Leveraging SDN to Enable Short-Term
On-Demand Security Exceptions

James Griffioen, Zongming Fei, Sergio Rivera, Jacob Chappell, Mami Hayashida,
Pinyi Shi, Charles Carpenter, Yongwook Song, Bhushan Chitre, Hussamuddin Nasir, Kenneth L. Calvert
Laboratory for Advanced Networking, University of Kentucky
Lexington, Kentucky 40506-0495
Emails: {griff,fei,sergio,jacob,mhaya2,pinyishi,charles,ywsong2,bhushan,nasir,calvert } @netlab.uky.edu

Abstract—Network security devices intercept, analyze and act
on the traffic moving through the network to enforce security
policies. They can have adverse impact on the performance,
functionality, and privacy provided by the network. To address
this issue, we propose a new approach to network security based
on the concept of short-term on-demand security exceptions. The
basic idea is to bring network providers and (trusted) users to-
gether by (1) implementing coarse-grained security policies in the
traditional way using conventional in-band security approaches,
and (2) handling special cases policy exceptions in the control
plane using user/application-supplied information. By divulging
their intent to network providers, trusted users can receive better
service. By allowing security exceptions, network providers can
focus inspections on general (untrusted) trafficc We describe
the design of an on-demand security exception mechanism and
demonstrate its utility using a prototype implementation that
enables high-speed big-data transfer across campus networks.
Our experiments show that the security exception mechanism can
improve the throughput of flows by trusted users significantly.

Keywords-software defined networking, security appliance,
middleboxes, trusted flows

I. INTRODUCTION

Network security devices that enforce policy have become
highly sophisticated and are now pervasive across campus,
corporate, and provider networks. Examples of these special
purpose middleboxes include firewalls, intrusion detection
systems (IDS), intrusion prevention systems (IPS), network
address translators (NAT), traffic shapers, rate limiters, and
load balancers. These devices intercept and inspect all traffic
moving through the network in order to apply and enforce
policies—including security policy.

All such middleboxes add varying amounts of delay. More-
over, some middleboxes—especially those that perform deep
packet inspection (DPI)—can limit throughput and become
choke points when performance is a primary consideration.
Middlebox functionality based on Software-Defined Network-
ing (SDN) can be even worse, diverting packets to software
controllers. For example, high performance computing (HPC)
systems often encounter performance-limiting bottlenecks re-
sulting from policy-enforcing middleboxes in the (campus)
network.

In addition, network security devices often require policies
to be expressed in terms of network-level abstractions such as
IP addresses and ports. Some DPI-based services inspect every

978-3-903176-15-7 © 2019 IFIP

packet for well-known byte patterns that signal malicious
content. In contrast, security policies should really be about
higher-level abstractions such as users (or roles), applications,
intent, or time of day. It is well-known that such higher-
level policies are difficult to map perfectly onto network-
level abstractions, so that a middlebox may not be able to
precisely implement a desired high-level policy. The result is
collateral damage, where the middlebox ends up either over-
protecting (blocking traffic that does not need to be blocked,
thereby limiting functionality) or under-protecting (passing
traffic that should have been blocked, thereby increasing risk).
The classic under-protection example is a “Science DMZ” [1]
placed at the edge (outside) of the campus network that
undergoes minimal policy enforcement/protection so that HPC
resources and applications can avoid performance-limiting (but
otherwise helpful) campus middleboxes.

Security is always a tradeoff among various costs and ben-
efits, including performance, operational and capital expenses,
and user (in)convenience. In this paper, we argue that the
complex and dynamic policy needs of IT environments make it
worthwhile to re-examine the tradeoffs involved in the coarse-
grained, middlebox-based approach to network security—
especially for campus networks. We are therefore exploring
a new approach to network security by refining the middlebox
approach using SDN.

