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ABSTRACT

Occupant identification proves crucial in many smart home appli-

cations such as automated home control and activity recognition.

Previous solutions are limited in terms of deployment costs, iden-

tification accuracy, or usability. We propose SenseTribute, a novel

occupant identification solution that makes use of existing and

prevalent on-object sensors that are originally designed to monitor

the status of objects they are attached to. SenseTribute extracts richer

information content from such on-object sensors and analyzes the

data to accurately identify the person interacting with the objects.

This approach is based on the physical phenomenon that differ-

ent occupants interact with objects in different ways. Moreover,

SenseTribute may not rely on users’ true identities, so the approach

works even without labeled training data. However, resolution of

information from a single on-object sensor may not be sufficient to

differentiate occupants, which may lead to errors in identification.

To overcome this problem, SenseTribute operates over a sequence

of events within a user activity, leveraging recent work on activity

segmentation. We evaluate SenseTribute using real-world experi-

ments by deploying sensors on five distinct objects in a kitchen and

inviting participants to interact with the objects. We demonstrate

that SenseTribute can correctly identify occupants in 96% of trials

without labeled training data, while per-sensor identification yields

only 74% accuracy even with training data.
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1 INTRODUCTION

Occupant identification is fundamental in providing many value-

added services for smart homes. Personalized home control such as

comfort adjustments for lighting and HVAC proves to be important

for user convenience as well as energy and cost savings [5, 15, 39].

Furthermore, occupant identification supports activity recognition

and/or occupant behavior analysis [43].

Prior works investigate the use of body-worn sensors for occu-

pant identification [20, 21, 33]. Such solutions, however, are intru-

sive and are less practical because users are required to always carry

or wear the sensors. To solve this problem, infrastructure-based so-

lutions have also been explored. However, they make use of sensors

that may invade privacy, such as cameras and microphones [30, 41].

To overcome such problems, researchers also introduce solutions

leveraging special purpose sensors such as infrared or vibration

sensors [24, 27, 36, 37]. Because these solutions deploy the sen-

sors specifically for occupant identification purposes, the solutions

come at high hardware and installation costs. Researchers also

explore existing infrastructure, such as WiFi, to help identify occu-

pants [43, 44]. However, they make strong assumptions – requiring

a user to walk in a straight line, or to stay within a line-of-sight

between transceivers – limiting their practicality.

Hence, to overcome the aforementioned limitations of prior work

and provide a more practical and yet cost effective solution, we ask

the following question – instead of building and deploying specific

sensors to provide a practical occupant identification solution, can

we leverage sensing capabilities of existing IoT devices within a

smart home? To answer this question, we observe an emerging

trend in commercial on-object sensing devices [1–3, 18, 31], which

are detachable wireless sensor nodes that retrofit home objects

such as doors, windows, drawers, and/or refrigerators, to monitor

and report the object status over the home network. These devices

are already prevalent, and are projected to be more ubiquitous

throughout smart homes [16, 35].
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Figure 1: SenseTribute utilizes the physical phenomenon

that different people interact with objects at home (e.g.,

knocking or opening a door) differently such that resulting

signals captured by on-object sensing devices are (1) suffi-

ciently differentiable across different home occupants; and

(2) similar within different trials of the same occupant.

On-object sensing devices are typically equipped with accelerom-

eters and/or gyroscopes to monitor object status (e.g., door opened

or closed). However, we explore the possibility of re-purposing

these devices to provide more expressive data rather than just ob-

ject status. Specifically, we find that the way a person interacts

with an object is rather unique and can differentiate among peo-

ple. For example, different family members tend to open a door or

refrigerator in different manners, possibly due to different phys-

ical build, strength, and habit. We present SenseTribute, a novel

occupant identification mechanism for smart home settings, which

takes advantage of this physical phenomenon using representa-

tive features from accelerometer and gyroscope measurements to

distinguish home occupants. SenseTribute enables attribution of

sensory measurements to the originating user, hence the name. Fig-

ure 1 depicts an example of repeated accelerometer measurements

for two different users, highlighting the important capabilities to

distinguish between users and match subsequent user readings.

SenseTribute utilizes supervised learning techniques to first train

the model using collected bootstrapping data as training data, along

with the corresponding training labels. Subsequently, upon collect-

ing testing data, SenseTribute performs classifications using the

trained model. While some application scenarios may ask the occu-

pants to initially provide the training labels (e.g., names of persons

associated with the training data) during a bootstrapping phase,

such approach may be impractical in other scenarios due to usabil-

ity problems. Hence, we design SenseTribute to be robust against

this challenge, specifically, even in scenarios where the users do

not provide the training labels. In such cases, SenseTribute is still

able to identify the occupants, but with pseudo-identifiers instead of

explicit identifiers such as names (e.g., Persons A and B rather than

Alice and Bob). Pseudo-identifiers still support most of smart home

applications such as aforementioned personalized home control

and identifying occupants of recognized activities, and may even

be suitable for privacy-preserving applications. This is made possi-

ble because SenseTribute infers the labels by utilizing unsupervised

learning techniques to cluster the bootstrapping data into cluster

identifiers. Subsequently, SenseTribute trains the model using the

training data and the corresponding cluster identifiers as quasi-

training labels. The quasi-training labels are labels that do not have

information to map the cluster identifiers to occupant identities

such as names.

