EIGENVECTORS OF RANDOM MATRICES OF SYMMETRIC ENTRY
DISTRIBUTIONS

SEAN MEEHAN AND HOI NGUYEN

ABSTRACT. In this short note we study a non-degeneration property of eigenvectors of symmetric random
matrices with entries of symmetric sub-gaussian distributions. Our result is asymptotically optimal under
the sub-exponential regime.

1. INTRODUCTION

Let x be a random vector uniformly distributed on the unit sphere S"~!, where n — oco. It is well known
that x can be represented as

L 51 gn
V.—(S,..., S)
where &; are iid standard Gaussian and S = /), [&|?>. One then can deduce that for any deterministic

vector f = (f1,..., fn) € R" with Y, f2 =n,
fTv 4 N(0,1).

We also refer the reader to the survey [17] for further nice properties of x.

Let M,, be a random symmetric matrix of size n X n of real-valued entries. When M,, is GOE, then by the
rotation invariance, the individual eigenvectors of M, have the same distribution as x above. One then can
deduce various nice properties of these eigenvectors. Motivated by the universality phenomenon, it is natural
to ask if these properties are universal.

Question 1.1. Is it true that the eigenvectors of M, are “asymptotically uniformly distributed” for more
general random ensemble M, ?

We assume for the moment that M,, has simple spectrum. Let A\; < --- < A, be the real eigenvalues of M,,,
and uy,...,u, be the corresponding unit eigenvectors (which are unique up to a sign). Among many nice
results, the following can be read from [26, Theorem 13] and [1, Theorem 1.2] regarding Question 1.1.

Theorem 1.2. Let M,, be a random symmetric matriz where m;;,1 <i < j < n are iid copies of a random
variable §. Let £ = (f1,..., fn) € R™ be any deterministic vector with Y, f# = n.

o [26] Assume that & is symmetric, £ 4 —&, and & has moment matching up to the fourth order with
N(0,1). Then for any 1 <i<n,
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£u; % N(0,1).

More precisely, there exists a positive constant ¢ such that for any x > 0,

2 ® 2
P w| < 7) — E/o e~*/24t 4 O(n~°). (1)

o [1] Assume that & has mean zero, variance one, and finite moment of all orders. Then (1) holds for
any eigenvector w; with i € [1,nY4 U [n'=% n —n'=9 U [n — n/4 n] with possibly different c.

We also refer the readers to [26] and [1] for further beautiful results such as the joint independence and
gaussianity of the eigenvectors.

Note that the constants ¢ above can be made explicit but are rather small in both results. Thus, assume
that if we are interested in the tail bound estimates |f7u;| < x, then the above results are less effective when
x < n~°¢ In fact, it was not even known whether asymptotically almost surely f7u; # 0. This question was
raised by Dekel, Lee and Linial in [5] for £ = (1,0,...,0) in connection to the notion of strong and weak
nodal domains in the random graph G(n,p). This question has been confirmed in [14] in the following form.

Theorem 1.3. Assume that F,, is a symmetric matriz with ||Fy,||2 < n?Y for some constant v > 0. Consider
the matriz M, + F,, with the random symmetric matriz M, of entries m;;,1 < i < j < n, being iid copies
of a random variable & of mean zero, variance one, and bounded (2 + €)-moment for given € > 0. Then for
any A, there exists B depending on A and ~,e such that

P(EI a unit eigenvector u = (u1, ..., u,) of M, with |u;| <n~5 for some z) =0(n 4.

Although the above result holds for very general matrices, the approach does not seem to extend to the case
that f has many non-zero entries, which is the main focus of our current note.

Condition 1.1. Let ¢, K1, Ko be positive parameters.

o (assumption for £) We assume that the following holds for all but cn indices 1 <i<mn
n=C < |fil <nf
o (assumption for M,) We assume that the entries of m;j,1 < i < j < n, are iid copies of a random

variable & of mean zero, variance one, and so that
— For every t > 0,

P(|¢| > t) < Ky exp(—t?/K>) (2)
— £ is symmetric.
For the rest of this note we will be conditioning on the following result.
Theorem 1.4. [27, 14] With M,, as above, there exists a constant ¢ > 0 such that with probability at least

1 — exp(—n®), M,, has simple spectrum.