The basic idea of our approach is to use traditional security
appliances (that have been optimized and hardened) to provide
a base level of coarse-grained policy enforcement on untrusted
traffic, noting that the performance costs increase with increas-
ing policy complexity as well as traffic volume. To address
the security performance cost issue, we support the ability
to establish trust relationships between users and network
providers. These trust relationships can then be used to create
fine-grained, short-term, trusted, on-demand exceptions to the
base policies — implemented using SDN - that increase the
performance of trusted traffic, while keeping the cost of the
base-level down. In addition, some enforcement decisions
(i.e., whether to grant an exception) can be moved from the
data plane to the control plane, where they can be based
on authenticated information provided by users indicating
conformance (or not) to higher-level policy. In other words,
if trusted users are willing to divulge their intent to network
providers, their traffic can bypass the scrutiny—and associated

costs—applied to the traffic of other (less-trusted) users. More
precisely, negotiated security exceptions can allow users to
bypass certain middleboxes, allow otherwise prohibited traffic
to temporarily traverse the network, or offer some level of
QoS to authorized flows. Exceptions might be made to stop
normally-allowed traffic as well, for example to block or rate-
limit unwanted traffic that would otherwise be delivered to a
user.

The remainder of the paper is organized as follows. Sec-
tion II presents a new model based on security exceptions.
Section III describes an initial prototype implementing secu-
rity exceptions, with the goal of improving the transmission
of big data. Section IV provides performance improvement
results when on-demand security exceptions are instantiated.
Section V discusses related work and Section VI concludes
the paper.

II. ON-DEMAND SECURITY EXCEPTIONS

Our proposed security approach splits the enforcement of
high-level policy into two pieces. First, network administra-
tors define general base network security policies to address
common security issues and concerns, and deploy them to
middleboxes much as they do today. These policies can be
simple and even imprecise (e.g., erring on the restrictive
side) or slow (e.g., employing extensive DPI) since authorized
special-case traffic (e.g., traffic from trusted users requiring
high performance) will be handled by exceptions and avoid
these costly general checks. These base policies can be de-
ployed over long timescales as they are not intended to change
frequently.

The second part consists of short-term on-demand excep-
tions to the base policies. Providers (e.g., network operators,
ISPs) grant policy exceptions to users—or their applications—
that supply (trustworthy) information about their network traf-
fic and intent. Unlike general policies, exceptions are intended
to be narrowly limited in scope and defined and instantiated
on short timescales, thereby allowing the network to quickly
adapt policy to meet the current needs of applications, or
to address the current security needs of the network. These
dynamically created, flow-specific, limited lifetime exceptions
can be implemented through recent advances in SDN [2] (al-
though one could envision a scaled-back version of exceptions
implemented on conventional switches/routers/middleboxes—
e.g. SNMP or NETCONF/Yang).

A. Example Exceptions

As one example, consider an application that needs to move
a large data set between a national supercomputer facility
and the local campus HPC supercomputer. In this case, the
user might present the network with information about the
transmissions (e.g., type of data being transferred, the source
and destination of the flows, or possibly things like the NSF
project number associated with the flows). Based on this
information, the provider might decide to allow a security
exception in which such application flows are (temporarily)
routed around the network’s IDS/IPS system to avoid its

throughput-limiting DPI, thus enabling the flow to operate at
much higher transfer rates.

As another example, consider a policy exception that al-
lows a highly interactive distributed application (e.g., a web
conferencing application or an interactive game) to utilize low-
latency network paths (as opposed to the default paths) among
all participants in order to reduce delay, thereby improving
the responsiveness of the application. Or consider a policy
exception that is dynamically created to allow an authenticated
collaborating researcher to use ssh from a specific end system
in the Internet, to punch through a campus firewall and access
a private git server containing shared data, without the need
to set up a VPN.

All three examples above illustrate cases where general
network security policy imposes costs by limiting bandwidth,
causing sluggish behavior (high latency), or blocking legit-
imate users from accessing resources that should be shared.
Exceptions allow users to advertise beforehand the details (e.g.
type, requirements) of their traffic in order to justify their
need for special treatment to the network provider. Given this
information, providers no longer need to subject these flows
to the general policy enforcement mechanisms.

B. Design Considerations

The notion of creating exceptions to security policy raises
questions about how such exceptions are specified and how
decisions are made. As noted in the examples above, excep-
tions must be vetted by the real-world authorities responsible
for the network. In a sense, our approach moves some policy
enforcement decisions from the data plane, where every packet
is inspected by middleboxes, to the control plane. Whereas
middlebox-based enforcement decisions must occur at (or
near) line rate, control-plane decisions take place on the
(slower) flow-initiation timescale.