Even with this classification approach, each on-object sensing

device provides limited information content, yielding low identifica-

tion accuracy. Performance degrades even further if training labels

are not provided. In order to solve this challenge, we introduce

SenseTribute’s Ensemble Module to amplify the information content

across multiple on-object sensing devices, thereby boosting the

accuracy of the overall occupant identification. The Ensemble Mod-

ule relies on related research on activity segmentation [23, 28, 40],

which segments out a sequence of events belonging to a single ac-

tivity segment performed by the same person, out of entire sensor

data streams of multiple persons’ events. For example, a cooking

breakfast activity may consist of multiple sensor events performed

by a same user such as opening the refrigerator, followed by taking

out a frying pan, followed by turning on the stove.

We design and implement SenseTribute and evaluate its feasibility

by conducting real-world empirical experiments with five distinct

sensor pairs (accelerometer and gyroscope), each attached to five

different objects – door, refrigerator, drawer, towel dispenser, and

window. We invite five participants to perform a sequence of events

that interact with these objects. We choose five participants, as this

number is greater than an average of 3.14 persons per home in

the United States [10]. From our empirical analysis, SenseTribute is

able to correctly identify occupants with 96% accuracy even when

the training labels are not provided, while the average accuracy

from per-object identification yields 74%, even with training labels.

Overall, we make the following contributions in this paper.

• We design SenseTribute to extract expressive data from on-

object sensors and identify occupants in a smart home.

• We demonstrate how SenseTribute achieves high identifi-

cation accuracy by combining observations across several

sensors on different objects, even without labeled training

data.

• We evaluate SenseTribute by conducting real-world experi-

ments with participants interacting with different objects in

a kitchen, each interfaced with a sensor node.

The remainder of this paper is organized as following.We present

background information and related work in Section 2. We then

present the details of SenseTribute’s design and implementation in

Section 3, and its evaluation results in 4. Subsequently, we present

discussion and conclusion in Sections 5 and 6, respectively.

2 BACKGROUND AND RELATEDWORK

We first present on-object sensing devices and their prevalence. We

then introduce activity segmentation often studied in the field of

activity recognition, and how SenseTribute utilizes it. Furthermore,

we describe related work onoccupant identification.

2.1 On-Object Sensing Devices

On-object sensing devices are popular smart home gadgets that en-

able home owners to monitor the status of various objects – such as
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doors and drawers – by simply attaching the device to each object.

An on-object device is commonly equipped with inertial sensors

(e.g., accelerometer and/or gyroscope), which sense the movement

of object it is attached to. The sensor signals are then processed

to output object status – such as door or drawer open/close – and

reports the events to home owner’s smartphone over the cloud.

Companies such as Notion [2] and Samsung SmartThings [3] are

industry leaders, while there are many other commercial solutions

from various vendors [1, 18, 31]). These devices are projected to be

more prevalent in smart homes in the near future [16, 35]. We de-

sign SenseTribute to extract more expressive data than mere status

of objects, namely to infer the identities of occupants in a home.

Hence, SenseTribute inherently eliminates the costly need to build

and deploy specific sensing devices for occupant identification.

2.2 Activity Segmentation

Activity segmentation – an actively studied topic in activity recog-

nition field – segments out a sequence of events that are performed

by a single occupant. However, this is a difficult problem because

different events are performed by different persons that may be

temporally overlapping within a single stream of sensor data. Hence

researchers make use of combinations of sensor patterns and tem-

poral information to identify a sequence of events that constitute a

single activity segment [23, 28, 40]. For example, consider PersonA
cooking breakfast, while PersonB watching TV in the living room.

The cooking breakfast activity segment may consist of a sequence of

events such as: {kitchen door opening, fridge door opening, and pasta

drawer opening}. On the other hand, watching TV activity segment

may consist of a sequence of events such as: {sitting down on sofa,

taking out remote control, TV turning on}. Each of the sequence of

events belonging to the same activity segment are grouped together,

even though there may be temporal overlaps between individual

events. Activity segmentation is one of the important foundations

when designing SenseTribute. Specifically, Ensemble Module exploits

the above property that a sequence of events within an activity

segment is performed by the same user, enabling SenseTribute to

combine the confidence of a sequence of events (see Section 3.5).

