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Abstract—The recent success of Deep Learning (DL) in a
board range of AI services has led to a surging amount of
DL workloads in production clusters. To support DL jobs at
scale, the parameter server (PS) architecture is the most popular
approach for distributing the computation in a compute cluster.
Concurrent DL jobs consisting of PS tasks and worker tasks
are typically launched on available compute nodes by a cluster
resource manager to ensure high cluster resource utilization. As a
PS needs to distribute model updates to every remote worker, its
communication has very large fan-out. We observe that network
contention among colocated PSes would cause stragglers among
workers, resulting in application performance degradation and
resource under-utilization. To mitigate the straggler effect, we
propose TensorLights, which introduces traffic prioritization at
host NICs to manage traffic contention among PSes. We evaluate
TensorLights experimentally and show that it effectively miti-
gates stragglers, improves the average completion time of DL
applications by up to 31%, and increases resource utilization.
TensorLights is highly practical as it provides benefits without
needing changes to the DL software stack.

I. INTRODUCTION

Today, deep learning (DL) has gained tremendous success
in a wide variety of AI services. Besides classic machine
learning problems such as image recognition [1] and language
processing [2], deep learning has also been applied to prob-
lems in system security [3], network congestion control [4],
database index structures [5], power grid scheduling [6], and
a long list of other challenging problems that conventionally
rely on carefully-designed heuristics or manual control. As a
result, DL has become a surging workload in today’s compute
clusters. Training a complex model on a large dataset usually
requires intense computation and network communication.
To achieve a high accuracy, these applications usually run
for a long time, ranging from hours [7] to days [8] and
even months [9]. The DL workload will continue to grow,
and therefore, improving the efficiency of these emerging
applications has become a crucial challenge in a modern
compute cluster.

To support computation on complex models and large-scale
datasets, training DL models in a distributed mode is beneficial
in several ways. For certain DL jobs, a single machine is
insufficient due to limited compute power and storage [8].
Distributed DL can also exploit the parallelism in a DL job
to speed up the application [8, 10, 11]. Even for a job
that has similar performance running on a single machine
as running on distributed machines, dividing the compute
workloads into multiple machines helps the job to start earlier,
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because in a production environment, it is usually easier to
find a collection of machines with the required resources for
the divided tasks, and less likely to find a single machine
with sufficient capacity for the aggregate resource demand of
a DL job, which is typically large [12]. With distributed DL,
divided tasks from concurrent DL jobs are then launched on
any available compute nodes by a cluster resource manager to
ensure high cluster resource utilization [13].

Distributed training using the parameter server (PS) archi-
tecture has gained popularity due to its architectural simplicity
and scalability, and it is widely supported by a range of
distributed DL frameworks [14, 15, 16, 17, 18]. We will
discuss this architecture in more detail in Section II. The
PS architecture leverages a logically centralized PS to work
with a number of remote workers. The PS communicates
with all remote workers back and forth to exchange the
model parameters, so the communication at the PS is usually
intense with high fan-in and high fan-out. Therefore, the
communication efficiency of the PS plays a crucial role in
the performance of a distributed DL application.

Because of the heavy communication at the PS, traffic
contention among PSes from concurrent DL jobs would
lead to stragglers among workers and therefore performance
degradation of the applications (Section III). We analyze the
straggler effect and identify one cause of such inefficiency
to be the conventional packet scheduling policy at the host
NIC (Section IV). Based on these observations, we propose
TensorLights, a traffic scheduler for the end-host NIC to mit-
igate the straggler effect for distributed DL. In contrast to the
conventional first-come-first-serve traffic scheduling policy,
TensorLights applies application-aware traffic prioritization to
ensure that workers of the same job progress at a similar pace,
so as to avoid imbalanced waiting time among workers that
leads to stragglers. This not only improves application per-
formance, but also increases machine utilization. In addition
to using traffic priorities to mitigate stragglers, TensorLights
also provides fairness among concurrent applications, which
is desirable for monitoring the accuracy progress of a set of
related DL models being trained concurrently.