In the above setting, we are able to prove the following:
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Theorem 1.5 (Main result). Let M,, and f be as in Condition 1.1 for some positive constants K;, Ks,

and for some sufficiently small constant c. Conditioning on the event of Theorem 1.4, let Ay < -+ < Ay
be the eigenvalues of M, and uy,...,u, be the associated eigenvectors. Then the following holds for any
0 > exp(—n©)

P(sup|<ui,f>\ < 5) < ns.

It seems that our result can also be extended to the case when m;; and m;; have different distributions, but
we will not focus on this setting for simplicity. The current method does not extend to non-symmetric &,
although we believe that our result should hold in this generality. Lastly, the balancing condition 1.1 on f is
important in our approach to help pick up sufficient structural information on the eigenvectors components
(see Subsection 3.2), and cannot be weakened in any non-trivial way. However, it seems plausible to combine
the approach of this note with [14] (which considers those f that have only a few non-zero components) to
extend to broader classes of f, we defer it for later study.

I added the above paragraph to address (1).
In what follows we connect our result to the study of controllability of matrices. Consider the discrete-time
linear state-space system whose state equation is
x(k + 1) = Ax(k) + Bu(k).

In the above, A and B are n x n and n X r matrices, respectively, while each u(k) is an r x 1 vector that we
wish to solve for based on the state values x(k) of size n x 1.
We say that our system is controllable if we can always find the control values u(n — 1),u(n —2), --- ,u(0)
based on the state values x(-). Note that

x(1) = Ax(0) + Bu(0)

x(2) = Ax(1) + Bu(1) = A?x(0) + ABu(0) + Bu(1)

x(n) = A"x(0) + A" ' Bu(0) + A" 2Bu(1) + - -- + ABu(n — 2) + Bu(n — 1).
That is,
x(n) — A"x(0) = (A"'B A"2B ... AB B)(uT(0) u?f(1) --- uf(n-1)7T.

From here it is easy to see that we can always find the control values u(-) if and only if the left matrix has
full rank. Restricting to the case where r = 1 and switching around columns to remain consistent with other
literature, this motivates the following definition of controllability:

Definition 1.6. Let A be an n X n matrix and let b be a vector in R™. We say that the pair (A,b) is
controllable if the n x n column matrix

(b Ab --- A”_lb)
has full rank.

As it turns out, the notion of controllability is related to the existence of eigenvectors orthogonal to b via
the Popov-Belevitch-Hautus test [15]:
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Theorem 1.7. With A and b as above, (A, b) is uncontrollable if and only if there exists an eigenvector v
of A such that (b,v) = 0.

This is [16, Lemma 1], which we prove in Appendix A.

Recent developments in the area of matrix controllability have come from imposing randomness on the
matrix A and imposing varying rigidity on the deterministic vector b. For example, in [16] O’Rourke and
Touri were able to prove the following conjecture of Godsil.

Conjecture 1.8. Let 1,, be the vector in R™ consisting of all 1’s and A,, be the adjacency matriz of G(n,1/2).
Then as n approaches infinity, (An, 1,) is controllable asymptotically almost surely.

This has been verified recently by O’Rourke and Touri in stronger form through their focus on (K,d)—
delocalized vectors; we say that v is (K, d)—delocalized if most of the entries of v are non-zero rational
numbers of bounded height (a precise definition is given in [16]).

Through this notion, the authors of [15, 16] were able to prove Godsil’s conjecture by the following theorem.

Theorem 1.9. [15, Theorem 3.4] Assume that M, is a random symmetric matriz where the off-diagonal
entries m;j,1 <i < j < n, are iid copies of § as in Theorem 1.5, while the diagonal entries are iid copies of
a possibly different subgaussian random variable (. Fiz K > 1 and o > 0. Then there exist constants C' > 0
and § € (0,1) (depending on K,«a, &, and () such that the following holds. Let b be a vector in R™ which is
(K, 6)—delocalized. Then (M,,b) is controllable with probability at least 1 — Cn~=.