2.3 Occupant Identification

Smart home occupant identification is an important problem. Per-

sonalized home control is gaining much attention such as user-

specific comfort adjustments for lighting and HVAC for conve-

nience as well as energy efficiency [5, 15, 39]. Due to potentially

significant cost-savings, this is a real-world problem that are heavily

studied by appliance manufacturers as well. Furthermore, occupant

identification supports many activity recognition applications. This

is because understanding who is performing the recognized activity

is a building block to associating activities to individual occupants,

rather than just knowing that someone at home has performed

the activity [43] (e.g., splitting costs between roommates based on

individual energy consumption or even simply providing feedback

to which family member consumes most energy).

Due to the importance of occupant identification problem, prior

works explore solutions by deploying infrastructure-based sensors.

Researchers utilize ultrasonic-based doorway sensors to capture

the movements and the physical characteristics such as height [24]

and/or weight [27] of persons. Researchers also utilize structural

vibration-based sensors to detect occupant’s gait patterns [36, 37].

Occupants strike the floor with different gait patterns, inducing

unique structural vibration waveform. Similarly, researchers also

exploit changes in body electric potential due to walking [22].While

these solutions are promising first steps, all of them utilize hard-

ware that are specifically built and deployed to solve the occupant

identification problem. This inevitably incurs high cost both in

terms of hardware as well as deployment costs.

Prior work also explore solutions that use existing infrastructure

such as Wi-Fi to utilize channel state information (CSI) induced by

occupant’s walking pattern [43, 44]. While these solutions do not

incur additional hardware or deployment costs, they face challenges

in limited deployment practicality. This is because these solutions

require the occupants to either (1) only walk in a straight line [43];

or (2) stay within the line of sight between WiFi transceivers [44].

As opposed to the related work, SenseTribute inherently reduces

the hardware and deployment cost because it utilizes existing and

prevalent on-object sensing devices deployed by users, and simultane-

ously provides a more practical occupant identification by perform-

ing simple software modifications to extract information necessary

to identify the occupants.

3 DESIGN AND IMPLEMENTATION

We now present SenseTribute’s design and implementation. We

describe the details SenseTribute’s algorithm when the training

labels are known and unknown. We also explain how SenseTribute

ensembles different objects to amplify the identification accuracy.

3.1 SenseTribute Overview

SenseTribute’s goal is to identify the occupants by leveraging sig-

nals of on-object sensors utilizing supervised learning techniques.

SenseTribute is divided into two phases – a Bootstrapping and Iden-

tification Phases. First, during the Bootstrapping Phase, SenseTribute

trains a classification model from the collected sensor data (i.e.,

history data). Subsequently, in its Identification Phase, SenseTribute

tests newly collected sensor data, to finally identify the occupant.

In order to train the model for classification, the system requires

training labels (i.e., ground truth occupant identity corresponding

to the collected history data). However, it may be more practical

for certain applications to not collect user provided training labels

(e.g., to increase usability). We account for this problem, and design

SenseTribute to automatically adapt its training scheme based on

the availability of user-provided labels.

We present the flow chart diagrams to depict the overall SenseTribute

design as shown in Figure 2(a). Specifically, when the training labels

are provided to the system by the users (i.e., known labels scenario),

SenseTribute utilizes the traditional supervised learning techniques,

by taking as input for the Training Module, the (1) training label

and (2) data. For the training label, SenseTribute utilizes the user-

provided ground truth labels. For the training data, SenseTribute

first processes the collected history data in Pre-processing Module),

and then extracts necessary features in Feature Extraction Module.

Finally, at the end of the Identification Phase, the Testing Module

outputs the Predicted Occupant Label, along with the classification

probabilities of all the potential classes.
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(a) SenseTribute’s Flow Chart Diagram per Object (b) Ensemble of n Objects

Figure 2: (a) Flow-chart diagram of SenseTribute for an individual object. During Bootstrapping Phase, collected history data

and ground truth labels are used to train amodel. If ground truth label is unavailable, SenseTribute clusters history data to infer

training labels. Subsequently, during Identification Phase, SenseTribute uses the trainedmodel to predict occupant identity. (b)

Subsequent to the identification phase in (a), SenseTribute further ensembles classification probabilities fromn different objects
and predicts occupant identity with higher accuracy.

