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Abstract

Emerging wearable sensors have enabled the
unprecedented ability to continuously moni-
tor human activities for healthcare purposes.
However, with so many ambient sensors col-
lecting di�erent measurements, it becomes
important not only to maintain good mon-
itoring accuracy, but also low power con-
sumption to ensure sustainable monitoring.
This power-e�cient sensing scheme can be
achieved by deciding which group of sensors
to use at a given time, requiring an accurate
characterization of the trade-o� between sen-
sor energy usage and the uncertainty in ig-
noring certain sensor signals while monitor-
ing. To address this challenge in the context
of activity monitoring, we have designed an
adaptive activity monitoring framework. We
�rst propose a switching Gaussian process to
model the observed sensor signals emitting
from the underlying activity states. To e�-
ciently compute the Gaussian process model
likelihood and quantify the context predic-
tion uncertainty, we propose a block circulant
embedding technique and use Fast Fourier
Transforms (FFT) for inference. By com-
puting the Bayesian loss function tailored to
switching Gaussian processes, an adaptive
monitoring procedure is developed to select
features from available sensors that optimize
the trade-o� between sensor power consump-
tion and the prediction performance quanti-
�ed by state prediction entropy. We demon-
strate the e�ectiveness of our framework on
the popular benchmark of UCI Human Ac-
tivity Recognition using Smartphones.
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1 INTRODUCTION

Smart health solutions are becoming ever more fea-
sible with the rapid development of sensors and mo-
bile applications that can continuously collect human
behavioral data. Indeed, many sensors from various
sources such as environmental (Poppe, 2007), body-
worn sensors (Lukowicz et al., 2004; Karantonis et al.,
2006), or even smartphone based sensors (Anguita et
al., 2013) are prevalent for health monitoring applica-
tions. With so many ambient sensors collecting dif-
ferent measurements, it becomes important not only
to maintain good monitoring accuracy, but also low
power consumption, to ensure e�ective and sustain-
able monitoring. Such a trade-o� between monitoring
accuracy and monitoring resource allocation is natural
and ubiquitous in many applications (He et al., 2006;
Wiser et al., 2008; Wu et al., 2018; Wang et al., 2018).

Such problems require an accurate characterization of
the trade-o� between monitoring resource usage and
monitoring accuracy. In the case of human behav-
ioral and health monitoring using ambient sensors, a
power e�cient sensing scheme can be achieved by de-
ciding which group of sensors to use at a given time.
Here, a trade-o� arises between sensor energy usage
and the uncertainty in ignoring certain sensor signals
while monitoring. To characterize this trade-o�, it is
necessary to have a model that can quantify the un-
certainty of the activity prediction with respect to the
sensor measurements over time. With this model, a
loss function associated with both energy cost and ac-
tivity prediction uncertainty can be de�ned and there-
fore the adaptive monitoring problem can be solved by
a sequential decision process.

Sequential decision process with Markov models have
been well studied in the literature. For example,
Markov decision process (MDP) and partially observed
Markov decision process (POMDP) (Krishnamurthy,
2016) are popular stochastic models for sequential de-
cision process. They can be applied for optimal pre-
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ventive maintenance policy (Byon, Ntaimo, and Ding,
2010) and path planning under uncertainty (Morere,
Marchant, and Ramos, 2017). Other decision process,
for example Bayesian Optimization, have been applied
for optimal sensor set selection (Garnett, Osborne, and
Roberts, 2010). In this paper, activity detection is
based on time series sensor signals, so the sensor se-
lection problem depends on not only the current state,
but also the history. The computation of the loss func-
tion will therefore be complicated due to the sequential
decision nature.

