
Leveraging SDN to Enable Short-Term

On-Demand Security Exceptions

James Griffioen, Zongming Fei, Sergio Rivera, Jacob Chappell, Mami Hayashida,

Pinyi Shi, Charles Carpenter, Yongwook Song, Bhushan Chitre, Hussamuddin Nasir, Kenneth L. Calvert

Laboratory for Advanced Networking, University of Kentucky

Lexington, Kentucky 40506–0495

Emails: {griff,fei,sergio,jacob,mhaya2,pinyishi,charles,ywsong2,bhushan,nasir,calvert}@netlab.uky.edu

Abstract—Network security devices intercept, analyze and act
on the traffic moving through the network to enforce security
policies. They can have adverse impact on the performance,
functionality, and privacy provided by the network. To address
this issue, we propose a new approach to network security based
on the concept of short-term on-demand security exceptions. The
basic idea is to bring network providers and (trusted) users to-
gether by (1) implementing coarse-grained security policies in the
traditional way using conventional in-band security approaches,
and (2) handling special cases policy exceptions in the control
plane using user/application-supplied information. By divulging
their intent to network providers, trusted users can receive better
service. By allowing security exceptions, network providers can
focus inspections on general (untrusted) traffic. We describe
the design of an on-demand security exception mechanism and
demonstrate its utility using a prototype implementation that
enables high-speed big-data transfer across campus networks.
Our experiments show that the security exception mechanism can
improve the throughput of flows by trusted users significantly.

Keywords-software defined networking, security appliance,
middleboxes, trusted flows

I. INTRODUCTION

Network security devices that enforce policy have become

highly sophisticated and are now pervasive across campus,

corporate, and provider networks. Examples of these special

purpose middleboxes include firewalls, intrusion detection

systems (IDS), intrusion prevention systems (IPS), network

address translators (NAT), traffic shapers, rate limiters, and

load balancers. These devices intercept and inspect all traffic

moving through the network in order to apply and enforce

policies—including security policy.

All such middleboxes add varying amounts of delay. More-

over, some middleboxes—especially those that perform deep

packet inspection (DPI)—can limit throughput and become

choke points when performance is a primary consideration.

Middlebox functionality based on Software-Defined Network-

ing (SDN) can be even worse, diverting packets to software

controllers. For example, high performance computing (HPC)

systems often encounter performance-limiting bottlenecks re-

sulting from policy-enforcing middleboxes in the (campus)

network.

In addition, network security devices often require policies

to be expressed in terms of network-level abstractions such as

IP addresses and ports. Some DPI-based services inspect every

packet for well-known byte patterns that signal malicious

content. In contrast, security policies should really be about

higher-level abstractions such as users (or roles), applications,

intent, or time of day. It is well-known that such higher-

level policies are difficult to map perfectly onto network-

level abstractions, so that a middlebox may not be able to

precisely implement a desired high-level policy. The result is

collateral damage, where the middlebox ends up either over-

protecting (blocking traffic that does not need to be blocked,

thereby limiting functionality) or under-protecting (passing

traffic that should have been blocked, thereby increasing risk).

The classic under-protection example is a “Science DMZ” [1]

placed at the edge (outside) of the campus network that

undergoes minimal policy enforcement/protection so that HPC

resources and applications can avoid performance-limiting (but

otherwise helpful) campus middleboxes.

Security is always a tradeoff among various costs and ben-

efits, including performance, operational and capital expenses,

and user (in)convenience. In this paper, we argue that the

complex and dynamic policy needs of IT environments make it

worthwhile to re-examine the tradeoffs involved in the coarse-

grained, middlebox-based approach to network security—

especially for campus networks. We are therefore exploring

a new approach to network security by refining the middlebox

approach using SDN.