However, SenseTribute is also capable of operating even when

users do not provide the ground truth labels (i.e., unknown labels

scenario), by utilizing a hybrid approach of unsupervised and su-

pervised learning techniques. Similar to known labels scenario, the

history data are used to process and extract features. However, the

features are now input to Clustering Module, which computes and

outputs the clustered indices. We use these indices as quasi-labels

that substitute the ground truth labels. Quasi-labels represent differ-

ent clusters, or groups, corresponding to the history data. However,

as opposed to the ground truth labels, quasi-labels (1) do not carry

information to be directly mapped to specific occupant’s explicit

identities such as names; and (2) are prone to some amount of error

due to clustering. Finally, the Testing Module outputs the predicted

pseudo-identifier labels, along with the classification probabilities of

all the potential classes. Similar to quasi-labels, pseudo-identifiers do

not carry information to be directly mapped to the specific occupant

identities such as names, but are still valuable because they can be

used to sufficiently distinguish different occupants (e.g., PersonA
vs. PersonB ). While clustering algorithms such as K-Means provide

linear decision boundaries, we design SenseTribute using classifica-

tion as the backbone framework for the simplicity of integrating

both known and unknown labels scenarios.

Since the information content from a single object may not

be sufficient to accurately identify the occupants, we introduce

SenseTribute’s Ensemble Module subsequent to the Identification

Module of each object, to “ensemble” the classification probabilities

to arrive at a higher occupant identification accuracy. Figure 2(b)

depicts the corresponding flowchart diagram.

3.2 Pre-processing and Feature Extraction

3.2.1 Pre-processing. Prior to extracting the features from the

raw sensor data, we first perform noise reduction to increase the

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
-10

0

10

20

A
m

pl
itu

de

(a) Raw Data

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Samples

-10

0

10

20

A
m

pl
itu

de

(b) Pre-processed Data

Figure 3: We use spectral subtraction to increase the Signal-

to-Noise Ratio (SNR). (a) depicts raw time-series gyroscope

signal; and (b) depicts the resulting spectral subtraction.

Signal-to-Noise Ratio (SNR) and the subsequent classification and

clustering performance. We make use of spectral subtraction [8],

used in speech recognition to remove background noise, because

the ambient noise is similar to inherent sensor noise. Spectral sub-

traction performs the operation S(ω) = Y (ω) − N (ω), where Y (ω),
S(ω), and N (ω), are the frequency-domain spectra of the noisy sen-

sor reading, desired signal, and noise, respectively. We estimate the

noise spectrum N (ω) by sampling the ambient noise, which can be

performed by sensor nodes, in practice, prior to the Pre-processing

Module. Figure 3 depicts an example of single-axis gyroscope signal

corresponding to opening and closing a drawer.

3.2.2 Feature Extraction. SenseTribute then performs feature ex-

traction on the pre-processed signal. We extract features from both

time and frequency domains as characteristics of the induced sig-

nal. We list the features used in this work in Table 1. Vectors xp
and yq are time and frequency domain representations of the data,

respectively, and N andM are the number of elements in x and y,
respectively. The Root Mean Square (RMS) (in time or frequency

domains as RMS and FFTRMS , respectively) reflects the variation
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Feature Domain Expression

RMS time
√
1/N

∑N
p=1 x

2
p

FFTRMS frequency
√
1/M

∑M
q=1 y

2
q

Peak2RMS time max(|x |)/
√
1/N

∑N
p=1 |xp |

2

Enerдy time
∑N
p=1 loд(x

2
p )

SMA time 1/N
∑N
p=1 |xp |

FFTmax frequency max(yq )

Mean time 1
N

∑N
p=1 xp

Median time median(xp )

Table 1: Features used in SenseTribute, where vectors, xp and

yq are time and frequency domain representations of the

pre-processed data, respectively. N and M are the number

of elements in x and y, respectively.
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Figure 4: We plot feature pairs for knock and fridge door

open/close event types for comparison.Knock plot depicts suf-

ficient separation of features across Persons A, B, D, and E,

while Person C has a large overlapping area. Fridge plot de-

picts sufficient separation for Persons A, B, and E, while Per-

sons C and D have large overlapping areas.

within a signal segment, a relatively widely used feature that effec-

tively describes the signal. The peak-to-RMS ratio of time domain

signal, Peak2RMS , measures more detailed signal distribution in

addition to RMS . For example, a person with thicker finger bones

knocking on the door may trigger an impulse signal with a sharp

waveform, which may lead to a higher Peak2RMS value. We also

compute the log energy entropy [14, 34], Enerдy, which measures

the signal distribution. Signal magnitude area [7, 9], SMA, mea-

sures the average of the signal amplitude. The maximum value of

frequency domain signal, FFTmax , provides the peak amplitude of

yq . Finally, we use the common statisticalmean andmedian of xp
as measurements of central tendency.