Besides all above challenges in characterizing the re-
source limitation and monitoring accuracy trade-o�,
modeling the measurements taken from these ambi-
ent sensors is also challenging by itself. For example,
smartphone sensor measurements are abundant yet
noisy, and thus require e�cient computational meth-
ods to process e�ectively. Moreover, the sensor mea-
surement frequency can vary with time, the duration
of each activity may vary, and the multivariate e�ects
between the large set of features can be di�cult to
capture. Methods to model such time-series measure-
ments include linear dynamical systems (Barber, 2012;
Ardywibowo et al., 2018), ARMA models (Torres et
al., 2005), Kalman �lters (Harvey, 1990), point pro-
cesses (Gunawardana, Meek, and Xu, 2011), and Re-
current Neural Networks (Funahashi and Nakamura,
1993). However, most of these existing methods fo-
cused on prediction only and did not attempt to char-
acterize the uncertainty of the measurements.

To tackle this problem, we derive a switching multi-
variate Gaussian process model for the goal of activ-
ity recognition. Our model is a hierarchical one con-
sisting of a Hidden semi-Markov model (HSMM) for
the discrete activity states, and a multivariate Gaus-
sian process to model both the time dependent and
the inter-variable correlations between di�erent sensor
measurements. We use a block circulant embedding
technique and use Fast Fourier Transforms (FFT) to
speed up model inference and uncertainty quanti�ca-
tion of our proposed model. Using this model, we then
develop an adaptive monitoring scheme that for each
monitoring period uses the optimal group of sensors
by optimizing the Bayesian cost function considering
both the activity predictive entropy1 and the energy
cost of selected sensors.

We implement our model on the UCI Human Activ-
ity Recognition using Smartphones dataset (Anguita
et al., 2013). This dataset consists of labeled trajec-

1Here the predictive entropy is a measure for uncer-
tainty, the reduction of which indicates the information
provides by the selected sensors. It is computed approxi-
mately by Monte Carlo since it has no closed-form expres-
sion.

tories of smartphone sensor measurements from multi-
ple subjects under 6 di�erent activities: walking, walk-
ing upstairs, walking downstairs, sitting, standing, and
laying. The time series trajectories consist of features
extracted from gyroscope and accelerometer measure-
ments, such as movement angle, jerk, acceleration, and
moving averages. Extensive results demonstrate the
e�ectiveness of our framework on achieving competi-
tive performance-energy trade-o�s

2 THE MODEL: SWITCHING
GAUSSIAN PROCESS

Throughout our presentation, we will use the follow-
ing notation convention: bold faces indicate vectors or
multivariate processes, capital letters indicate matri-
ces or covariance functions of two variables, and script
letters indicate sets.

2.1 Model Formulation

We �rst describe the model for time series sensor mea-
surements from one subject. For the di�erent activity
types, we assume that there is an underlying semi-
Markov jump process (Yu, 2010) that governs the tran-
sitions between them. Denoting the discrete valued
activity state at time t as x(t), the semi-Markov jump
process can be expressed as:

x(t) =
NX
n=1

xn1f�n�t<�n+1g: (1)

Here, xn 2 f1; :::; Ag � X are discrete activity states
that discriminate between the A di�erent activity
types, while λn and λn+1 are the random start and end
time points of the discrete activity state Xn. We can
denote the random duration that the subject stays in
Xn as sn = λn+1 � λn. We adopt an explicit-duration
model for the sojourn times by modeling sn using a
Gamma distribution with state speci�c parameters as
follows:

snj(xn = i) � Gamma(
i);8i 2 X ; (2)

where 
i = fki; �ig are the parameters for the dura-
tion distribution of activity i with ki and �i repre-
senting shape and scale parameters respectively. The
advantage of this semi-Markov model is that it explic-
itly models the varying durations of di�erent activity
types. For example, in our application, we can see that
the walking upstairs and walking downstairs activities
all take less time to complete compared to the other
activities. This activity duration may be informative
in inferring the di�erent activities. To complete the
semi-Markov jump process model modeling the under-
lying activity states, the state transition probability
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themselves can be modeled by a transition probability
matrix as follows:

P (xn+1 = j | xn = i) = pij. (3)

