thus in the multi-host case, the traffic from a sender to

a receiver are only stored at the receiver side, avoiding

duplicated storage usage. In the use of RTAG, we ob-

serve around 2.5GB–4GB storage overhead per day for

a desktop used by a lab student (e.g., programming, web

browsing); and around 1.5GB storage overhead per day

for a server hosting gitolite used internally by five lab

students for version controlling on course projects.

9 Related Work

Dynamic Information Flow Tracking. Dynamic taint

analysis [24, 29, 37, 49, 62] is a well-known technique

for tracking information flow instruction by instruction at

the runtime of a program without relying on the semantic

of a program source or binary. DIFT is useful for policy

enforcement [49], malware analysis [66], and detecting

privacy leaks [29, 62]. To support intra-process tainting,

DIFT

Systems

Cross

Host

Inst

Time

Tag

Dep

Run

Over

DIFT

Over(T/M)

Dytan [24] × Runtime Inlined High High/High

DataTracker [61] × Runtime Inlined High High/High

Panorama [66] × Runtime Inlined High High/High

ShadowReplica [34] × Runtime Inlined High Low/High

Taintpipe [47] × Runtime Inlined High Low/High

Panda [27, 28] × Replay Inlined High High/High

Arnold [25] × Replay Inlined Low High/High

RAIN [35] × Replay Inlined Low High/High

Jetstream [55] × Replay Inlined Low Low/High

TaintExchange [67] ✓ Runtime Inlined High High/High

Cloudfence [50] ✓ Runtime Inlined High High/High

RTAG ✓ Replay Decoupled Low Low/Low

Table 5: Comparison of DIFT-based provenance systems.

“Cross Host” tells whether the system covers cross-host anal-

ysis; “Inst Time” represents when the instrumentation is per-

formed (i.e., runtime or replay); “Tag Dep” shows how the tag

dependency is handled; “Run Over” shows the runtime over-

head; “DIFT Over(T/M)” presents the overhead of performing

DIFT in terms of Time and Memory cost in which RTAG both

achieves reductions significantly.

Dytan [24] provides a customizable framework for multi-

color tags. DataTracker adapts standard taint tracking

to provide adequate taint marks for provenance tracking.

However, taint-tracking suffers from excessive perfor-

mance overhead (e.g., the overhead of one state-of-the-art

implementation, libdft [37] is six times as high as native

execution), which makes it difficult to use in a runtime

environment. To solve this problem, several approaches

have been proposed to decouple DIFT from the program

runtime [34, 46, 47, 55, 57]. For example, Taintpipe [47],

Straight-taint [46] and ShadowReplica [34] pre-compute

propagation models from the program source and use

them to speed up the DIFT at runtime. However, their

dependency on program source disables these systems to

analyze undefined behavior. In contrast to these DIFT sys-

tems, RTAG provides both efficient runtime (recording)

and the ability to reliably replay and perform DIFT on the

undefined behavior (e.g., memory corruptions) commonly

seen in recent attacks. Jetstream [55] records the nor-

mal runtime execution and defers tainting until replay by

splitting an application into several epochs. DTAM [30]

uses dynamic taint analysis to find the relevant program

inputs to its control flow and has a potential to reduce

the workload of a record-replay system. Similar to RTAG,

TaintExchange [67] and Cloudfence [50] provide multi-

host information-flow analysis at runtime, but incur sig-

nificant overhead (20× in some cases). We summarize

the comparisons between RTAG and previous DIFT-based

provenance systems in Table 5.

Provenance Capturing. Using data provenance [60] to

investigate advanced attacks, such at APTs, has become a

popular area of research [8, 31, 36, 39, 40, 42, 45, 48, 52].

For example, the Linux Audit System [8], Hi-Fi [52], and

PASS [48] capture system-level provenance with less than
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10% overhead. Linux provenance modules (LPM) [19] al-

lows developers to develop customized provenance rules

to create Linux Security Modules and LSM-like modules.

SPADE [31] decouples the generation and collection of

provenance data to provide a distributed provenance plat-

form, and ProvThings [63] generates provenance data for

IoT devices. Unfortunately, these systems are restricted

to coarse-grained provenance, which generate many false

dependencies. To reduce false positives and logging sizes,

Protracer [45] improves BEEP [42] to switch between

unit-level tainting and provenance propagation. In con-

trast, MCI [40] determines fine-grained dependencies

ahead-of-time by inferring implicit dependencies using

LDX [39] and creating causal models. DataTracker [61]

leverages DIFT to provide fine-grained data, but incurs

significant overhead. Finally, RAIN [35] uses record and

replay to defer DIFT until replay, then uses reachability

analysis to refine the dependency graph before tainting.

However, none of these systems can provide fine-grained

cross-host provenance like RTAG because they have no

tag association mechanism to support cross-host DIFT.

Network Provenance. In addition to system-wide track-

ing, provenance at network level is a well-researched

area [64, 68, 69]. For example, ExSPAN [69] provides

a distributed data model for storing network provenance.

One challenge network provenance faces is that it obvi-

ously cannot detect most system-level causality on end

nodes. Technically, network provenance and RTAG are or-

thogonal to each other, so that we can use both approaches

together to further enhance attack detection.

Record Replay System. Deterministic record-and-

replay has been a well-researched area [17, 20, 26, 41,

56]. In addition to providing faithful replay, the cur-

rent state-of-the-art techniques allow instrumentation of

programs during the replay of execution [23, 25, 27].

Arnold [25] provides efficient runtime because it is a

kernel based solution and can efficiently record nonde-

terministic events. Aftersight [23] and PANDA [27] are

hypervisor-based solutions. Aftersite is based on VMware

hypervisor (record) and QEMU (replay) while PANDA

is purely based on QEMU. Similar to RAIN [35], RTAG

leverages Arnold to provide efficient recording perfor-

mance, however the goals and functionality of RTAG are

unique from to Arnold and could be implemented on other

systems.

10 Conclusion

When investigating information flow-based cross-host

attacks, analysts need to manually analyze the informa-

tion flow generated by the processes running on multiple

hosts. This is a time consuming, error prone, and chal-

lenging task, due to the high number of processes and

consequently flows involved. To help analysts in this task,

we propose RTAG, a system for accurate and efficient

information flow analysis that makes cross-host attack

investigation practical. We implemented and empirically

evaluated RTAG by using the system to analyze a set of

real-world attacks including GitPwnd, a state-of-the-art

cross-host data infiltration attack. The system was able

to provide accurate results while reducing memory con-

sumption by 90% and also reducing the time consumption

by 60-90% compared to related work. We have a plan to

release the source code of RTAG.
We foresee several directions for future work. First, we

plan to make hosts running RTAG interoperable with hosts

not running the system. To do so, we plan to embed tag

information in an optional field of the UDP header. Sec-

ond, we plan to identify information flow techniques that

are resilient to the fact that RTAG might not be running on

every host in a given network. Third, we plan to integrate

in-process parallel DIFT techniques to RTAG to further

optimize the analysis time. Fourth, we plan to reduce the

storage requirement for non-deterministic inputs. To do

so, we plan to investigate ways to optimize the storage

of similar executions across different hosts. Finally, we

plan to extend the queries supported by RTAG so that it is

possible to compare the information flow associated with

different executions of the same program. In this way, it

will be possible to pinpoint when and where a program

was compromised.
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