Our result, Theorem 1.5, can be seen as a near optimal generalization of Theorem 1.9 (in the case that m;
and m;; have the same distribution) where the entries of f are not necessarily rational.

Notations. Throughout this paper, we regard n as an asymptotic parameter going to infinity (in particular,
we will implicitly assume that n is larger than any fixed constant, as our claims are all trivial for fixed n),
and allow all mathematical objects in the paper to implicitly depend on n unless they are explicitly declared
to be “fixed” or “constant”. We write X = O(Y), X <Y, or Y > X to denote the claim that | X| < CY for
some fixed C; this fixed quantity C' is allowed to depend on other fixed quantities such as K7, K5 of & unless
explicitly declared otherwise. We also use o(Y') to denote any quantity bounded in magnitude by ¢(n)Y for
some c¢(n) that goes to zero as n — oco. For a square matrix M,, and a number A, for short we will write
M,, — X instead of M,, — AI,,. All the norms in this note, if not specified, will be the usual £5-norm.

2. SUPPORTING INGREDIENTS AND EXISTING RESULTS

In this section we introduce the necessary tools to prove our main result. First of all, for the rest of the note
we will condition on the following event, which is known to hold with probability 1 — exp(—©(n))

[ M| < 10v/n. (3)

2.1. Approximate eigenvectors are not asymptotically sparse. We first need the definition of com-
pressible and incompressible vectors.
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Definition 2.1. Let ¢g,c¢; € (0,1) be two numbers (chosen depending on the parameters K1, Ko, K, K} of
£,¢) A vector x € R” is called sparse if [supp(x)| < con. A vector x € S"~! is called compressible if x is
within Euclidean distance ¢; from the set of all sparse vectors. A vector x € "1 is called incompressible
if it is not compressible.

The sets of compressible and incompressible vectors in S"~! will be denoted by Comp(cy, ¢;) and Incomp(cg, c1)
respectively.

Regarding the behavior of M, x for compressible vectors, the following was proved in [28].

Lemma 2.2. [28, Proposition 4.2] There exist positive constants cg,c1 and o (depending on Ky, Ko of £)
such that the following holds for any Ao of order O(y/n). For any fized u € R™ one has
P( inf (M,, — Xo)x — u|| < v/n) = O(exp(—agn)).

x€Comp(cp,c1) ”

We deduce the following immediate consequence.

Lemma 2.3 (Approximate eigenvectors are not asymptotically sparse). There exist positive constants cg, ¢
and o (depending on K1, Ky of £) such that

P (3 a unit vector v € Comp(co,c1) and X = O(v/n) such that ||(M, — A\)v| < v/n) = O(exp(—agn)).

Proof. (of Lemma 2.3) Assuming (3), we can find \g as a multiple of n=2 inside [—10+/n, 10y/n] such that
A — Xo| < n2. Hence
1My = Xo)vll = |(A = Xo)v]l < n ™2
On the other hand, for each fixed Ay, by Lemma 2.2,
P(3v € Comp(co,c1) : ||(M,, — Xo)v|| < n™2) = O(exp(—aqn)).

The claim follows by a union bound with respect to Ag. (Il

2.2. Approximate eigenvectors cannot have structures. We next introduce a concept developed by
Rudelson and Vershynin via the notion of least common denominator (see [18]). Fix parameters x and ~y
(which may depend on n), where v € (0,1). For any nonzero vector x define

LCD, - (x) = inf {e > 0: dist(0x, Z") < min(~]0x|, /«U)}.

Theorem 2.4 (Small ball probability via LCD). [18] Let £ be a sub-gaussian random variable of mean zero
and variance one, and let &1, ..., &, be iid copies of €. Consider a vector x € R™. Then, for every k > 0 and
~v € (0,1), and for

1

€2 T oo
LCD,.,(x/x[])

& 2
pel) =0 (g +e o),
aTE]

where the implied constants depend on &.

we have

One of the key properties of vectors of small LCD is that they accept a fine net of small cardinality (see
[19, Lemma 4.7] and also [14, Lemma B6] for the current form).
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Lemma 2.5. Let Dy > cy/n. Then the set {x € R",|x]| < 1,¢y/m < LCD, ,(x/|x[|) < Do} has a
(2K/Dg)-net of cardinality at most (CoDyg/+/m)™D32 for some absolute constant C.