For the observation process y(t) = [y1(t), ..., yP (t)]�,
we incorporate a switching P -variate Gaussian Pro-
cess. This process models the dynamic heterogene-
ity of the time series measurements by switching be-
tween different Gaussian process models for each in-
ferred activity state or context. Specifically, we model
yn(t), the observation process occurring at time period
[τn+1, τn], as follows:

yn(t)| (xn = i) ∼ GP(mi(t),Ki(t, t
�)). (4)

Here, conditioned on the activity state xn = i, the ob-
servation process y(t) will be a Gaussian process with
activity-state-dependent mean and covariance func-
tion mi(t) and Ki(t, t

�) respectively. The covariance
function Ki(t, t

�) is a multivariate covariance function
between two univariate variables yan(t) and y

b
n(t) in

yn(t) for a, b in the set of features Y = { 1, ..., P } .

With this, the observation process can be expressed as

y(t) =

N�
n=1

yn(t)1 { τn≤t<τn+1 } . (5)

In order to handle the potential multivariate corre-
lations between the sensor observations, we imple-
ment an intrinsic correlation model (Bonilla, Chai, and
Williams, 2008). In this model, we assume that we
can separate the covariance function of yn(t) into a
time dependent covariance function KTi (t, t

�), and a
free-form inter-variable covariance matrixKYi (a, b) be-
tween two variables yan(t) and y

b
n(t) in yn(t) as follows:

Ki(t, t
�) = KTi (t, t

�)⊗KYi (a, b). (6)

Knowing the activity state and a set of noisy observa-
tions z at a set of time points S, the prediction on a
new set of points Sp for the lth variable is given by:

yln(S
p)| (z, xn = i) ∼ N(mli(Sp),Σli(Sp)); (7)

mli(S
p) = (kl,Yi ⊗K(S,Sp),T

i )� Σ−1
i z; (8)

Σi = K
Y
i ⊗K

T
i +D ⊗ I; (9)

Σli(tp) = kl,Yi ⊗K(S,S),T
i −(kl,Yi ⊗K(S,Sp),T

i )� ×

Σ−1
i (k

l,Y
i ⊗K(S,Sp),T

i ). (10)

Here, z is a vector of noisy multivariate measure-
ments structured as z = [z11 , z

1
2 , ..., z

1
N , z

2
1 , ..., z

P
N ]
T ,

where zpt is the measurement of variable p at time t.

Figure 1: The hidden semi-Markov model.

The vector kl,Yi selects the lth column of KYi , while

K
(S,Sp),T
i is a matrix of time dependent covariances

between the prediction time points and the observed
time points. Finally, D is a P × P matrix of inde-
pendent noise variances σ2p for each multivariate vari-
able p. The parameters of our model can be com-
bined as: θ= { γi, pij ,KTi (· ),KYi (· ),∀, j ∈X } . Where
the covariance matrices can be further parameterized.
Specifically, we use a Matern covariance function for
the time dependent covariance, while a Cholesky fac-
torization was used for the multivariable covariance to
ensure positive definiteness. An illustration summa-
rizing the model formulation is shown in Figure 1.

2.2 Model Inference

We describe both the parameter inference and pro-
cess inference algorithms for the proposed model with
switching Gaussian process. For parameter inference,
we use a population model to combine the data from
multiple subjects, treating each subject as an inde-
pendent realization of our model. We estimate the
parameters of our model using maximum likelihood
inference. Meanwhile, process inference can be effi -
ciently done, similarly to classical filtering methods in
traditional Hidden Markov Models (HMMs) (Rabiner,
1986) using the Forward-Backward algorithm.