TensorLights is a lightweight approach readily deployable
in modern clusters without having to modify applications,
the cluster scheduler, or the underlying hardware. This is
in contrast to existing works [13, 19, 20, 21, 22], which
require modifications of the distributed DL stacks. We im-
plement TensorLights in Linux and evaluate its performance



in a 21-server testbed. The experimental results show that
TensorLights improves the average job completion time for
distributed DL applications by up to 31%, and leads to higher
machine utilization. Together with its lightweight design, Ten-
sorLights provides a practical strategy to support distributed
DL efficiently at scale in a cluster.

II. BACKGROUND

We begin with a brief overview on the life cycle of a
distributed DL job. Then we discuss how a large amount of
distributed DL jobs are supported in a cluster at scale.

PS vs. worker: Distributed DL based on the parameter server
architecture leverages a logically centralized PS to manage the
model parameters. Figure 1 illustrates an example workflow
of this architecture. The PS manages the trained model and
communicates with a number of workers, which concurrently
work on the training data. Each worker calculates, based on
the worker’s local copy of the model, the gradients of model
parameters for a batch of samples, i.e. a small fraction of
the training data. Local batch size' describes the number of
samples contained in a batch processed by one worker, which
typically ranges from a few to hundreds of samples [20, 23],
depending on the worker’s compute power.

Communication patterns: The communication between a
worker and the PS proceeds in iterations (Figure 1). Each
worker will wait for the model update from the PS to start
computing on a new local batch with the latest model reported
by the PS. As soon as a worker finishes processing a local
batch, it sends the gradient update to the PS. Upon receiving
the gradient update, PS modifies its local copy of the model to
include the updated gradients. The model update and gradient
update to/from a worker in each iteration are typically of the
same size, i.e. the total data size of the model parameters.

In the common case of synchronous training, the PS applies
a barrier to wait for the gradient updates from all workers,
before sending back the model update to any worker. The
barrier, which marks the end of one iteration, ensures the
models sent to all workers are identical and reflect the ag-
gregated gradients from all workers in the last iteration. It is
also possible to train a model asynchronously: after receiving
the gradient update from a worker, the PS immediately sends
back the latest model to the worker, so that the worker may
continue to process the next local batch without waiting for
other workers. This allows each worker to proceed at their
own pace, but gradients computed by each worker are usually
based on a different version of the model. Consequently, the
asynchronously trained models may be less accurate [24] due
to the potential staleness of models and gradient updates across
workers. In this work, we focus on synchronous training which
usually results in more accurate models [24, 25].

Local vs. global steps: The progress of a worker can be
measured by the number of local batches processed, i.e. local

! The batch size and mini-batch size in prior literature are vaguely defined,
which also refer to the total number of samples processed in one iteration.
For clarity, we use local batch size.
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Fig. 1: Workflow of a distributed DL application based on the
parameter server architecture. The example DL job has one
PS and two remote workers, wk; and wks.

steps. The global step of a DL job describes the total number
of local steps performed by all workers. In the example of
Figure 1, at t3 (or t5), wk; (or wko) finishes processing one
local batch, and therefore the local step of wk; (or wks)
increases to 1. At ¢4 (or tg), the PS receives gradient updates
from wk; (or wks) and updates its local model. The global
step increases to 1 at ¢4, and to 2 at ¢g.

Distributed DL at scale: To search for the best configuration
of a DL model, a common practice is to run a large amount
of concurrent training jobs of the same model on the same
dataset, so that each individual job is configured with a
different combination of model configurations, such as the
parameter initialization methods and the strategies to random-
ize selected parameters to avoid overfitting. This process is
commonly known as the grid search. The grid search is highly
time-consuming and resource intensive, because the number of
possible combinations is exponential.

In production environments, the cluster scheduler, such as
YARN [26], Borg [12], or Mesos [27], is used to manage
the executions of a large amount of distributed DL jobs at
scale [13]. The scheduler picks a machine for a task by
considering a wide variety of factors, such as the task’s
resource request and the actual machine usage. To maximize
utilization, a machine may be scheduled to host a mixture
of different tasks. To achieve fault tolerance, tasks from the
same job are usually spread on different machines across
power and failure domains [12]. When making task scheduling
decisions, the cluster scheduler focuses on the task’s resource
requirement, such as the usage of CPU, memory and storage,
and it is usually agnostic of the task’s functionality (e.g. PS vs.
worker) in the job; thus, colocation of PS tasks can naturally
occur. Cluster designs customized for distributed DL are under
active research [13, 22]. For example, a recent proposal [22]
develops a specialized PS that can service multiple DL jobs
concurrently to improve the communication efficiency for
model/gradient updates.