Furthermore, we compare the feature distributions of different

occupants by plotting feature pairs. Figure 4 depicts two examples

of feature pairs (Peak2RMS vs. SMA) from two distinct sensors

on a door (capturing knocking events) and refrigerator (capturing

refrigerator opening and closing events). Each marker represents

a feature comparison per occupant (i.e., PersonA to PersonE ). We

make the following two observations. First, we observe that within

each sensor, the feature pair provides information to distinguish

different occupants at a fairly sufficient manner. For example, for

knocking event, PersonA, PersonB , PersonD , and PersonE exhibits

sufficient separation, while PersonC exhibits large overlapping area

with other occupants. Second, we also observe that across the two

events from different objects, different feature pairs contribute to

separating the occupants. For example, the feature pairs performed

well in distinguishing PersonD for knocking on a door but poorly

for opening and closing a refrigerator.

3.3 Known Labels Scenario

In the application scenario where the user provides the ground

truth labels for the training label, we leverage supervised learn-

ing techniques to perform occupant identification. We implement

SenseTribute’s classification modules (i.e., Training and Testing Mod-

ules) with Support Vector Machines (SVM) [6] using Radial Basis

Function (RBF) kernel. We choose SVM because it requires rela-

tively small amount of training data to achieve high classification

accuracy, compared to other classification methods such as neu-

ral networks. We implement the modules using publicly available

LIBSVM [11]. We use multi-class SVM classification to classify n
occupants in smart home settings, where n ≥ 2. First, the Training

Module takes as input aforementioned feature vector of the train-

ing data and the training label to compute the trained model. This

module concludes the end of Bootstrapping Phase.

Second, the Testing Module in the Identification Phase takes as

input the trained model and the feature vector of the testing data.

This module performs the SVM classification to output the follow-

ing: (1) classification probabilities, Pr [O = oi ], of all possible classes
(i.e., occupants), o1, ...,on ; and (2) final predicted label which is the

occupant, oi that yields highest Pr [O = oi ].

3.4 Unknown Labels Scenario

When he user does not provide any training labels, we leverage a hy-

brid approach of supervised and unsupervised learning techniques

to perform occupant identification. The unknown and known

labels scenarios are equivalent in computing the feature vector.

However, it differs in that the system no longer has the given train-

ing labels to be input to the classification modules. Hence, we infer

the training labels using the unsupervised learning techniques.

Specifically, we implement the Clustering Module with K-Means

clustering [25, 32], which takes a feature vector from the history

data and the number of cluster groups K . We assume that K , i.e.,
number of occupants in a home is known (see Section 5.2). K-Means

clustering algorithm groups each of the input observations into K
clusters with the smallest distance to the corresponding computed

centroid. This module outputs the clustered indices, which will

be subsequently used as the training label, in the Training Mod-

ule. We note that the clustered indices are quasi-labels, which does

not map directly to occupants’ explicit identifiers (e.g., occupants’

names such as Amy vs. Bob). However, quasi-labels provide ade-

quate information to identify occupants to their pseudo-identifiers

(e.g., PersonA vs. PersonB ) at the end of the Identification Phase.

3.5 Ensemble Module

Each object’s identification accuracy (output from Figure 2(a)) are

limited because each object has either low resolution of information,
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or same occupant may occasionally interact with the object in

slightly different manner. Furthermore, for the case of the unknown

labels, accumulated errors from clustering contributes to lower per-

object identification accuracy. Hence, we design Ensemble Module to

amplify the occupant identification accuracy. SenseTribute ensembles

identification probabilities of individual objects, as depicted in the

flow chart diagram in Figure 2(b). Specifically, this module takes as

input the resulting classification probabilities, Pr [O = oi ], where
i = 1, ...,n (indicating n potential classes, i.e., n occupants), from

each of the Testing Modules belonging tom different sensors each

interfaced with different objects, defined as Sj , where j = 1, ...,m.

Subsequently, this module outputs the final predicted occupant

identity, o∗, which has an amplified identification accuracy, which

we evaluate in Section 4.

To implement the ensemble algorithm, we formulate this problem

as the conditional probability depicted in Equation 1:

o∗ = argmax
oi

Pr [O = oi | S1, ...,Sm ], (1)

This finds the most likely occupant o∗ given sensor dataS1, . . . ,Sm .

We assume independence across each sensor, Sj , and use Bayes’

theorem to rewrite this formulation as shown in Equation 2:

o∗ = argmax
oi

m∏
j=1

Pr [O = oi | Sj ], (2)

where each of the probabilities, Pr [O = oi | Sj ], is equivalent to

the output probabilities, Pr [O = oi ], of each sensor.

4 EVALUATION

In this section, we first present the experiment setup and evaluate

SenseTribute’s performance.