2.2.1 Parameter Inference

In our application, since all of the activity states are
labeled in the time-series data, estimation of the semi-
Markov jump process parameters is straightforward.
Specifically, for each Gamma distributed activity state
duration with parameter γi = { ki, βi } , we can derive
the corresponding maximum likelihood estimates for
ki and βi as follows:

vi = log(
1

Ni

Ni�
n=1

sni )−
1

Ni

Ni�
n=1

sni ; (11)

k̂i ≈
3−vi +

�
(vi−3)2 + 24vi
12vi

; (12)

β̂i =
1

k̂iNi

Ni�
n=1

sni , (13)
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where sni is the duration of the n-th time stamp in state
i. Besides, the transition probability can be inferred
by simply counting the number of transitions between
activity states as follows:

p̂ij =
nijP
j nij

; (14)

where nij is the number of transitions from state i to
state j.

To ensure positive de�niteness of the multivariate co-
variance, we can parametrize it using the Cholesky
decomposition KYi = LL

> for lower-triangular matrix
L. Since each subject's process model is independent
from each other given the model parameters, we can
write the complete log-likelihood of all subjects as a
sum of individual log-likelihoods. Speci�cally, denote
by Qj as two times the negative log-likelihood of sub-
ject j. This term can be expanded as follows: First, for
each time frame λ corresponding to a di�erent activity
state, we put our observations vector z in an N� � P
matrix form, denoted by Z� . Then, denote the matrix
of corresponding mean functions for each Z� as F� .

Qj =
TjX
�=1

�
N� log jKY

iτ j+ P log jK
T
iτ j+N�P log 2�

tr[(KY
iτ )
�1F |� (K

T
iτ )]F� ] +N�

PX
p=1

log �2p+

tr[(Z� � F� )D�1(Z� � F� )|]
�
; (15)

where i� is the activity state of subject j in time frame
λ with corresponding time dependent and multivariate
covariance matrices KT(iτ ) and K

Y
(iτ )
. With this, the

complete log-likelihood Q will be a sum of the individ-
ual log-likelihoods:

�2Q =
MX
j=1

Qj : (16)

With this, any optimization method can be used to
estimate the parameters of the multivariate Gaussian
process model. The exact parameter updates are omit-
ted from this presentation and the reader is referred to
(Bonilla, Chai, and Williams, 2008) for more details.

Fast Inference using Block Circulant Embed-
ding Computing the likelihood as well as the gradi-
ent of the multivariate Gaussian Process models can
be computationally challenging when dealing with a
large number of features and the potential interactions
between them. This is mainly due to the inversion
and determinant calculation operations that need to
be performed on the covariance matrix Ki(t; t

0).

To speed up these computations, we propose a block
circulant embedding approach. We �rst note that the
measurements of our dataset are evenly spaced in time
and assume that we only have one feature measure-
ment. For this setting, the covariance matrix can be
expressed as follows:

C =

26664
C(0) C(1) C(2) : : : C(T )
C(1) C(0) C(1) : : : C(T � 1)
...

...
...

. . .
...

C(T ) C(T � 1) C(T � 2) : : : C(0)

37775 :
Here C(t) are scalars as we only have a single feature.
Observe that we can embed this matrix in the following
larger circulant matrix: ~C =

C(0) . . . C(T ) C(T − 1) . . . C(1)
...

. . .
...

...
. . .

...
C(T ) . . . C(0) C(1) . . . C(T − 1)

C(T − 1) . . . C(1) C(0) . . . C(T − 2)
...

. . .
...

...
. . .

...
C(1) . . . C(T − 1) C(T − 2) . . . C(0)


,

which is fully speci�ed by the �rst row vector c =
[C(0); C(1); : : : C(T ); C(T � 1); : : : C(1)]. We can per-
form an eigenvalue decomposition of the above matrix
as follows:

~C = F�F |: (17)

F | and F denote the Fourier and inverse Fourier
transform respectively, and � = F |c. Using the
Fast Fourier Transform (FFT), this calculation can
be done in O(T log(T )). Consequently, inverse and
determinant calculations can be done at this same
time complexity (Davis, 2012). This idea can be
extended to the case of block circulant matrices.
First we note that the covariance matrix Ki(t; t

0) can
be embedded into a block circulant matrix speci�ed
by the matrix Ki = [KTi (0); : : :K

T
i (T );K

T
i (T �

1); : : :KTi (1)]
N
KYi . We then notice that

each vector [KTi (0); : : :K
T
i (T );K

T
i (T �

1) : : :KTi (1)]K
Y
i (a; b);8a; b 2 f1; : : : Pg de�nes a

circulant submatrix. To compute the determinant
and eigen-decomposition of each block circulant
matrix, it su�ces to simply decompose each of them
using FFT. Finally, the model likelihood can be
computed in O(P 2T log(T )).