III. PERFORMANCE MEASUREMENTS

In this section, we characterize the application performance
when multiple concurrent DL jobs coexist in a cluster.
Testbed: Our testbed consists of 21 hosts connected to one
Ethernet switch. Each host has 128 GB RAM and six 3.5 GHz
dual hyper-threaded CPU cores. All links are 10 Gbps. Our



TABLE I: Index of different possible PS placements. The
placement with a higher index tends to be more uniform.

Index | PS Placement | Index | PS Placement

#1 21 #5 55,56
#2 5,16 #6 4,4,4,4,5
#3 10, 11 #7 3,3,3,3,3,3,3
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Fig. 2: Job Completion Time (JCT) of concurrent DL jobs un-
der various placements. Scatters show the completion time for
individual jobs. Bar heights indicate the average completion
time of concurrent jobs in the same experiment. Definitions
of placement indexes are in Table I.

measurements require a controlled network environment to be
meaningful; this requirement prevents us from conducting our
experiments in a public cloud environment (e.g. AWS [28] or
Azure [29]) that has high network interference [30].

Workload: We focus on the performance of grid search as
described in Section II. In each experiment, we deploy 21
concurrent DL jobs. Each job runs synchronous training for
the ResNet-32 [7] model on the CIFAR-10 [31] dataset with
a local batch size of 4, until the global step reaches 30000.
Each worker reads the dataset from the local disk on the host.
There are one parameter server and 20 workers for each job.
In a more general case where one DL job has multiple PSes,
each PS communicates with remote workers in a similar way.
We launch all concurrent jobs almost simultaneously at the
beginning of each experiment with a small delay (0.1 second)
between consecutively launched jobs to avoid overloading
RPC or SSH connections in a short time. We use TensorFlow
(r1.7) [32] and instrumented its public benchmarks [33] with
basic support for our measurements, such as disabling unnec-
essary checkpoints and adding operators in the execution graph
to measure barrier wait time. Our instrumented benchmark
along with the job configurations used for our measurement
is open source [34].

Task placement: In a production environment, a machine can
either host the PS task or the worker task of a DL job. In our
experiment, each DL job has one parameter server on one of
the 21 hosts, and its 20 workers are distributed evenly on the
rest of 20 hosts, so that each host has one worker task. We
have evaluated a range of possible placements of PSes from
concurrent DL jobs, as shown in Table I. For M concurrent
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Fig. 3: Distribution of barrier wait time under two placements.
Each sample describes (a) the average or (b) the standard
variance of waiting time for one barrier among workers of the
same job. Samples include all concurrent jobs under a specific
placement.

jobs each with a PS, the placement of PS tasks is displayed in
the form of mq, ..., mg, where M = Z?:l my,, which means
my, jobs colocate their PSes on the same host. For example, the
first placement of “21” indicates colocating all concurrent PSes
on the same host, which resembles the architecture design in
[22] where one logical node serves as the shared PS for all
concurrent DL jobs. The last placement of “1, ..., 17 (twenty-
one 1’s) means that each host has one PS.

Observation #1: Impact of placement on performance. Fig-
ure 2 highlights that the performance of concurrent distributed
DL jobs can be highly impacted by the placement of PS
tasks. To quantify this sensitivity, we define the performance
gap as the percentage difference between the best and the
worst performance among all possible placements in our study.
Figure 2 shows the performance gap in terms of average job
completion time can be as large as 75% due to placement of
PS tasks. Because a PS needs to distribute model updates to
all workers, colocated PSes would contend for the outbound
bandwidth on the same physical link to transmit the model
updates. The placement of PSes would result in different levels
of contention among the model update traffic from concurrent
PSes on the same host.

We observe that distributed DL jobs are sensitive to the
network bandwidth contention for two reasons. First, the
model update traffic is bursty, because the PS will wait for
the gradient updates from all workers and then send out
model updates to all workers at once. The bursty traffic
pattern would lead to heavy delays when multiple traffic bursts
overlap in time. Second, because a worker depends on the
model update from the PS to begin computation, a worker
may become a straggler if its model update is delayed as
a result of traffic contention at the PS side. Because of the
barrier enforced in each iteration, any one straggling worker
will delay the whole iteration including the progress of all
other workers in the same job. This effect not only leads to
performance degradation of applications, but also inefficient
machine utilization.