The basic idea of our approach is to use traditional security

appliances (that have been optimized and hardened) to provide

a base level of coarse-grained policy enforcement on untrusted

traffic, noting that the performance costs increase with increas-

ing policy complexity as well as traffic volume. To address

the security performance cost issue, we support the ability

to establish trust relationships between users and network

providers. These trust relationships can then be used to create

fine-grained, short-term, trusted, on-demand exceptions to the

base policies – implemented using SDN – that increase the

performance of trusted traffic, while keeping the cost of the

base-level down. In addition, some enforcement decisions

(i.e., whether to grant an exception) can be moved from the

data plane to the control plane, where they can be based

on authenticated information provided by users indicating

conformance (or not) to higher-level policy. In other words,

if trusted users are willing to divulge their intent to network

providers, their traffic can bypass the scrutiny—and associated978-3-903176-15-7 c© 2019 IFIP

costs—applied to the traffic of other (less-trusted) users. More

precisely, negotiated security exceptions can allow users to

bypass certain middleboxes, allow otherwise prohibited traffic

to temporarily traverse the network, or offer some level of

QoS to authorized flows. Exceptions might be made to stop

normally-allowed traffic as well, for example to block or rate-

limit unwanted traffic that would otherwise be delivered to a

user.

The remainder of the paper is organized as follows. Sec-

tion II presents a new model based on security exceptions.

Section III describes an initial prototype implementing secu-

rity exceptions, with the goal of improving the transmission

of big data. Section IV provides performance improvement

results when on-demand security exceptions are instantiated.

Section V discusses related work and Section VI concludes

the paper.

II. ON-DEMAND SECURITY EXCEPTIONS

Our proposed security approach splits the enforcement of

high-level policy into two pieces. First, network administra-

tors define general base network security policies to address

common security issues and concerns, and deploy them to

middleboxes much as they do today. These policies can be

simple and even imprecise (e.g., erring on the restrictive

side) or slow (e.g., employing extensive DPI) since authorized

special-case traffic (e.g., traffic from trusted users requiring

high performance) will be handled by exceptions and avoid

these costly general checks. These base policies can be de-

ployed over long timescales as they are not intended to change

frequently.

The second part consists of short-term on-demand excep-

tions to the base policies. Providers (e.g., network operators,

ISPs) grant policy exceptions to users—or their applications—

that supply (trustworthy) information about their network traf-

fic and intent. Unlike general policies, exceptions are intended

to be narrowly limited in scope and defined and instantiated

on short timescales, thereby allowing the network to quickly

adapt policy to meet the current needs of applications, or

to address the current security needs of the network. These

dynamically created, flow-specific, limited lifetime exceptions

can be implemented through recent advances in SDN [2] (al-

though one could envision a scaled-back version of exceptions

implemented on conventional switches/routers/middleboxes—

e.g. SNMP or NETCONF/Yang).

A. Example Exceptions

As one example, consider an application that needs to move

a large data set between a national supercomputer facility

and the local campus HPC supercomputer. In this case, the

user might present the network with information about the

transmissions (e.g., type of data being transferred, the source

and destination of the flows, or possibly things like the NSF

project number associated with the flows). Based on this

information, the provider might decide to allow a security

exception in which such application flows are (temporarily)

routed around the network’s IDS/IPS system to avoid its

throughput-limiting DPI, thus enabling the flow to operate at

much higher transfer rates.

As another example, consider a policy exception that al-

lows a highly interactive distributed application (e.g., a web

conferencing application or an interactive game) to utilize low-

latency network paths (as opposed to the default paths) among

all participants in order to reduce delay, thereby improving

the responsiveness of the application. Or consider a policy

exception that is dynamically created to allow an authenticated

collaborating researcher to use ssh from a specific end system

in the Internet, to punch through a campus firewall and access

a private git server containing shared data, without the need

to set up a VPN.

All three examples above illustrate cases where general

network security policy imposes costs by limiting bandwidth,

causing sluggish behavior (high latency), or blocking legit-

imate users from accessing resources that should be shared.

Exceptions allow users to advertise beforehand the details (e.g.

type, requirements) of their traffic in order to justify their

need for special treatment to the network provider. Given this

information, providers no longer need to subject these flows

to the general policy enforcement mechanisms.