For the rest of our paper v = 1/2 and k = n2¢ for some constant ¢ chosen sufficiently small (compared to all
other parameters).

To deal with symmetric or Hermitian Wigner matrices, it is more convenient to work with the so-called
reqularized least common denominator. Let x = (x1,...,2,) € S"! . Let cg,c1 € (0,1) be given constants,
and assume x € Incomp(cg, ¢1). It is not hard to see that (see for instance [18, Section 3]) there are at least
cocin/2 coordinates xy of x which satisfy

o
—
—_

T NG (4)

Thus for every = € Incomp(cp,c1) we can assign a subset spread(x) C [n] such that (4) holds for all
k € spread(x) and
jspread(x)| = [¢'n],
where we set
c = coci /4. (5)
Definition 2.6 (Regularized LCD, see also [28]). Let o € (0,¢'/4). We define the regularized LCD of a
vector x € Incomp(cg, ¢1) as

LCD,. - (x, a) = max {LCDm (x1/|x:])) : I C spread(x), |I| = [an] }

Roughly speaking, the reason we choose to work with LCD is that we want to detect structure of x in
sufficiently small segments. From the definition, it is clear that if LCD(z) is small (i.e. when z has strong

structure), then so is ﬁ(w, Q).
For given D, k,~v and «, we denote the set of vectors of norm 1+ o(1) with bounded regularized LCD by

Tp sy, = {x € Incomp(cy, c1) : ﬁn,v(x, a) < D}.

The following is [14, Lemma 5.9].

Lemma 2.7. Assume that M, is a random Wigner matriz with subgaussian entries. Then there exist
c > 0,a0 > 0 depending on cy,c, from Lemma 2.3 such that the following holds with k = n?¢ and v = 1/2.
Let a, D be such that

n<a<d/4andl <D< ne

Then for any fired u € R™ and any real number Ay of order O(y/n), with 8 = \/gD we have

P (3x € Tp,s e ¢ [|[(My — Xo)x — ul| = o(Bv/n)) = O(exp(—agn)).

We remark that, while Lemma 2.3 and Lemma 2.7 were proved for unit vectors x, the proofs automatically
extend to vectors of norm 1 4+ n~2¢. For instance Lemma 2.7 can be extended to

P (Elx 1—n"2< x| <1+ n=2 A x/|xl| € Tp sy, : [|(Mn — Xo)x —u| = 0(6\/5)) = O(exp(—agn)).
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Indeed, the event ||(M,, — \o)x — u|| = o(B+/n) implies ||(M,, — Xo)x/||x|| — u/||x|||| = o(B8+v/n), and the
later implies that ||(M,, — \o)x/||x|| — w;|| = o(B+/n) for some deterministic u; appropriately chosen to
approximate u/||x|| With an error, say, at most 5. As one can easily construct a set of size n®") /g for
the u;’s, taking union bound over these approximating points will not dramatically change the exponential
bound O(exp(—agn)) of the right hand side of Lemma 2.7 as 8 > exp(—n°).

We deduce the following crucial consequence from Lemma 2.3 and Lemma 2.7.

Corollary 2.8. Let u € R", Ay be fired, and D, be as above. Let &, be the event that for any x
with 1 —n=2¢ < [|x]| < 1+n72% , if (M, — Xo)x — ul| = o(Bv/n) then x/||x|| ¢ Tpx~a and x/|x| €
Incomp(cy,c1). We then have the bound

P(Eux,) > 1 — O(exp(—agn)).

Finally, together with the structural results above, we will also need the following result (see [18, Lemma
2.2]) to pass from small ball bounds to a total bound.