Observation #2: Stragglers under network contention. To

quantify the straggler effect, we measure the waiting time
for each barrier among all workers of the same job. As an
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Fig. 4: Scheduling model update traffic from two concurrent DL jobs. (a) The PSes of two DL jobs are colocated on the same
host machine. (b) FIFO. Workers receiving the tail part of the model updates from PS; are likely to become stragglers. (c)
TLs-One. (d) TLs-RR. In (b, c, d), the bar area of the same color represents a job’s total amount of model updates sent to all
workers in the same iteration. (e, f, g) Analogy to traffic regulation signals on the road.

example, in a DL job at 30k global steps with 20 workers,
each worker has finished 30k/20 = 1500 local steps and has
correspondingly waited for 1500 barriers. We measure the
elapsed time between a worker entering the barrier and exiting
the barrier, and calculate the average (or the standard variance)
of the elapsed waiting time for a specific barrier among all
workers of the same DL job. Figure 3 shows the distribution
of the average (or standard variance) of barrier wait time under
two extremes of placement in our study.

Heavy traffic contention at the PS leads to longer barrier
wait time. Figure 3a shows the average wait time under
placement #1 (with heavier contention) is 3.71 x of that under
placement #8 (with milder contention). Increased barrier wait
time leads to increased life span of the applications.

Besides the average barrier wait time presented above,
we are also interested in the variance of barrier wait time,
which is an indicator of stragglers. Stragglers would force the
peer workers to wait for a longer time while the stragglers
themselves usually wait for a shorter time, which results in
a high variance of barrier wait time. Figure 3b shows the
variance of barrier wait time under placement #1 is 4.37x
of that under placement #8. In sum, the traffic contention at
the PS not only leads to application delays, but also more
stragglers.

IV. TENSORLIGHTS

In this section, we first explain why the straggler effect can
easily arise under the conventional FIFO scheduling policy.
Then we propose TensorLights to mitigate the straggler effect.

A. Stragglers under FIFO Scheduling Policy

Conventional packet scheduling at the host NIC applies
a first-come-first-serve (FIFO) policy to service concurrent
transmissions. However, when model updates from two or
more different jobs overlap in time, the contention among PSes
may introduce random delay in the model updates for one or
more workers of the same job, which would later result in
worker stragglers. Stragglers are harmful for a DL job because
all workers will be delayed by a single straggler.

Figure 4a shows an example of contention between two
PSes of concurrent jobs. Figure 4b demonstrates the straggler

effect under FIFO, where workers receiving the tail part of
the model updates from PS; are likely to become stragglers.
Unfortunately, the job running on PS; would not benefit from
sharing the bandwidth in advance with PS;, because workers
that have received earlier parts still have to wait for other
workers receiving the tail part from PS,. Note that such
straggler effect can be more harmful when more concurrent
jobs are contending, because a job can be easily delayed due
to any one straggler, and multiple jobs can be simultaneously
delayed if they each have one or a few stragglers.

B. Mitigating Stragglers with Priority Scheduling

The worker stragglers are a result of contention due to
model updates at the PS, so we focus on regulating the model
update traffic to reduce stragglers. In contrast to the FIFO
scheduling policy, we propose to assign a distinct priority for
the model update traffic of the same DL job. Our proposal is
grounded in the following insights.

Insight #1: Job-level traffic priority mitigates the straggler
effect by reducing the variance of barrier wait time. When
a distinct priority is assigned to the model update traffic for
all workers of the same DL job, workers of a high-priority
job would generally wait for less time, and workers of a
low-priority job would generally wait more. Across jobs with
different priorities, the variance of barrier wait time is reduced.
With less variance of barrier wait time, stragglers are reduced
because workers of the same job are expected to wait for
similar lengths of time.

Insight #2: The communication patterns of a distributed
DL job make it easy to take advantage of the job-level
traffic priority. The life span of a DL job typically ranges
from thousands to millions of iterations [35]. During the
lifetime of a DL job, the traffic patterns between a PS and
the workers, such as the end points and traffic sizes, remain
the same across iterations. This means that, once the job-level
priority is deployed, a DL job would continue to benefit over
multiple iterations. Besides, the communication of a PS is
highly symmetric, because the model update in the outbound
direction is equal in data size to the gradient update in the
inbound direction. Enforcing the priority for model updates



at the PS also indirectly controls the progress of workers and
thus the pace of their gradient updates, which implicitly helps
to schedule the inbound traffic to the PS.