B. Design Considerations

The notion of creating exceptions to security policy raises

questions about how such exceptions are specified and how

decisions are made. As noted in the examples above, excep-

tions must be vetted by the real-world authorities responsible

for the network. In a sense, our approach moves some policy

enforcement decisions from the data plane, where every packet

is inspected by middleboxes, to the control plane. Whereas

middlebox-based enforcement decisions must occur at (or

near) line rate, control-plane decisions take place on the

(slower) flow-initiation timescale.

One benefit is that the decision to grant an exception

can be, and should be, tied to the abstractions of high-

level flow instantiation policies (user IDs, role identifiers,

classes of applications, etc.) rather than the addresses, ports,

and byte patterns of low-level packet policies. Another is

that the decision to grant an exception can be based on

trustworthy information, because flow-initiation timescales

make the use of cryptographic authentication of higher-level

abstractions feasible. Moreover, because trust is with users

and their applications, the number of trusted entities and their

flows is relatively small and remains manageable (i.e., not

tens/hundreds of thousands) – the term exception, after all,

connotes something unusual occurring somewhat infrequently

– preventing the exception mechanism itself from becoming a

bottleneck.

Finally, the SDN infrastructure, as a means to bypass basic

security policy enforcement, is part of the attack surface.

Consequently, we take steps to protect and harden it against

compromise. However, it should be noted that this problem

exists for any SDN deployment, regardless of the way it is

used, and we argue that adoption of SDN will require network

elements that are at least as resistant to attack as existing

middleboxes.

C. An Exception System

To support our security model, we divide the exception

system into two parts: (1) a human interface for defining

trust policies, and (2) an automated request/response system

that applications can contact to request exceptions. The first

involves formulating high-level policies that define trusted

flows. These decisions are made on human timescales and

often involve human validation of the policy. The second

involves automatically changing the network state (using SDN)

to implement the exception.

The goal of the first part of the exception system is to

associate users/roles with specific flows—essentially to pro-

vide a “responsible party” for each flow granted an exception.

To allow delegation of responsibility, the mechanism utilizes

an authorization tree that arranges the set of all possible

network flows into a hierarchy where each (child) node in

the hierarchy represents a subset of the flows in the parent

node. One or more users are then associated with each

node in the tree, giving them authority to define allowable

exceptions for that portion of the flow space. This allows

users to delegate responsibility for certain flows to other users,

creating hierarchical authorization schemes consistent with the

organization of administrative responsibility in the Internet.

Each node in the tree identifies a portion of the possible flow

space and has an associated exception specification (ESpec)

that determines whether to grant or deny an exception. An

ESpec is essentially a small piece of code that is executed by

the automated exception service over the information provided

in the exception request (e.g., who, what, when, where) as well

as information about the current status of the network (e.g.,

load, other exceptions currently installed, available resources,

etc). While one could envision these pieces of code being

written in a general purpose language as “plugins” to nodes

in the authorization tree, such a design would make it more

difficult for humans to verify that a plugin is enforcing the

policy correctly. As a result, we expect that ESpecs would

be specified in a high-level policy definition language (or

specialized markup) that could be easily compared against the

intended policy exceptions without exposing the complexity

of low-level implementation details to deploy an exception.

To provide an example of what an ESpec policy definition

language might look like, consider the following language

used to define allowed exception requests (which we will use

in later examples):

Request Type: Add | Remove | Update

Auth Credentials: User ID | App ID

Match → Action:
<FlowSpec> → Max Bandwidth Path |
<FlowSpec> → Min Latency Path |
<FlowSpec> → Min Hop Count Path |
<FlowSpec> → Block

Network Condition: (for example) Path Load < 10% |
Current Time is in [22:00, 05:00]

Exception Lifetime: Flow Duration

The automated part of our exception system accepts excep-

tion requests from trusted users or their application – specified

in the above language to create (Add) on-demand exceptions

(or Update/Remove existing exceptions). The information

in the request is evaluated to determine if an exception

should be granted (e.g., checking validity of credentials, ESpec

format, valid request type, matches flowspec, etc). If the

ESpec is valid, the system creates the exception by invoking

SDN network management actions (e.g., computing OpenFlow

rules, resolving domain names, etc) to deploy the exception to

the appropriate network elements.