2.2.2 Process Inference

Activity state inference can be conducted using stan-
dard �ltering approaches similar to classical Hidden
Markov Models (HMM) (Rabiner, 1986). Speci�cally,
we are interested in estimating the current state at
time t given all previous observations.

Firstly, denote y� (t0 : t1) as a collection of variables y�
for t0 � λ � t1. The expression x[t1 : t2] = i indicates
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Figure 2: Prediction trajectory comparison of di�erent features.

that x is in state i between times t1 and t2 but no later
or sooner. In other words, x will be in a di�erent state
before and after time t1 and t2 respectively. With this,
the activity detection problem can be expressed by
the following maximum a posteriori (MAP) �ltering
problem:

x̂t = argmaxi2XP (xt = i;yt0:tj�): (18)

It can be solved recursively using dynamic program-
ming. Speci�cally, at any given time point we need to
compute the following forward and backward variables
respectively:

�t(j; d) := P (x[t�d+1:t] = j;y1:tj�); (19)

�t(j; d) := P (yt+1:T jx[t�d+1:t] = j;�): (20)

Since we are merely interested in �ltering the current
activity states or contexts in an online fashion, we need
only compute the forward variables �t(j; d). The re-
cursion for computing them can be expressed as fol-
lows:

�t(j; d) (21)

=
X

i2Xnfjg

X
d′2D

�t�d(j; d
0) � a(i;d′)(j;d)bj(yt�d+1:t):

Here, a(i;d′)(j;d) is the transition probability from stay-
ing in state i for duration, d0, towards staying in state

j for duration d. Based on our model, this is a semi-
Markov jump process, with state speci�c durations
modeled as gamma distributions. Hence, this prob-
ability can be expressed as:

a(i;d′)(j;d) := P (x[t�d+1:t] = jjx[t�d�d′+1:t�d] = i)

= Gamma(d0j
i)P (xt�d+1 = jjxt�d = j)�
Gamma(dj
j)

= Gamma(d0j
j)PijGamma(dj
j): (22)

In (21), b(j;d)(y(t�d+1:t)) denotes the observation prob-
ability that is modeled as a switching Gaussian pro-
cess. Speci�cally, this quantity can be expressed as
follows:

bj(yt+1:t+d) := P (yt+1:t+djx[t+1:t+d] = j) (23)

= N(yt+1:t+djmt+1:t+d
j ;Kt+1:t+d

j );

where m
(t+1:t+d)
j and K

(t+1:t+d)
j are the predicted

means and covariances from time points t+1 to t+ d.

3 THE ADAPTIVE MONITORING
FRAMEWORK

In this section, an adaptive monitoring method is pro-
posed based on the hidden semi-Markov model with
switching Gaussian Process. In particular, with the
previous process inference procedure, we can derive
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the activity state predictive distribution. The predic-
tion uncertainty can then be characterized by the en-
tropy of the derived distribution. In the cases when we
are con�dent about the activity state in the next time
point based on the predictive entropy, we may not need
all the sensor data for the next observations, and there-
fore we can choose only a subset of the sensors for the
sake of saving energy. Adaptive monitoring will deter-
mine which group of sensor measurements may not be
necessary, if we prede�ne groups of features based on
the senor monitoring resource allocation requirements.