One benefit is that the decision to grant an exception
can be, and should be, tied to the abstractions of high-
level flow instantiation policies (user IDs, role identifiers,
classes of applications, etc.) rather than the addresses, ports,
and byte patterns of low-level packet policies. Another is
that the decision to grant an exception can be based on
trustworthy information, because flow-initiation timescales
make the use of cryptographic authentication of higher-level
abstractions feasible. Moreover, because trust is with users
and their applications, the number of trusted entities and their
flows is relatively small and remains manageable (i.e., not
tens/hundreds of thousands) — the term exception, after all,
connotes something unusual occurring somewhat infrequently
— preventing the exception mechanism itself from becoming a
bottleneck.

Finally, the SDN infrastructure, as a means to bypass basic
security policy enforcement, is part of the attack surface.
Consequently, we take steps to protect and harden it against
compromise. However, it should be noted that this problem
exists for any SDN deployment, regardless of the way it is
used, and we argue that adoption of SDN will require network

elements that are at least as resistant to attack as existing
middleboxes.

C. An Exception System

To support our security model, we divide the exception
system into two parts: (1) a human interface for defining
trust policies, and (2) an automated request/response system
that applications can contact to request exceptions. The first
involves formulating high-level policies that define trusted
flows. These decisions are made on human timescales and
often involve human validation of the policy. The second
involves automatically changing the network state (using SDN)
to implement the exception.

The goal of the first part of the exception system is to
associate users/roles with specific flows—essentially to pro-
vide a “responsible party” for each flow granted an exception.
To allow delegation of responsibility, the mechanism utilizes
an authorization tree that arranges the set of all possible
network flows into a hierarchy where each (child) node in
the hierarchy represents a subset of the flows in the parent
node. One or more users are then associated with each
node in the tree, giving them authority to define allowable
exceptions for that portion of the flow space. This allows
users to delegate responsibility for certain flows to other users,
creating hierarchical authorization schemes consistent with the
organization of administrative responsibility in the Internet.

Each node in the tree identifies a portion of the possible flow
space and has an associated exception specification (ESpec)
that determines whether to grant or deny an exception. An
ESpec is essentially a small piece of code that is executed by
the automated exception service over the information provided
in the exception request (e.g., who, what, when, where) as well
as information about the current status of the network (e.g.,
load, other exceptions currently installed, available resources,
etc). While one could envision these pieces of code being
written in a general purpose language as “plugins” to nodes
in the authorization tree, such a design would make it more
difficult for humans to verify that a plugin is enforcing the
policy correctly. As a result, we expect that ESpecs would
be specified in a high-level policy definition language (or
specialized markup) that could be easily compared against the
intended policy exceptions without exposing the complexity
of low-level implementation details to deploy an exception.
To provide an example of what an ESpec policy definition
language might look like, consider the following language
used to define allowed exception requests (which we will use
in later examples):

Request Type: Add | Remove | Update

Auth Credentials: User ID | App ID

Match — Action:

<FlowSpec> — Max Bandwidth Path |
<FlowSpec> — Min Latency Path |
<FlowSpec> — Min Hop Count Path |
<FlowSpec> — Block

Network Condition: (for example) Path Load < 10% |
Current Time is in [22:00, 05:00]

Exception Lifetime: Flow Duration

The automated part of our exception system accepts excep-
tion requests from trusted users or their application — specified
in the above language to create (Add) on-demand exceptions
(or Update/Remove existing exceptions). The information
in the request is evaluated to determine if an exception
should be granted (e.g., checking validity of credentials, ESpec
format, valid request type, matches flowspec, etc). If the
ESpec is valid, the system creates the exception by invoking
SDN network management actions (e.g., computing OpenFlow
rules, resolving domain names, etc) to deploy the exception to
the appropriate network elements.

III. A PROTOTYPE SYSTEM

As an example of applying the on-demand security excep-
tion model, we implemented a prototype system called VIP
Lanes [3]. The objective of the VIP Lanes system is to support
on-demand security exceptions that enable high-speed big-data
flows to use paths that bypass campus network performance-
limiting middlebox policy enforcement.