Theorem 2.9. Let (y,---,(, be independent nonnegative random variables, and let K,ty > 0. If one has
PG <t) <Kt
forallk=1,--- ., n and all t > tg, then for all t > tg

P> ¢ <t*n) < O((Kt)").

k=1

We remark that all of the results in this section including Lemma 2.2, Lemma 2.3, Lemma 2.7 and Theorem
1.4 hold for matrices where the entry distributions are not necessarily symmetric.

3. PROOF OF THEOREM 1.5

3.1. Extra randomness. A key observation, by using the fact that £ is symmetric, is that if e1,...,¢e,
are iid Bernoulli random variables independent of M,,, then M,, and M,, = (;6;m;;) have the same matrix
distribution. Furthermore, a quick calculation shows that M,u = Au if and only if M/u’ = Au’, where
u’ = (e1u1,...,EnUy). So the eigenvalues of M,, and M/, are identical, and the spectrum of M,, is simple if
and only if the spectrum of M/, is simple.

Lemma 3.1. [16, Lemma 10.2] Conditioning on the event £ that the spectrum of M, is simple, for any
0 > 0 and any deterministic vector £ we have

P(|(u,f)] < 0|€) = P(|(u’, )| < 8[€).
Consequently, by Theorem 1.4,
P (sup [(u;, f)| < 8) < P(sup|(uj, £)] < 9) + exp(—n°).

As the proof of this lemma is short but crucial, we insert it here for the reader’s convenience.

Proof. (of Lemma 3.1) Let A\ be the eigenvector associated to both u and u’. Let Py denote the orthogonal
projection of M,, onto the eigenspace associated with A, and let P§ denote the orthogonal projection of M),
onto the eigenspace associated with A. From the fact that M,, and M/, have the same distribution, Py and
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P{ also have the same distribution. Also, when our spectrum is simple, we have that Py\(-) = (u,-)u and
P{(-) = (u/,-)u’. It thus follows that

P([{u,£)| <5[&) = P(|(u, f)[[u] <5[&)
(IPA(f) <0]€)
(1P

(I

PB) <d[€)

P
P
P(|(u',f)] <4[€),

ie. P([(u,f)] <dné&) =P, f)] <dNE). Hence
P(|(u,f)| <) <P(|(u,£)] <IN E) +exp(—n°) < P(|(u',£)| < ) + exp(—n°),
as desired. (]

It is remarked that one can deduce from here an almost optimal analog of (1) of Theorem 1.2, say, for the
sequence f = (1,...,1). Indeed, by Lemma 3.1 it suffices to show the comparison for u’ = (g1uy,...,enUn).
To this end, by the classical Berry-Esseen bound, as Y, (fiui)? = 3, u? = 1 and max; |u;| < n™1/2+°() (see
for instance [9, 10, 29]),

1 z 2 1 z 5
P EilUifi <)== — e—t /2dt+su ;| = 7/ e—t /2dt+0 n—1/2+o(1) )
e (et <) =/ il == [ ( )

3.2. Starting from controlled sets. Now suppose |[(u, )| = |ui fi+- - +upfn| < d for some unit eigenvec-
tor u of M,,. By Lemma 3.1, the probability of this event is bounded above by the probability of the event
lerur fi + -+ + epunfn| < § for some unit eigenvector u of M,, and for some Bernoulli vector (e1,...,¢e,).
This extra randomness allows us to study our main problem as follows:

(1) (Randomness on M,,) show that with respect to M,,, the eigenvectors u = (uq,...,uy) of M, does not
have structure.

(2) (Randomness on e1,...,&,) conditioned on the event above, the proof is concluded by applying Theorem
2.4.
Now we look at the first step more closely. Without loss of generality we assume that n=¢ < |f1|,...,|fno] <

n¢ for ng = (1 — ¢)n. For now we fix a parameter ¢ and let u be the i-th eigenvector. Assume otherwise that

P511<~~75n(| Z5zfzuz| < 5) > n*s.