The set of prede�ned feature groups can be denoted as
F , from which one of the feature group m 2 F is cho-
sen at each observation time t to observe signals ymt .
For each feature groupm, we also de�ne its cost related
to power consumption, which is set to a constant �m
for simplicity. The selected feature group should bal-
ance the energy cost and prediction uncertainty gain.
This is achieved by minimizing the following loss over
all prede�ned feature groups:

L(m) = EP (ymt+1jyF
1:t)
[H[P (xt+1jyF1:t;ymt+1)]] + �m;

(24)
where yF1:t denotes all the previous observations of fea-
ture groups selected from F following the same rule,
H[p(x)] = �

P
p(x) log p(x) is the entropy function.

In the loss function, the �rst term averages over the
predictive distribution of ymt+1 given y

F
1:t and it de-

scribes the remaining uncertainty of xt+1 after observ-
ing ymt+1, we would like to minimize this value to make
sure that ignoring feature group m does not increase
much prediction uncertainty. At the same time, we
also would like to achieve small energy cost �m.

Loss Function Computation The minimization
of (24) does not have an analytic solution form and
must be solved approximately. We �rst approximate
the expected predictive entropy in (24) by drawing

samples y
m(i)
t+1 from P (ymt+1jyF1:t). For each of these

samples, we then calculate the corresponding entropy

function H[P (xt+1jyF1:t;y
m(i)
t+1 )].

To derive the sampling probability P (ymt+1jyF1:t), we
adopt the following message passing algorithm:

P (ymt+1jyF1:t) (25)

=
X
i;j2X

X
d′;d2D

bj(y
m
t+1)a(i;d′)(j;d)�t�d+1(j; d

0);

which gives a Gaussian mixture distribution with re-

spect to ymt+1. For each samples y
m(i)
t+1 , we can easily

calculate P (ymt+1jyF1:t;y
m(i)
t+1 ) based on (19). Then the

loss function can be approximated by:

L(m) = �m +
1

N

NX
i=1

H[P (xt+1jyF1:t;y
m(i)
t+1 )]; (26)

where N is the number of samples drawn from
P (ymt+1jyF1:t).

4 RESULTS AND DISCUSSION

We apply our model to the popular UCI benchmark
of \Human Activity Recognition using Smartphones"
(Anguita et al., 2013). This dataset contains sensor
measurements from a group of 30 volunteers perform-
ing six types of activities of daily living, including
\walking" (1), \walking upstairs" (2), \walking down-
stairs" (3), \sitting" (4), \standing" (5), and \laying"
(6). The sensor measurements are all taken at a con-
stant rate and labeled manually with the correspond-
ing activity type. We pre-process the data by Prin-
cipal Component Analysis (PCA) to reduce computa-
tion overhead. Speci�cally, 10 principal components
are derived from the 561 original features. We assume
a constant mean for each activity by computing the
population mean corresponding of each.

We evaluate the performance through two sets of eval-
uations. For the �rst evaluation, we assume activity
states are known, and evaluate by the mean squared
error (MSE) and absolute di�erence error (ABS) for
trajectory prediction. In our second evaluation, we
conduct joint activity recognition and trajectory pre-
diction, where we only have observations up to the
time of prediction. Several di�erent Gaussian pro-
cess setups and assumptions are compared to select
the best performing model.

Table 1: Prediction result comparison at di�erent
Gaussian process setups.

Model Setup MSE ABS

Baseline + Separate time depen-
dence + Separate Multivariate

0.4988 0.4480

Baseline + Separate time depen-
dence + Combined Multivariate

0.4040 0.4244

Separate time dependence +
Combined Multivariate

0.3852 0.4235

4.1 Trajectory Performance Prediction
assuming Known Activity States

We compare the sensor signal trajectory prediction
performance under three di�erent Gaussian process
model assumptions. The �rst assumption uses two
Gaussian process components: a baseline model to
model the entire trajectory of all patients and an ac-
tivity speci�c model to capture the varying dynamics
of the di�erent activities. We assume that either the
temporal and multivariate dependencies are modeled
separately for each activity, or the multivariate depen-
dencies are combined between di�erent activities. The
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Walking

Walk Up

Walk Down

Sitting

Standing

Laying

A
ct
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ity

Figure 3: Prediction trajectory for activity recognition and prediction.