Auth[Campus IT]
Match[sre=*,dst=*]

Auth[CoE IT] ‘/]
Match[src=128.123.48.0/20
Auth[CoS IT]

dstport=990]
Action[maxbw] Match[src=128.123.0.0/20
dstport=22]

Auth[CoA&sS IT]

Match[dst=128.123.32.0/20
dstport=22]

Action[minhop]

Auth[Bio IT]
Match[src=128.123.0.0/24
dstport=22]
Action[maxbw, minhop]

Lifetime[5hr]

Auth[Physics IT]
Match[src=128.123.1.0/24
dstport=22]
Action[maxbw, minhop]

Lifetime[Shr]

Auth[Cell,Bio IT]
Match[src=128.123.0.96/27

Auth[Micro,Bio IT]
Match[src=128.123.0.32/27

Auth[Genomics,Bio IT]
Match[src=128.123.0.64/27

dstport=22]
Action[maxbw]
Lifetime[FlowLifetime]
Condition[5pm-12am]

dstport=22]
Action[maxbw, minhop]
Lifetime[FlowLifetime]
Condition[5pm-7am]

dstport=22]
Action[maxbw]
Lifetime[FlowLifetime]
Condition[none]

Fig. 1. An example Authorization Tree, delegating responsibility for the VIP
Lane flowspace to the responsible parties.

A. A VIP Lanes Authorization Tree

The first step is creating the authorization tree described in
Section II-C. Figure 1 shows an example VIP lanes authoriza-
tion tree that specifies the trust relationships among network
operators (providers).

Recall that the objective is to divide up the flowspace
in a hierarchical manner, delegating the task of defining
allowable flow exceptions to the (human) users responsi-
ble for those flows. In the context of a campus network,
the root of the authorization tree would be defined by
the Campus IT staff (Auth[Campus IT]) and would en-
compass all flows on campus (i.e., match[src=*, dst=*]).
Campus IT might delegate the definition of exceptions for
secure copy (scp) flows originating from the College of
Science (match[src=128.123.0.0/20,dstport=22]) to the IT staff
in the College of Science (Auth[CoS IT]). CoS IT staff

members might further delegate the definitions of excep-
tions for scp flows originating in the Biology Department
(match[src=128.123.0.0/24,dstport=22]) to the IT staff in Bi-
ology (Auth[Bio IT]). Bio IT staff might further delegate
the definition of scp exceptions for traffic originating in the
Genomics Lab (match[src=128.123.0.64/27 dstport=22]) to the
Genomics project members (Auth[Genomics, Bio IT]) while
retaining control of those definitions by Bio IT as well.

The tree presented in Figure 1 also defines the ESpecs used
to grant exceptions on demand. For example, the ESpec for
flows controlled by the Genomics Lab allows users in the
Genomics group to instantiate exceptions that request (1) a
(bypass) path that offers maximum bandwidth (max bw) or
minimum hop count (min hops), (2) an exception lifetime
matching the flow’s lifetime, and (3) the stipulation (condition)
that it be between Spm and 7am.

B. Instantiating VIP Lane Policy Exceptions

Given a VIP Lanes authorization tree, users (or their ap-
plications) can request that specific exceptions be granted
and instantiated via SDN in the network. Exceptions can be
requested in one of two ways. In the first method users provide
their institutional account credentials to login to the VIP Lanes
web server, which authenticates the identity of the user, checks
if the user is authorized to instantiate the exception, invokes the
VIP Lanes path computation service to discover a middlebox-
free path, and then uses SDN to push the exception into
the network. The second method involves linking applications
with a wrapper library that obtains socket information when
a new connection is being established, and communicates
with the VIP Lanes server to make the instantiation request,
providing the user’s credentials and flow characteristics needed
to validate the request and ultimately install it in network
devices along the desired path.

C. Securing the VIP Lanes Exception Mechanism

As we have shown, on-demand security exceptions opens
up novel opportunities to improve performance, functionality,
and privacy. However, it also opens up potentially dangerous
new avenues of attack— including attacks where an attacker
could “open up” the campus network with exceptions, or
worse yet, gain complete control of the underlying pro-
grammable network. As illustrated in Figure 2, the VIP Lanes
exception system consists of several components—including a
VIP Lanes monitoring system and databases that are outside
the scope of this paper—creating a reasonably broad attack
surface. Consequently, it is critical that we secure the VIP
Lanes exception system itself.

To ensure the security of the VIP Lanes system itself, VIP
Lanes utilizes two levels of defense. First, it uses best-of-
breed (web) practices to protect user-facing APIs. Second, it
protects the SDN controller (which has complete control over
the network) by employing a VIP Lanes proxy (a VIP Lanes-
specific gateway) to tightly constrain the types of requests that
can be sent to the controller.