III. A PROTOTYPE SYSTEM

As an example of applying the on-demand security excep-

tion model, we implemented a prototype system called VIP

Lanes [3]. The objective of the VIP Lanes system is to support

on-demand security exceptions that enable high-speed big-data

flows to use paths that bypass campus network performance-

limiting middlebox policy enforcement.

Fig. 1. An example Authorization Tree, delegating responsibility for the VIP
Lane flowspace to the responsible parties.

A. A VIP Lanes Authorization Tree

The first step is creating the authorization tree described in

Section II-C. Figure 1 shows an example VIP lanes authoriza-

tion tree that specifies the trust relationships among network

operators (providers).

Recall that the objective is to divide up the flowspace

in a hierarchical manner, delegating the task of defining

allowable flow exceptions to the (human) users responsi-

ble for those flows. In the context of a campus network,

the root of the authorization tree would be defined by

the Campus IT staff (Auth[Campus IT]) and would en-

compass all flows on campus (i.e., match[src=*, dst=*]).

Campus IT might delegate the definition of exceptions for

secure copy (scp) flows originating from the College of

Science (match[src=128.123.0.0/20,dstport=22]) to the IT staff

in the College of Science (Auth[CoS IT]). CoS IT staff

members might further delegate the definitions of excep-

tions for scp flows originating in the Biology Department

(match[src=128.123.0.0/24,dstport=22]) to the IT staff in Bi-

ology (Auth[Bio IT]). Bio IT staff might further delegate

the definition of scp exceptions for traffic originating in the

Genomics Lab (match[src=128.123.0.64/27,dstport=22]) to the

Genomics project members (Auth[Genomics, Bio IT]) while

retaining control of those definitions by Bio IT as well.

The tree presented in Figure 1 also defines the ESpecs used

to grant exceptions on demand. For example, the ESpec for

flows controlled by the Genomics Lab allows users in the

Genomics group to instantiate exceptions that request (1) a

(bypass) path that offers maximum bandwidth (max bw) or

minimum hop count (min hops), (2) an exception lifetime

matching the flow’s lifetime, and (3) the stipulation (condition)

that it be between 5pm and 7am.

B. Instantiating VIP Lane Policy Exceptions

Given a VIP Lanes authorization tree, users (or their ap-

plications) can request that specific exceptions be granted

and instantiated via SDN in the network. Exceptions can be

requested in one of two ways. In the first method users provide

their institutional account credentials to login to the VIP Lanes

web server, which authenticates the identity of the user, checks

if the user is authorized to instantiate the exception, invokes the

VIP Lanes path computation service to discover a middlebox-

free path, and then uses SDN to push the exception into

the network. The second method involves linking applications

with a wrapper library that obtains socket information when

a new connection is being established, and communicates

with the VIP Lanes server to make the instantiation request,

providing the user’s credentials and flow characteristics needed

to validate the request and ultimately install it in network

devices along the desired path.

C. Securing the VIP Lanes Exception Mechanism

As we have shown, on-demand security exceptions opens

up novel opportunities to improve performance, functionality,

and privacy. However, it also opens up potentially dangerous

new avenues of attack— including attacks where an attacker

could “open up” the campus network with exceptions, or

worse yet, gain complete control of the underlying pro-

grammable network. As illustrated in Figure 2, the VIP Lanes

exception system consists of several components—including a

VIP Lanes monitoring system and databases that are outside

the scope of this paper—creating a reasonably broad attack

surface. Consequently, it is critical that we secure the VIP

Lanes exception system itself.