4.1 Experiment Setup

4.1.1 Apparatus. We conduct our experiment by facilitating five

objects in a kitchen each with a sensor node. The objects include –

door, fridge door, drawer, towel dispenser, and window. Each sensor

node comprises of an Arduino Uno [4] interfaced with ADXL335

tri-axis accelerometer [17] and LPY503AL dual-axis gyroscope [42],

sampling each axis at 5KHz. These sensor are attached to the objects

so that the accelerometer’s Z-Axis is perpendicular to the object’s

surface, and the gyroscope’s X-Axis revolves around an imaginary

line perpendicular to the floor, as depicted in Figure 5. The rest of

this evaluation only considers using the two axes, and we discuss

practical considerations later in Section 5.3.

4.1.2 Data Collection. We invited five participants, which is

higher than an average people per family of 3.14 persons [10]. We

ask each participant to perform a predefined activity of operating

the aforementioned objects – i.e., opening closing door, fridge, cab-

inet drawer and window, and pulling towel from towel dispenser.

We now refer to event type as the event type – object pair (e.g., door

represents opening/closing door). We performed the study after ob-

taining approval of Institutional Review Board (IRB) and conducted

the experiment in compliance to the IRB’s recommendations.

X
Y

Z 

X Z X

Figure 5:We depict experiment setup conducted in a kitchen.

Participants are asked to perform prescribed events.

Gender Height Weight Age

Person A Female 1.59m 51kg 28

Person B Male 1.75m 76kg 33

Person C Male 1.65m 45kg 27

Person D Female 1.65m 50kg 30

Person E Female 1.85m 95kg 26

Table 2: Table presents demographics of five participants.

4.2 Known Labels Scenario

We evaluate SenseTribute when the system is given the training

labels, performing an SVM classification as described in Section 3.3.

We report the classification accuracy by varying number of occu-

pants from i = 2, ..., 5, where each variation is an average of all

possible combinations,
(5
i

)
(e.g., 3 occupants case is an average of(5

3

)
= 10 instances). Each instance of combination is an average

result of a 10-fold cross-validation (i.e., Leave-One-Out) as we have

ten trials per occupant. Figure 6 depicts the result for all six event

types. We observe that as the number of occupants increases, the

classification accuracy decreases, for each of the event types. This is

intuitive as introducing more classes (i.e., occupants) to the classifier

introduces more room for error. The average of all six event types

with five number of occupants yields 74%, as reported in Section 1.

We further note that different event types result in different accu-

racy, due to certain objects being more distinctive. We observe that

objects that provide relatively consistent interaction yielded better

classification accuracy. For example, knocking on door and opening

and closing a drawer leads to more information to sufficiently distin-

guish occupants, while dispensing towel did not produce sufficient

information on its own. We notice that the towel often got ripped

during dispensing in multiple trials, and consequently yielded dif-

ferent interactions even within same subject.

We also report the classification accuracy per occupant (PersonA
through PersonE ), per event type (Figure 7).Certain event type yields
high classification accuracy for one person, but low for another

person while a different event type yields flipped results for the

same pair of persons. For example, Knock and Door event types

yield relatively high and low classification accuracy for PersonA,
respectively. However, the two event types conversely yield rela-

tively low and high accuracy for PersonB , respectively. SenseTribute
takes advantage of such phenomenon to amplify its identification

accuracy in its Ensemble Module (Section 3.5).
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Figure 6: Figure depicts classification accuracy by varying

number of occupants of each event type (for known labels sce-

nario). Each data point is an average accuracy of all combi-

nations within each number of occupants. As the number of

occupants increases, classification accuracy decreases. The

average accuracy of different event types for five occupants

case yields 74%.
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Figure 7: Figure depicts classification accuracy due to dif-

ferent participants. Certain pair of event types yield contra-

dicting accuracy across different participants. SenseTribute

takes advantage of such phenomenon to amplify the final

accuracy in its Ensemble Module.

4.3 Unknown Labels Scenario

We now evaluate SenseTribute when the training labels are not

provided by the user. As presented in Section 3.4, SenseTribute uti-

lizes a hybrid approach of unsupervised and supervised learning –

i.e., using clustering result as quasi-labels, to replace the unknown

training labels. To provide a comprehensive view of how clustering

accuracy affects the classification accuracy, we set clustering accu-

racy artificially from 25% to 100%, for each event type, as depicted

in Figure 8. For example, a clustering accuracy of 50% indicates that

half of the training labels selected at random are made incorrect

on purpose. We repeat this process a thousand times and report

the average for each data point in this figure. We show the result

of five occupants case as an example. This figure illustrates that as

the clustering accuracy increases, the corresponding classification

accuracy also increases (with 100% corresponding to known labels).