Figure 4: Learned Gamma duration distributions of
the di�erent activity types

prediction accuracy of these two models are shown in
the �rst two entries of Table 1. Our best perform-
ing model, however, considers only a single multivari-
ate e�ect model for di�erent activities with no special
consideration for any baseline trajectory. We use this
best performer's assumption for the remaining exper-
iments. We set the ratio between observed measure-
ments and held-out measurements to be 1:4. Figure
2 demonstrates prediction results of di�erent variables
where the model is able to follow the trajectories of
the held-out data accurately. Moreover, the sensor
signals for di�erent activity states also have di�erent
variances, indicated by varying widths of the predicted
con�dence intervals.

0.53

0.58

0.63

0.68

0.73

0.78

-5 -4 -3 -2 -1 0

Ac
cu

ra
cy

log(Energy Cost)

Separate Time + Combined
Multivariate
Baseline + Spearate Time + Combined
Multivariate
Baseline + Separate Time + Separate
Multivariate

Figure 5: Energy cost and accuracy trade-o� curve for
activity recognition

We compare the activity state prediction results in two
tasks. Figure 4 illustrates the �rst task, where the
learned semi-Markov jump process duration distribu-
tions manifest a di�erence in duration between walking
upstairs and downstairs compared to the other activ-
ities. Figure 3 demonstrates activity state prediction
results in our second task. In this task, the average
testing prediction accuracy can go up to 74.21%. Ad-
ditionally, a large portion of inaccurate estimations are
due to the time lag between the actual and predicted
activity switch, which is a common problem in �lter-
ing tasks that need a certain amount of measurements
in order to be con�dent in an activity switch.

4.2 Adaptive Monitoring

Finally, We implement the adaptive monitoring on
the same UCI dataset with same training and test-
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Figure 6: Context prediction results, loss function values, and active features across time for λ = 0.1. Yellow
highlights indicate active sensors.

ing setup. To perform sensor selection, we treat the
10 principal components as 10 different sensors and as-
sume they have the same energy cost. We then define
feature subsets consisting of all possible combinations
of 4, 7, and 10 sensor measurements. Thus, the energy
cost for each group is proportional to the number of
measurements in the group. In our experiments, we
vary the energy cost λ of a single sensor from 0 to 1
and view its impact on prediction performance.

As shown in Figure 5, we see that as the energy cost λ
is increased, the prediction accuracy decreases as each
sensor measurement comes at a higher cost. On the
other hand, when there is no energy cost, the monitor-
ing plan will prefer to utilize all of the sensor measure-
ments available to perform the best prediction possi-
ble. A sample of the context prediction trajectory with
energy cost λ = 0.1, which exhibits the most activity
in adaptive feature selection, is shown in Figure 6. In
this specific example, we are able to get an accuracy of
79.26% with an average sensor usage of 73.42%. The
most used features are the leading principal compo-
nents indexed starting from 10. This indicates that the
leading principal components are better correlated to
the activity recognition task compared to lower prin-
cipal components. Moreover, this also shows that our
adaptive monitoring framework can detect the most
relevant principal component features without know-
ing their order in advance.

5 CONCLUSION

In this paper, we propose a hierarchical model con-
sisting of a multivariate switching Gaussian process to
model the signals based on different activity types. We
applied our model on trajectory and activity predic-
tion with the UCI dataset for model verification. MSE
for trajectory prediction can be as small as 0.3852, and
activity recognition accuracy can reach 74.21%. Based
on this model, we proposed an adaptive monitoring ap-
proach balancing the trade-off between sensor energy
cost and prediction uncertainty. Within this moni-
toring scheme, we characterize the trade-off between
monitoring accuracy and sensor energy effi ciency. We
show that our activity recognition scheme can stay ro-
bust and perform well under energy restrictions.
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