To ensure the security of the VIP Lanes system itself, VIP

Lanes utilizes two levels of defense. First, it uses best-of-

breed (web) practices to protect user-facing APIs. Second, it

protects the SDN controller (which has complete control over

the network) by employing a VIP Lanes proxy (a VIP Lanes-

specific gateway) to tightly constrain the types of requests that

can be sent to the controller.

Fig. 2. Components of the VIP Lanes exception service, and al-
lowed/forbidden communication among components.

On the user-facing side, only APIs from the VIP Lanes

web server and the monitoring system are exposed. Other

database services are protected by firewall rules, only allowing

access from the VIP Lanes web server and monitoring system.

Moreover, because the VIP Lanes web server and monitoring

service have IP addresses that are only routeable internally,

only applications running in the campus network can request

VIP Lanes or view VIP Lanes traffic. The user-facing APIs are

accessed over an encrypted channel (i.e. HTTPS) and require

an industry standard username/password (web interface) or an

identity key (wrapper).

To protect the SDN controller, we deployed a VIP Lanes

Proxy (gateway) that inspects all requests sent from the

VIP Lanes server to the SDN controller. Although the SDN

controller supports a wide range of network management

actions via its northbound interface (NBI), the VIP Lanes

server only needs to use a small number of them to monitor

and deploy security exceptions. It should be noted that the

NBI of existing SDN controllers have widely varying access

control mechanisms. Ideally they would offer a per-user or

per-role authentication method. Unfortunately, robust access

control mechanisms are often not included with current SDN

controllers to the point that some of them (e.g., Floodlight,

RYU, or POX) do not provide access control for REST-based

APIs whatsoever. The Aruba VAN controller supports a very

limited Role Based Access Control (RBAC) that currently

provides a single role with access to all controller features (i.e.

sdn-admin), giving far more control than is needed by the VIP

Lanes exception server. If an attacker were to gain access to

the sdn-admin role, they could bring ports up/down, capture

any packet, inject traffic, or worse – all being capabilities not

needed by the VIP Lanes exception service.

To reduce the risk of attack but yet work with existing

controllers, the VIP Lanes Proxy is the only entity authorized

to access the SDN controller’s APIs. All calls to the controller

TABLE I
EXAMPLE WHITELIST ENTRIES IN A VIP LANES PROXY

Cert CN Field Authorized SDN Controller APIs HTTP Commands Allowed

vip-site.uky.edu ˆ/sdn/viplanes/ab01[a-f0-9]{12}$ GET, POST, DELETE

vip-site.uky.edu ˆ/sdn/v2\.0/of/datapaths/[ˆ/]+/ports/[ˆ/]+$ GET

vip-stats-db.uky.edu ˆ/sdn/stcl/stats/counters$ GET

must go through the VIP Lanes Proxy which inspects the API

calls and blocks any calls that invoke controller capabilities

that are not needed by the VIP Lanes exception server. In

addition, the VIP Lanes Proxy serves as a certificate authority,

signing client certificates (i.e. one for each component in

the VIP Lanes system) so that clients can be identified and

associated with a list of APIs they are authorized to invoke

(i.e. a whitelist). (Note that if the SDN controller has no access

control, a firewall – either standalone or on the controller, say

via iptables – is needed to ensure packets cannot bypass

the VIP Lanes Proxy to reach the controller.)

The data structure used to implement the VIP Lanes Proxy

whitelist functionality is a map of clients (identified by the

Common Name (CN) field of their signed certificates) to

URLs (REST endpoints) that components are permitted to use

(including the HTTP commands they are allowed to use per

endpoint). Table I shows example whitelist entries, where the

URLs are specified as extended regular expressions to narrow

down the action field. For instance, the first entry enforces

all VIP Lanes management calls to use our own structured

identifiers, isolating on-demand exceptions from the default

general policies controlling campus traffic, and obscuring the

meaning of an identifier from would-be attackers.

On a similar note, if an attacker compromised the monitor-

ing system and then asked the SDN controller (via the VIP

Lanes Proxy) to make a change to the network, its connection

to the VIP Lanes Proxy would be ignored by the VIP Lanes

Proxy, reducing the risk of an attack on the monitoring system.