Allowed
Forbidden

i ouTtes

-~ @ Users and Apps
: HTTP

Monitoring

[E=======) | ocaLAccESSONLY |VIP Lanes
useraFlowps | (Exception)
Web Server
- Topology DB
: _ Wwww
Query :Add Flow z
Counters : Add Flow H
: :Add Flow
:By-passing Proxy
Proxy | E== |Whitelist H

L

REST APIs

SDN

Default Modules Controller

‘VIP Lanes Modules

OpenFlow

SDN ENABLED NETWORK

Fig. 2. Components of the VIP Lanes exception service, and al-
lowed/forbidden communication among components.

On the user-facing side, only APIs from the VIP Lanes
web server and the monitoring system are exposed. Other
database services are protected by firewall rules, only allowing
access from the VIP Lanes web server and monitoring system.
Moreover, because the VIP Lanes web server and monitoring
service have IP addresses that are only routeable internally,
only applications running in the campus network can request
VIP Lanes or view VIP Lanes traffic. The user-facing APIs are
accessed over an encrypted channel (i.e. HTTPS) and require
an industry standard username/password (web interface) or an
identity key (wrapper).

To protect the SDN controller, we deployed a VIP Lanes
Proxy (gateway) that inspects all requests sent from the
VIP Lanes server to the SDN controller. Although the SDN
controller supports a wide range of network management
actions via its northbound interface (NBI), the VIP Lanes
server only needs to use a small number of them to monitor
and deploy security exceptions. It should be noted that the
NBI of existing SDN controllers have widely varying access
control mechanisms. Ideally they would offer a per-user or
per-role authentication method. Unfortunately, robust access
control mechanisms are often not included with current SDN
controllers to the point that some of them (e.g., Floodlight,
RYU, or POX) do not provide access control for REST-based
APIs whatsoever. The Aruba VAN controller supports a very
limited Role Based Access Control (RBAC) that currently
provides a single role with access to all controller features (i.e.
sdn-admin), giving far more control than is needed by the VIP
Lanes exception server. If an attacker were to gain access to
the sdn-admin role, they could bring ports up/down, capture
any packet, inject traffic, or worse — all being capabilities not
needed by the VIP Lanes exception service.

To reduce the risk of attack but yet work with existing
controllers, the VIP Lanes Proxy is the only entity authorized
to access the SDN controller’s APIs. All calls to the controller

TABLE I
EXAMPLE WHITELIST ENTRIES IN A VIP LANES PROXY

Cert CN Field

Authorized SDN Controller APIs

HTTP Commands Allowed

vip-site.uky.edu
vip-site.uky.edu
vip-stats-db.uky.edu

"/sdn/viplanes/ab01l[a-£0-9]1{12}$
"/sdn/v2\.0/0f/datapaths/["/1+/ports/["/1+$
“/sdn/stcl/stats/counters$

GET, POST, DELETE
GET
GET

must go through the VIP Lanes Proxy which inspects the API
calls and blocks any calls that invoke controller capabilities
that are not needed by the VIP Lanes exception server. In
addition, the VIP Lanes Proxy serves as a certificate authority,
signing client certificates (i.e. one for each component in
the VIP Lanes system) so that clients can be identified and
associated with a list of APIs they are authorized to invoke
(i.e. a whitelist). (Note that if the SDN controller has no access
control, a firewall — either standalone or on the controller, say
via iptables — is needed to ensure packets cannot bypass
the VIP Lanes Proxy to reach the controller.)

The data structure used to implement the VIP Lanes Proxy
whitelist functionality is a map of clients (identified by the
Common Name (CN) field of their signed certificates) to
URLSs (REST endpoints) that components are permitted to use
(including the HTTP commands they are allowed to use per
endpoint). Table I shows example whitelist entries, where the
URLs are specified as extended regular expressions to narrow
down the action field. For instance, the first entry enforces
all VIP Lanes management calls to use our own structured
identifiers, isolating on-demand exceptions from the default
general policies controlling campus traffic, and obscuring the
meaning of an identifier from would-be attackers.