In addition, our proposal also comes with several practical
advantages. First, because we aim at regulating the model
update traffic, the implementation only requires local configu-
ration of traffic priority at the host running PSes (details in
Section V). Second, this approach does not require global
coordination or modifications to the application, the cluster
scheduler or the hardware. Third, manipulating priority is
work-conserving, so that PSes may still exploit the full link
capacity.

We do not constrain how priorities are assigned. For exam-
ple, in grid search where all jobs have the same size of data
in each model update, a random priority assignment can be
adopted. In other cases with concurrent DL jobs of various
sizes of model update, a higher priority can be assigned to a
job with a smaller model update, so as to avoid head-of-line
blocking from a job with larger model update.

In the batch processing mode which allows different
progress of concurrent DL jobs, it suffices to reconfigure
priority assignment upon job arrival and departure. We refer
to such mode of priority assignment as TensorLights-One, or
TLs-One. Figure 4c illustrates the benefits of TLs-One. The
model updates from PS; are prioritized, so that all receiving
workers may progress as soon as possible, reducing the chance
that any worker becomes a straggler. Model updates from PS,
yield but the transmission would expect to finish at the same
time as in Figure 4b under FIFO.

C. Achieving Fairness with Round-Robin Priority Assignment

We have motivated the benefits of TLs-One. Nevertheless,
applying strict priority can harm fairness among concurrent
jobs, because one job would always be promoted or demoted
over another. However, fairness is desirable in grid search,
because when all search instances have made similar progress,
a DL engineer may compare the accuracy performance of
concurrent grid-search instances. To achieve fairness among
concurrent DL jobs while using priority to mitigate straggler,
we propose to rotate the priority assignment for the contending
jobs once every time interval 7. We refer to this version of
TensorLights as TensorLights-Round Robin, or TLs-RR.

Figure 4 illustrates TLs-One and TLs-RR for two jobs with
their PSes on the same host. At ¢y, two jobs are assigned
priority 1 > 2 under both TLs-One and TLs-RR. Under TLs-
RR at 7', the priority is reconfigured to 2 > 1, and later priority
changes back to 1 > 2 at 27, and so on. TLs-RR resembles the
traffic lights on the road, which rotates the signals of “pass”
and “yield” (“yield” instead of a complete “pause” as in the
real traffic lights) for the contending traffic (Figure 4g). In
contrast to the traffic lights, a “stop” sign asks vehicles to yield
to the contending traffic, and the tie between two ‘stop” signs
is broken by vehicle arrival time. FIFO enforces a “stop” sign
for the “vehicles” (packets) from both “directions” (PS; and
PS5), which is less efficient because both jobs would suffer
from stragglers due to later arrival model updates.
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Fig. 5: Normalized Job Completion Time (JCT). The presented
JCT is normalized over that of the same job under FIFO. Scat-
ters show the normalized completion time for individual jobs.
Bar heights indicate the average of normalized completion
time of concurrent jobs in the same experiment. Lower value
is better. (a) Normalized JCT with different placements, under
local batch size of 4. (b) Normalized JCT with different local
batch sizes, under placement #1. In (b), we use the local batch
size as a knob to change the intensity of traffic contension, and
a smaller local batch size leads to heavier traffic contension.
Definitions of placement indexes are in Table I.

TLs-RR mitigates straggler effects by allowing strict priority
during a short interval 7". Meanwhile, rotating priority assign-
ments allows each job to make fair progress over a longer time
scale. Because the lifespan of a DL job usually lasts for hours
to days, an interval 7" in the scale of seconds to minutes is
sufficient to achieve fair progress among concurrent jobs.

V. PERFORMANCE EVALUATION

We evaluate TensorLights under the same settings as de-
scribed in our previous measurements (Section III).