Note that the monitoring system would still be able to invoke

request for read-only information.

IV. EXPERIMENTAL RESULTS

We used VIP Lanes to deploy high-bandwidth on-demand

exceptions at different locations on our campus network

(Figure 3) to reach sites that are known to be used for

research activites and therefore, trusted. Specifically, we ran

experiments to measure throughtput to ESnet sites located in

different geographic regions of the United States (San Diego,

Washington D.C., and Chicago) and the Data Transfer Node

(DTN) of the University of Kentucky which is located in the

Science DMZ hanging off of the university’s edge router.

We ran all the tests on a Macbook Pro with an Intel Core i5

processor 2.4 GHz, 16 GB RAM, and an external Thunder-

bolt2 10G adapter. In order to maximize the performance per

test, some variables of the system’s TCP/IP stack (e.g. TCP

window scale factor or receive buffer) were tuned following

the recommendations published by ESnet [4].

For each site and building we measured two throughputs

using the bwctl tool. First, we recorded the performance

obtained by letting the Normal campus network security

Fig. 3. SDN-enabled campus topology used to deploy exceptions

appliances inspect packets to enforce policies. Afterwards, we

deployed short-lived security Exceptions from the laptop to the

trusted sites. Lastly, we started the second set of performance

measurements using the allocated path. We observed that on

average, it takes 314 ms to deploy each exception in the data

plane. Since this step happens before a flow is initiated, it has

no impact on the performance gains obtained.

Table II shows the data collected after running the above

experiments. At a first glance, it is clear that using the VIP

Lanes exception mechanism researchers on our campus in

most cases could benefit from a performance boost from tens

of megabits per second (under normal conditions) to multiple

gigabits per second (using exceptions). Unsurprisingly, the

improved throughput was affected by the geographic location

of the trusted site, e.g., speeds to the DTN reached close

to 7.2 Gbps whereas measurements at San Diego (on the

opposite coast of our campus) were below the 700 Mbps mark.

Nonetheless, as can be seen in Figure 4, the speedup factor,

i.e., how much faster the throughput is by using exceptions,

was not necessarily bound to geographic location. For instance,

the improvement from AG to the DTN was only of 11x

the normal throughput, whereas from that same location to

TABLE II
THROUGHPUT FROM DIFFERENT BUILDINGS TO TRUSTED SITES*

Site KSL JFH JSB AG

San Diego, CA 31.3 (669) 28.8 (671) 31 (669) 19 (663)
Chicago, IL 182 (3959) 36.4 (3129) 95.4 (3974) 74.1 (3707)

Washington, D.C. 70 (1289) 29.4 (1400) 69.4 (1570) 56.7 (1532)
DTN 300 (7120) 67.7 (7140) 320 (7200) 644 (7123)

*The numbers are shown as Normal (Exception) throughput in Mbps

Chicago ESnet site the factor jumped to 50x. In most of the

cases, the speedup factor was higher than 20x with only two

data points sitting below such value.

Median

Fig. 4. Speedup factors at different sites using exceptions

V. RELATED WORK

Different stakeholders in the network often have interests

that may be adverse to each other, but accommodating these

competing interests is crucial to the design of future net-

works [5]. In our previous work [3], we laid the groundwork to

support alternative paths for approved research traffic. This pa-

per describes a way to specify on-demand security exceptions

that leverage those paths. The Internet Architecture Board’s

“Stack Evolution” program [6] considered a similar problem

and proposed a solution to endpoint-middlebox communica-

tion where application and network provide hints to each

other to convey intent in return for better service. However,

their focus was on evolving the transport layer to address

ossification issues, as opposed to developing a generalized

model that includes real-world (human) policies to improve

communication performance, functionality, and privacy.

The Switchboard project [7] allows for the creation of

campus SDN paths to achieve high-speed data transfers, but

uses a heavy-weight approval process involving the managers

of the networks traversed. The DANCES project [8] targets

data transfers between HPC sites and uses OpenFlow to

create QoS paths. Requests are handled by HTTP calls to a

centralized coverning authority using authentication keys.