We now evaluate the performance of the Clustering Module. The

clustering accuracy is computed as Rand Index [38], which is defined
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Figure 8: Figure depicts how varying clustering accuracy af-

fects classification accuracy by artificially setting clustering

accuracy from 25% to 100% for each event type (for five occu-

pants case). Classification accuracy increases as clustering

accuracy increases for all event types.
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Figure 9: Figure depicts clustering accuracy when varying

number of occupants for each event type (for unknown la-

bels scenario). Knock and Drawer yield decreasing accuracy

while other event types yield increasing accuracy, as the

number of occupants increase.

as Equation 3:

Clustering Accuracy (Rand Index) =
TP +TN

TP +TN + FP + FN
, (3)

where TP, TN, FP, and FN, are True Positive and Negative, and False

Positive and Negative, respectively. Figure 9 depicts the clustering

accuracy (i.e., Rand Index), when we vary the number of occupants

i = 2, ..., 5. Each of the data points is an average of all possible

combinations of i occupants,
(5
i

)
. Furthermore, we report the av-

erage of a thousand iterations for all instances. We note that the

clustering accuracy decreases as the number of occupants increase

for Knock and Drawer event types. However, the rest of the event

types yield results that have increasing clustering accuracy as the

number of occupants increase. This is because Knock and Drawer,

which yield high classification accuracy for Known Labels scenario,

have features that are sufficiently differentiable, while the rest of

the event types do not follow this trend. Hence, during clustering

of two occupants case, the two centroids may be very close to each

other, yielding low clustering accuracy. However, when the num-

ber of occupants increase, more centroids are introduced, yielding

higher clustering accuracy.
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Figure 10: Figure depicts the classification accuracy when

varying number of occupants for each event type, for the

unknown labels scenario. As number of occupants increases,

corresponding accuracy also decreases.

Finally, we evaluate the classification accuracy of SenseTribute’s

Unknown Labels scenario (i.e., output of Testing Module). We com-

pute the classification accuracy in a similar manner to the afore-

mentioned Figure 8, namely purposely degrading the correctness

of the training label. Only this time, we take the actual empirical

results of clustering accuracy from Figure 9 instead of the artificial

numbers. We apply this strategy rather than directly applying the

output of the clustering indices as the training label. This is because

Clustering Module outputs clustered indices, which is at times dif-

ficult to map to corresponding ground truth labels. However, this

is necessary when computing the final classification accuracy for

evaluation purposes. While improving clustering algorithm would

certainly help to solve this issue, we concentrate on evaluating

the effects of clustering accuracy on classification accuracy. Fig-

ure 10 depicts the effect of the classification accuracy as we vary

the number of occupants, where each data point, again depicts an

average of all possible
(5
i

)
combinations, and each combination is an

average of 10-fold cross validation (i.e., Leave-One-Out). We make

two interesting observations. First, similar to Figure 6 of the Known

Labels scenario, this figure depicts an intuitive trend of decreasing

classification accuracy as the number of occupants increase. This

trend exists even for the event types that have increasing clustering

accuracy with number of occupants from Figure 9. This is because

the effect of increasing the number of SVM classes outweighs the

effect of correct labels. Second, we also observe that classification

accuracy are relatively lowered compared to Figure 6 of Known

Labels scenario due to the incorrect labels.

4.4 Ensemble Classification Accuracy

Wenow evaluate SenseTribute’s EnsembleModule for both the known

and unknown labels scenarios. To provide a comprehensive view of

how the number of ensemble event types, and availability of training

labels affect the classification accuracy, we present Figure 11. We

report the classification accuracy when varying number of events

to ensemble from j = 2, ..., 6, where each variation is an average

of all
(6
j

)
combinations. Again, each combination is an average of

10-fold cross valuation (i.e., Leave-One-Out). We artificially assign

equal clustering accuracy per event type, again by artificially de-

grading the correctness of training label accordingly. We degrade

different training label at random, and repeat this process for a
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Figure 11: Figure depicts how (1) number of ensemble event

types; and (2) availability of training labels affect classifica-

tion accuracy. We artificially assign equal clustering accu-

racy per event type. As number of ensemble event types in-

creases, accuracy increases, except for the 25% case. Also,

lower per event type clustering accuracy yields lower clas-

sification accuracy due to more mislabeled training data.
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Figure 12: This figure depicts increasing classification accu-

racy as we ensemble more number of event types, for both

Known andUnknown Labels scenarios.We observe high clas-

sification accuracy even if the training labels are not known.

thousand times to report an average value. Each of the lines plots

depict different clustering accuracy – 25%, 50%, 75%, and 100% –

assigned per event type. The 100% clustering accuracy line graph

represents the known labels scenario. We observe the trend of in-

creasing classification accuracy as we ensemble more event types.

This is intuitive as we have more information content to amplify

the confidence of occupant identification. The 25% per event type

curve does not follow this trend, however, due to the fact that most

of the training labels are incorrect, which would actually hurt the

performance as the number of event types increases.