We are not ready to apply Theorem 2.4 yet as Y. (u; fi)? is not necessarily 1. However, by Condition 1.1
and by Lemma 2.2, provided that c is sufficiently small, it suffices to consider the case

C

Approximating /Y2, (u; fi)? by \/p; where p; € [—n¢,n¢] is an integral multiple of n=5¢,

| pte < Z(\/%fiui)z <14, (6)
i J
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Thus the event | ). e; fiu; —u| < 0 implies that

Ei——Jili — Sncé
|Z f ﬁ|

J

In other words, there exists some p; such that, with ¢’ = n°J,

supP|Z flul— )| <6 > ncd.

Let x = ({};LJI ey f"”%) By theorem 2.4, the above implies that
X -1
D=LCD,  (—)<d "

T ]

Notice that as there are many non-zero u;,1 < i < ng, by Lemma 2.2 and by the assumption § > exp(—n®),
Vn < D < exp(n®) := Dy.

By Lemma 2.5, there is a set Sj p, (corresponding to p;) of cardinality at most (C'Dg/y/n)"™ which is a
(2k/Dg)-net for the set of x above.

For each S; p,, we consider the scaling map from x = (z1,...,%p,) to v/ = (v1,...,Up,) :
o e WPiT/f1s e /P [ Frg)
1|
This creates a new set V; p, of vectors v/ which well approximates the truncated vectors u’ = (uq,. .., Up,)

of our eigenvector u

no no
\/DjTi ||x\|f1uz _4 2K 4:‘<;
[u' = V| = (u; — 12 < n2x|)2) (== —2)2<n(1+n *)—<n
2 = T 2 5 Do =" Dy

We can also k/Dg-approximate the remaining n — ng coordinates trivially by a set of size (Dg/k)"*~ ™ =
(Do/k)™. Appending this to V; p, above, and taking the union over p;, we obtain the following:

Theorem 3.2. There exists a deterministic set V of size n°1)(C Dy //n)™(v/n/K)" such that for any unit
vector u € S"~1 with sup, P(| Y, & fiu; — u| < &') > n°d’, there exists v € V such that

|lu—v| < nk/Dy.

Notice that by the approximation, for any v € V
1—0(n°k/Do) < ||lv[| <1+ O(n°s/Do).
Using this approximation, if (M,, — A)u = 0 then by (3), with Sy = xn°/Dy,
(M, = M < Vnfo.

From now on, let ¢; :=i/Dy. We say that v is an approzimate vector of M, if there exists ¢ such that

[(M,, — t;)v|| = O(v/nf).
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3.3. Concluding the proof of Theorem 1.5. In what follows we will choose a = n~%, for a constant ¢
to be chosen sufficiently small. Our main goal is to show the following.
Theorem 3.3. With V from Theorem 3.2,
P(az, Iv eV, (M, —t;)v] < 50n1/2) < exp(—agn).

It is clear that Theorem 1.5 follows from Theorem 3.3. It remains to prove Theorem 3.3 for a fixed ¢;, and
then take the union bound over ¢; (the factor of Dy will be absorbed by exp(—con)). Recall that By = kn°/Dy
and o = n~%. We now condition on the event Eo.t; of Corollary 2.8 with D = Dy and 1 = /v/aDy. On
this event, if ||(M,, — t;)v|| < Bon'/? = o(B1n'/?),v € S*~ 1, then

v/|[v|l € Incomp(co, 1) and LCD,. - (v/||v], @) > Do. (7)

Consequently, on & ¢,, for any v € V we either have ||(M,, — t;)v|| > Bon'/? or (7) holds for v. So to prove
Theorem 3.3 for ¢; one just need to focus on these vectors v.

Set n’ = an. For v = (v1,...,v,), let p, g(v) be as below

Pap(v) = inf supP(|&, v, +---+ & v, — x| < B).

L1 yeeeylp?

Mnfn’ B VI
Mn = ( B* Mn’) and v = (VN) )

where M,/ is the n’ x n’ principle minor of M,, with indices 41,...,%, and M,_, is the remaining principle
. I ’
minor. Here v/ € R®™™ and v’/ € R™.