Implementation: We enforce traffic priority with the hierar-
chical token bucket (htb) available in the tc tool on Linux.
In a TensorFlow application, the TCP port numbers for the
PS and workers are fixed for the lifetime of the application.
Therefore, we assign priority for a job based on its PS’s TCP
port number, so that the job’s model update traffic is mapped
to a specific priority band. tc controls outbound traffic at the
sender, so we only need to configure tc on the hosts with
contending PSes and leave other hosts unchanged to limit the
amount of t c reconfigurations. Ideally, a host with contending
PSes should assign a distinct priority for each job. However,
tc only supports a limited number of priority bands. In our
experiments, we only use up to six distinct priority bands, and
multiple jobs may share the same priority band.

We have implemented both TLs-One and TLs-RR based on
tc. For TLs-RR, the reconfiguration interval is 7'=20 seconds,
which is sufficient for the DL jobs in our experiments that
runs for thousands of seconds. The baseline of comparison
is the default FIFO policy, which does not involve any tc
configurations. TensorLights is open source [34].
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Fig. 6: Distribution of barrier wait time of various network
scheduling policies under placement #1. This figure reads in a
similar way as Figure 3. Smaller value is better. TensorLights
mitigates straggler effect by reducing the variance of barrier
wait time.

Result #1: TensorLights improves the average completion
time of DL applications. Figure 5a compares the system
efficiency in terms of the average job completion time of
concurrent DL applications. Compared with FIFO, TLs-One
reduces the average job completion time by up to 27%. Under
TLs-RR that achieves job fairness, the average job completion
time is reduced by up to 16%. For the placement with less
model update traffic contention, i.e. placement #4 and above in
our study, TensorLights achieves comparable performance as
FIFO. Because TensorLights is work-conserving, it improves
performance under heavy traffic contention, while preserving
performance in other cases with milder contention. Note that
under the priority assignment of TLs-One, jobs with higher
priority tend to finish earlier and others finish later, which
results in progress differences across concurrent jobs. TLs-RR,
on the other hand, achieves fair progress among concurrent
jobs while improving the system efficiency by mitigating
stragglers.

Result #2: TensorLights improves system efficiency by ef-
fectively reducing straggler. Figure 6 quantifies the straggler
effects with the barrier wait time that we used in the previous
measurements (Section III). As expected, the span of average
barrier wait time in Figure 6a is larger under both TLs-One and
TLs-RR, because jobs with higher priority tend to wait less
while jobs with low priority tend to wait longer. The average
barrier wait time are comparable under the three network
scheduling policies.

The variance of barrier wait time is also important, as it
speaks directly to the straggler effect. Figure 6b shows that
TensorLights effectively reduces the variance of barrier wait
time. Compared with FIFO, the average (or median) variance
of barrier wait time under TLs-One is reduced by 26% (or
40%), and under TLs-RR by 15% (or 30%). These results con-
firm our previous observations that the priority strategy taken
by TensorLights is an effective approach to reduce the variance
of barrier wait time and mitigate stragglers (Section IV).

Result #3: TensorLights can increase machine utilization.
We further quantify the efficiency improvement in terms of
machine utilization. To precisely capture the machine utiliza-

TABLE II: Normalized utilization of CPU and network inter-
face under the placement #1. A host’s normalized utilization is
the average utilization during the “active window”, normalized
over that under FIFO scheduling. The presented utilization is
the average of all hosts of a specific type. Larger value is
better.

Resource type Host type  TLs-One  TLs-RR
PS 1.04x 1.03 %
cPU Worker  LI3x  LI2x
Network Inbound All 1.20x 1.21x
Network Outbound All 1.20x 1.21x

tion under steady state of the system, we define an active
window as a time period of fixed length when all concurrent
jobs are active. In our study, the active window is between the
100th and the 1250th second after the launch of concurrent
jobs. For each host in our testbed, we measure the userspace
CPU utilization with vmstat, and the network interface
utilization with ifstat. Table II shows the normalized
machine utilization during the active window under placement
#1. Compared with FIFO, TLs-One improves the average CPU
utilization by 4% on the host supporting PS and by 13% on
the hosts supporting workers. In terms of a host’s network
utilization, TLs-One achieves an improvement of 20% on
both the inbound and outbound directions. We also observe
similar improvement under TLs-RR. These results confirm our
previous observations that reducing stragglers helps to improve
machine utilization (Section III). The utilization improvement
would translate into fruitful cost savings in a large-scale
cluster [12].