On a similar note, if an attacker compromised the monitor-
ing system and then asked the SDN controller (via the VIP
Lanes Proxy) to make a change to the network, its connection
to the VIP Lanes Proxy would be ignored by the VIP Lanes
Proxy, reducing the risk of an attack on the monitoring system.
Note that the monitoring system would still be able to invoke
request for read-only information.

IV. EXPERIMENTAL RESULTS

We used VIP Lanes to deploy high-bandwidth on-demand
exceptions at different locations on our campus network
(Figure 3) to reach sites that are known to be used for
research activites and therefore, trusted. Specifically, we ran
experiments to measure throughtput to ESnet sites located in
different geographic regions of the United States (San Diego,
Washington D.C., and Chicago) and the Data Transfer Node
(DTN) of the University of Kentucky which is located in the
Science DMZ hanging off of the university’s edge router.

We ran all the tests on a Macbook Pro with an Intel Core i5
processor 2.4 GHz, 16 GB RAM, and an external Thunder-
bolt2 10G adapter. In order to maximize the performance per
test, some variables of the system’s TCP/IP stack (e.g. TCP
window scale factor or receive buffer) were tuned following
the recommendations published by ESnet [4].

For each site and building we measured two throughputs
using the bwctl tool. First, we recorded the performance
obtained by letting the Normal campus network security

ga-ptl.es.net
(San Diego) '
chic-ptl.es.net...-:""’

(Chicago)

Science DMZ

R A
wash-ptl.es.net .~ |DTN

(Washington D.C.)

SDN Normal
Exceptions Campus
Core Core

KSL

JsB AG

Fig. 3. SDN-enabled campus topology used to deploy exceptions

appliances inspect packets to enforce policies. Afterwards, we
deployed short-lived security Exceptions from the laptop to the
trusted sites. Lastly, we started the second set of performance
measurements using the allocated path. We observed that on
average, it takes 314 ms to deploy each exception in the data
plane. Since this step happens before a flow is initiated, it has
no impact on the performance gains obtained.

Table II shows the data collected after running the above
experiments. At a first glance, it is clear that using the VIP
Lanes exception mechanism researchers on our campus in
most cases could benefit from a performance boost from tens
of megabits per second (under normal conditions) to multiple
gigabits per second (using exceptions). Unsurprisingly, the
improved throughput was affected by the geographic location
of the trusted site, e.g., speeds to the DTN reached close
to 7.2 Gbps whereas measurements at San Diego (on the
opposite coast of our campus) were below the 700 Mbps mark.
Nonetheless, as can be seen in Figure 4, the speedup factor,
i.e., how much faster the throughput is by using exceptions,
was not necessarily bound to geographic location. For instance,
the improvement from AG to the DTN was only of 11x
the normal throughput, whereas from that same location to

TABLE I
THROUGHPUT FROM DIFFERENT BUILDINGS TO TRUSTED SITES*
Site KSL JFH JSB AG

San Diego, CA 313 (669) 28.8 (671) 31 (669) 19 (663)

Chicago, IL 182 (3959) 36.4 (3129) 95.4 (3974) 74.1 (3707)

Washington, D.C. 70 (1289) 29.4 (1400) 69.4 (1570) 56.7 (1532)

DTN 300 (7120) 67.7 (7140) 320 (7200) 644 (7123)

*The numbers are shown as Normal (Exception) throughput in Mbps

Chicago ESnet site the factor jumped to 50x. In most of the
cases, the speedup factor was higher than 20x with only two
data points sitting below such value.

W KSL W JFH JSB B AG
10 Median ----- 105
100
%0 86
80
= 70
Z
g 60 50
] 48
[’ 50 42
8 ey -
£ 33
I 27
30 2123 22 22 N 24 53
20 T 11
10 .
0
San Diego Chicago Washington, D.C DTN

Site
Fig. 4. Speedup factors at different sites using exceptions

V. RELATED WORK

Different stakeholders in the network often have interests
that may be adverse to each other, but accommodating these
competing interests is crucial to the design of future net-
works [5]. In our previous work [3], we laid the groundwork to
support alternative paths for approved research traffic. This pa-
per describes a way to specify on-demand security exceptions
that leverage those paths. The Internet Architecture Board’s
“Stack Evolution” program [6] considered a similar problem
and proposed a solution to endpoint-middlebox communica-
tion where application and network provide hints to each
other to convey intent in return for better service. However,
their focus was on evolving the transport layer to address
ossification issues, as opposed to developing a generalized
model that includes real-world (human) policies to improve
communication performance, functionality, and privacy.