Various projects have proposed approaches that use SDN to

implement access control mechanisms in the network [9]–[12].

These approaches focus on access control as opposed to secure

high-speed path exceptions. Moreover, they are often tightly

integrated with the internals of a particular SDN controller

and its southbound API. In contrast, the VIP Lanes Proxy is

controller-agnostic and only relies on a controller’s northbound

API.

VI. CONCLUSION

We proposed a new framework for handling security issues

based on the on-demand security exceptions model. Short-

term, on-demand, fine-grained exceptions provide an oppor-

tunity for trusted (and authenticated) users to declare the

intent of their traffic, and in return get better service. The

approach also allows service providers to define simpler, long-

term policies and to focus data-plane security scrutiny on

general traffic. We described a prototype implementation of

the security exception mechanism to improve the high-speed

big-data transfer in our campus network. Our experimental

results demonstrate that the transfer rate of trusted users can

be improved significantly when on-demand exceptions allow

them to bypass middleboxes. Future work includes refining

the exception specification mechanism and investigating other

contexts in which the exception model can be usefully applied.

ACKNOWLEDGMENT

The work of Kenneth L. Calvert was supported by the National

Science Foundation during his assignment there. The work of

other authors was supported in part by the National Science

Foundation under Grants ACI-1541380, ACI-1541426, and

ACI-1642134.

REFERENCES

[1] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The
Science DMZ: A Network Design Pattern for Data-intensive Science,”
in Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, ser. SC ’13. New York,
NY, USA: ACM, 2013, pp. 85:1–85:10.

[2] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[3] J. Griffioen, K. Calvert, Z. Fei, S. Rivera, J. Chappell, M. Hayashida,
C. Carpenter, Y. Song, and H. Nasir, “VIP Lanes: High-speed custom
communication paths for authorized flows,” in Proceedings of the 26th

International Conference on Computer Communications and Networks

(ICCCN 2017), July 2017, Vancouver, Canada.
[4] Energy Sciences Network, “Host tuning,” https://fasterdata.es.net/

host-tuning/.
[5] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, “Tussle

in cyberspace: defining tomorrow’s Internet,” SIGCOMM Computer

Communication Review, vol. 32, no. 4, pp. 347–356, Oct. 2002.
[6] Internet Architecture Board, “IAB Workshop on Stack Evolution in a

Middlebox Internet (SEMI),” https://www.iab.org/activities/workshops/
semi/, January 2015.

[7] “Duke University SDN,” https://sites.duke.edu/dukesdn/.
[8] V. Hazlewood, K. Benninger, G. Peterson, J. Charcalla, B. Sparks,

J. Hanley, A. Adams, B. Learn, R. Budden, D. Simmel, J. Lappa, and
J. Yanovich, “Developing Applications with Networking Capabilities
via End-to-End SDN (DANCES),” in Proceedings of the XSEDE16

Conference on Diversity, Big Data, and Science at Scale, ser. XSEDE16.
New York, NY, USA: ACM, 2016, pp. 29:1–29:7.

[9] F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, “Access Control for
SDN Controllers,” in Proceedings of the Third Workshop on Hot Topics

in Software Defined Networking (HotSDN’14). New York, NY, USA:
ACM, 2014, pp. 219–220.

[10] S. T. Yakasai and C. G. Guy, “FlowIdentity: Software-defined network
access control,” in 2015 IEEE Conference on Network Function Vir-

tualization and Software Defined Network (NFV-SDN), Nov 2015, pp.
115–120.

[11] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob, “FlowNAC:
Flow-based Network Access Control,” in 2014 Third European Work-

shop on Software Defined Networks, Sept 2014, pp. 79–84.
[12] P. A. Porras, S. Cheung, M. W. Fong, K. Skinner, and V. Yegneswaran,

“Securing the Software Defined Network Control Layer.” in NDSS, 2015.