By splitting M,, accordingly,

So ||(My, — t;)v| < Bov/n implies that
|BV" — (Mp—n — t:)V'|| < Bov/n.
We will condition on the matrix M,,_, . Using Theorem 2.9, we thus have
P(| (M — t:)v]| < n'/?Bo) < (20,6, (V)" "
Indeed, we will consider P(3>"r2 < B2n), where
i = bi1Vn—n/41 4+ + bivn — (M 101+ + (M — 6)vi + -+ My e/ Vp—n)

denotes the i*" row of Bv" — (M,,_,, — t;)v'. Conditioning on B, we have that P(|r;| < ) < Pa,8, Dy the
definition of py 5. We claim that P(|r;| < ¢) is true for every t > to with tg = 8y and K = pq g,/80- Indeed,
breaking the interval [0,¢) into [¢/8y] intervals each of length at most 5y, we have that

P(lri <t) < (t/Bo+ 1)pa,p, < 2Kt

and we are done via Theorem 2.9.

Now we estimate the event considered in Theorem 3.3 for a fixed ¢; conditioning on &g ¢,
P(Elv €V, v satisfies (7), || (M, — to)v] < 50n1/2) < Y @pas )
vev,ve(T)
To this end, as v satisfies (7)
LCD,.(v/|v]l,a) = Do.
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By definition, there exists I C spread(v), |I| = [an] such that
LCD,. (vi/|lvill) = Do = n“f5"
Thus

Papo (V) < pgosva(vi/lIvill) = O(Bon™),
where in the last estimate we apply Theorem 2.4 as Son?¢ > 1/Dy. So

> (2008, (V)" ™ < (Bont) Y|

vey
< (C"Bon*) 1= OO Dy /)" (Vi k)"
S( /,6 n4c)(1 a)n Om(CnCﬁ l/f \/ﬁ/nQC)CTL
SB an,, — (1/2—6¢)n
< encn7(’° n7(1/276c)n

n—(1/2—6c)n

IN

provided that n is sufficiently large, where we noted that Sy > 1/Dy = exp(—n°) and c is sufficiently small.

The proof of Theorem 3.3 is then complete where the bound exp(—agn) comes from the complement of the
event of Corollary 2.8 we conditioned on.

4. APPENDIX A: PROOF OF THEOREM 1.7

In this section, we prove that uncontrollability of a pair (4, b) is equivalent to the existence of an eigenvector
v of A such that (b,v) =0.

The backward direction follows almost immediately. Indeed, if we can find an eigenvalue-eigenvector pair
(A, v) of A such that vI'b = 0, then for each k, we have vI A*b = MvTb = 0. Letting A’ denote the
controllability matrix in Definition 1.6, we have that vZ' A’ = 0 and thus A’ is uncontrollable.

For the forward direction, suppose that each eigenvector v satisfies vZ'b # 0. Then each eigenspace of A has
dimension one (if we can find an eigenspace of dimension at least 2, then considering the intersection of that
eigenspace with the orthogonal complement of the subspace spanned by b leads us to an eigenvector v such
that vI'b = 0). Since A is symmetric, it thus follows that the eigenvalues are distinct so that A has simple
spectrum. Now suppose that the spectrum of A is simple and assume that (A, b) is uncontrollable, i.e. we
can find a nonzero vector a = (ag, - -+ ,a,—1) such that A’a = 0, where

A=®m Ab ... A"1lp)

is our controllability matrix. Further suppose that our eigenvalue-eigenvector pairs are denoted (\;, v;) with
A < - < A\,. We begin to use the spectral theorem to decompose each A*b as

AFb =Y "(MvTb)v
j=1
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Since A’a = 0, we have that

n—1 n—1 n n n—1
0=Aa= Z apA*b = Z ag Z(A?vfb)vj = Zvj(z vibAray).
k=0 k=0 j=1 j=1 k=0

Letting

n—1
_ T\ k
Bj = E v bAjax,
k=0

we have that each 3; = 0 by linear independence of our eigenbasis. Write

T

1 \7
M
,J a=0.
n'fl
Aj
But this implies that the Vandermonde matrix
1 1 e 1 \7F
A\ Ao A
)\?71 )\;171 . )\2—1

is singular, and hence A; = A; for some 4 # j, a contradiction.
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