The Switchboard project [7] allows for the creation of
campus SDN paths to achieve high-speed data transfers, but
uses a heavy-weight approval process involving the managers
of the networks traversed. The DANCES project [8] targets
data transfers between HPC sites and uses OpenFlow to
create QoS paths. Requests are handled by HTTP calls to a
centralized coverning authority using authentication keys.

Various projects have proposed approaches that use SDN to
implement access control mechanisms in the network [9]-[12].
These approaches focus on access control as opposed to secure
high-speed path exceptions. Moreover, they are often tightly
integrated with the internals of a particular SDN controller
and its southbound API In contrast, the VIP Lanes Proxy is
controller-agnostic and only relies on a controller’s northbound
APL

VI. CONCLUSION

We proposed a new framework for handling security issues
based on the on-demand security exceptions model. Short-

term, on-demand, fine-grained exceptions provide an oppor-
tunity for trusted (and authenticated) users to declare the
intent of their traffic, and in return get better service. The
approach also allows service providers to define simpler, long-
term policies and to focus data-plane security scrutiny on
general traffic. We described a prototype implementation of
the security exception mechanism to improve the high-speed
big-data transfer in our campus network. Our experimental
results demonstrate that the transfer rate of trusted users can
be improved significantly when on-demand exceptions allow
them to bypass middleboxes. Future work includes refining
the exception specification mechanism and investigating other
contexts in which the exception model can be usefully applied.

ACKNOWLEDGMENT

The work of Kenneth L. Calvert was supported by the National
Science Foundation during his assignment there. The work of
other authors was supported in part by the National Science
Foundation under Grants ACI-1541380, ACI-1541426, and
ACI-1642134.

REFERENCES

[1] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The
Science DMZ: A Network Design Pattern for Data-intensive Science,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC "13. New York,
NY, USA: ACM, 2013, pp. 85:1-85:10.

[2] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, Jan 2015.

[3] J. Griffioen, K. Calvert, Z. Fei, S. Rivera, J. Chappell, M. Hayashida,
C. Carpenter, Y. Song, and H. Nasir, “VIP Lanes: High-speed custom
communication paths for authorized flows,” in Proceedings of the 26th
International Conference on Computer Communications and Networks
(ICCCN 2017), July 2017, Vancouver, Canada.

[4] Energy Sciences Network, “Host tuning,” https://fasterdata.es.net/
host-tuning/.

[5] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden, “Tussle
in cyberspace: defining tomorrow’s Internet,” SIGCOMM Computer
Communication Review, vol. 32, no. 4, pp. 347-356, Oct. 2002.

[6] Internet Architecture Board, “IAB Workshop on Stack Evolution in a
Middlebox Internet (SEMI),” https://www.iab.org/activities/workshops/
semi/, January 2015.

[7]1 “Duke University SDN,” https://sites.duke.edu/dukesdn/.

[8] V. Hazlewood, K. Benninger, G. Peterson, J. Charcalla, B. Sparks,
J. Hanley, A. Adams, B. Learn, R. Budden, D. Simmel, J. Lappa, and
J. Yanovich, “Developing Applications with Networking Capabilities
via End-to-End SDN (DANCES),” in Proceedings of the XSEDEI6
Conference on Diversity, Big Data, and Science at Scale, ser. XSEDEI16.
New York, NY, USA: ACM, 2016, pp. 29:1-29:7.

[9] F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, “Access Control for

SDN Controllers,” in Proceedings of the Third Workshop on Hot Topics

in Software Defined Networking (HotSDN’14). New York, NY, USA:

ACM, 2014, pp. 219-220.

S. T. Yakasai and C. G. Guy, “FlowlIdentity: Software-defined network

access control,” in 2015 IEEE Conference on Network Function Vir-

tualization and Software Defined Network (NFV-SDN), Nov 2015, pp.

115-120.

[11] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob, “FlowNAC:

Flow-based Network Access Control,” in 2014 Third European Work-

shop on Software Defined Networks, Sept 2014, pp. 79-84.

P. A. Porras, S. Cheung, M. W. Fong, K. Skinner, and V. Yegneswaran,

“Securing the Software Defined Network Control Layer.” in NDSS, 2015.

(10]

[12]