Noting the effects of number of event types and availability of

training labels on classification accuracy, we now evaluate the per-

formance of ensemble for both known and unknown labels scenarios,

as depicted in Figure 12. From these two plots, we make the follow-

ing two observations. (1)We observe that the classification accuracy

increases as we ensemble more event types for both known and un-

known labels scenarios. For example, we observe for the unknown

labels scenario, an increase from 84% to 96%. This is intuitive, and

in fact, one of the main contributions of SenseTribute, as increasing

information content ultimately amplifies the accuracy of occupant

identification. (2) We observe only a small difference in the result-

ing classification accuracy between the known and unknown labels
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Figure 13: Figure depicts classification accuracy of ensemble

of event types for different occupants when labels are known.

As the number of ensemble event types increases, the accu-

racy also increases.
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Figure 14: Figure depicts classification accuracy of ensemble

of event types for different occupants when labels are un-

known. As the number of ensemble event types increases, the

accuracy also increases.

scenarios. We further observe that the difference reduces as we

ensemble more event types. This important observation means that

SenseTribute provides a practical solution that does not require users

to provide manual labels with no significant impact on occupant

identification.

We also present the classification accuracy per occupant for

different number of event types. Again, we report the average over

all combinations. Figures 13 and 14 depict the corresponding results

for known and unknown labels scenarios, respectively. For both

figures, we observe the similar trend as we ensemble more number

of event types, we achieve higher classification accuracy.

5 DISCUSSION

In this section, we further discuss practical considerations and

directions for further study with respect to activity segmentation,

unsupervised learning techniques, and sensor calibration.

5.1 Additional Contextual Information

We highlight two additional contextual information that may poten-

tially be helpful for SenseTribute, namely order and time of events.

In this work, we design SenseTribute to perform occupant identifica-

tion based on the results of activity segmentation, which provides

a sequence of events that are performed by a single person. In

Section 4, we evaluate scenarios where the order of events (in an

activity segment) are same across different participants. However,

in practice, there is a high probability that the order may vary. For

example, when making a bowl of cereal, PersonA may take out

a bowl from cabinet, milk from fridge, and cereal from cupboard,

while PersonB may perform the same activity in an opposite order.

In addition, different occupants may conduct the same activity at

different times of the day. For example, PersonA usually makes ce-

real around 8 a.m., while PersonB does the same at 10 a.m. Taking

the above two observations into account, we hint at the possibility

of a hybrid approach of solving both the activity segmentation

and occupant identification problem simultaneously. This hybrid

approach would potentially increase the performance with the ad-

ditional contextual information. Furthermore, the hybrid approach

may even increase the identification accuracy despite inconsisten-

cies in different interactions by the same user over time, or similar

interactions by different users.

5.2 Unsupervised Learning

Recall that when the training labels are not provided by the user,

SenseTribute utilizes clustering to infer the quasi-training labels.

We evaluate our results by clustering the history data during boot-

strapping phase. When SenseTribute is deployed in practice, we can

utilize online learning techniques [12, 13, 29] to improve the results

of clustering. This is because, over time, the clustering accuracy

would increase as the system collects more data, ultimately leading

to potentially higher identification accuracy.

Furthermore, in our evaluation, we assume the knowledge of

“K” (i.e., number of occupants) in the K-means clustering algorithm.

We make such assumptions because it is practical to have such

prior knowledge of how many people live at home. Granted, we

note that if guests are introduced to smart home, it may lead to less

accurate results. In practice, however, there are clustering methods

to estimate the optimal “K”, such as Elbow method [26]. Also, there

are other clustering algorithms that do not require the number of

clusters [19]. However, we leave this study for future work.

5.3 Sensor Calibration

Recall from our evaluation that we deploy sensors on different ob-

jects with consistent orientation of accelerometers and gyroscopes

as presented in Section 4.1. While we conducted the experiment as

a proof-of-concept, in practice, we cannot assume such deployment.

Hence, the system would need a simple but important calibration

phase, to identify the axes that have relatively richer information

content. SenseTribute may benefit from the calibration phase, as

identifying a specific set of features and axes per object and/or event

type would ultimately increase the identification performance.

6 CONCLUSION

We present SenseTribute, a smart home occupant identification sys-

tem that leverages existing and prevalent on-object sensing devices

equipped with inertial sensors, which are traditionally designed to

monitor status of objects such as doors. SenseTribute re-purposes

these devices, and exploits machine learning techniques to pro-

vide a low-cost, non-intrusive, and practical occupant identification

system in a smart home with high accuracy, even when training

labels are unavailable. Furthermore, SenseTribute combines infor-

mation from multiple sensors on different objects to amplify the

identification accuracy. We evaluate SenseTribute using real-world
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experiments with five on-object sensors deployed on distinct ob-

jects. The system achieves identification accuracy of 96% when

the training labels are unknown, while only achieving per-object

accuracy of 74% on average even when the labels are known.
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