Result #4: TensorLights can effectively handle contention.
The impact of network scheduling is more significant when
contention among PSes become more intense. To understand
the application performance under various levels of traffic
contention, we test a range of local batch sizes on placement
#1. A smaller local batch size requires less computation
overhead for a worker in each local step, resulting in more
frequent model (and gradient) updates and therefore more
intense traffic contention. In Figure 5b, under more intense
traffic contention due to smaller local batch size, TLs-One
(or TLs-RR) enlarges the improvement over FIFO in terms
of average job completion time to 31% (or 17%). In other
words, TensorLights becomes even more effective for very
heavy traffic contention scenarios.

The recent trends of scaling up DL applications continue to
introduce more traffic contention in the cluster network. At the
individual application level, to speed up computation, recent
trends are to deploy more workers and computation acceler-
ators such as GPUs [11], both of which would lead to even
heavier contention due to larger amount of data exchanged per
iteration and faster iterations. At the cluster level, contention
would also increase as the amount of DL workloads continues
to grow. With more traffic contention expected under these
trends, an efficient traffic scheduling policy would play an



increasingly crucial role to improve application performance
and cluster utilization to support distributed DL at scale.

VI. RELATED WORK

Optimizing communication for distributed DL: A large
body of prior works have explored various techniques to
improve the communication efficiency for distributed DL. At
the level of an individual application, existing works focus
on hiding communication cost in the presence of computation
by (1) increasing the fraction of computation with a larger
local batch size [36], (2) reducing the communication cost
with compressed gradient updates [37, 38], and (3) increasing
overlap between communication and computation with better
ordering of model parameters in transmission [19, 20, 21].
TensorLights is an inter-job traffic scheduler and thus is
complementary to these works — it aims to improve the
communication efficiency of distributed DL in a cluster setting.
At the level of supporting multiple DL applications in a cluster,
[13] proposed a customized cluster scheduler that optimizes
the performance of distributed DL jobs by dynamically ad-
justing the numbers and placement of parameter servers and
workers in each job. [22] proposed a new software/hardware
architecture to accelerate PS communications. The above prior
works require significant modifications to the DL stack at
various layers. In contrast, TensorLights is an end-host traffic
scheduler that does not require changes to the applications,
the cluster scheduler, or the hardware.

Mitigating stragglers in synchronization barrier: Dis-
tributed applications often need to apply a global barrier to
synchronize parallel workers. For example, in a MapReduce-
like application [39, 40, 41], an implicit barrier exists among
all mappers because a reducer needs to wait for the output from
all mappers before the next round of computation. A common
technique to mitigate stragglers is speculative scheduling [24,
42], where a few extra “backup” workers are added to mitigate
stragglers. This approach consumes extra compute resources,
and also requires modifying the application to coordinate with
the extra workers. In contrast, TensorLights consumes no extra
resources and requires no changes to applications.

Network scheduling for distributed applications: Several
recent works [43, 44, 45, 46] have demonstrated the benefits
of leveraging application-level traffic requirements using the
abstraction of Coflows [47] to improve the communication
efficiency for MapReduce-like applications [39, 40, 41, 48].
The communication patterns of a MapReduce-like application
are different from those of a distributed DL application. For
example, a MapReduce-like application usually organizes its
communication in several consecutive stages, and the traffic
patterns, such as the end points involved and traffic sizes,
can be different across stages. In a distributed DL application,
the traffic pattern for each repeated step is fixed during the
lifetime of the application. Furthermore, a DL model can take
up to millions of steps to train [35], while a MapReduce-
like application usually consists of tens of communication
stages [49]. To accommodate the dynamics in Coflows, the

Coflow-based solutions generally apply global coordination
to orchestrate Coflow transmissions. In contrast, TensorLights
only requires traffic priority configurations at local hosts.

VII. FUTURE WORK

Two interesting future directions of this work would be
optimizing communication efficiency for distributed DL (1)
at the cluster scheduler and (2) at the transmission layer.

At the level of the cluster scheduler, an effective approach
to mitigate contention due to model updates is to better
schedule the placement of PS tasks before starting a DL
job. The scheduler may be notified with the task type (e.g.
PS vs. worker) as well as the job type (e.g. distributed DL
vs. MapReduce-like), so that special treatment is applied
when scheduling PS tasks. This approach does not require
aggressively adjusting the application configurations at run
time as in [13]. Nevertheless, under novel cluster architectural
designs [22] where one logical node serves as the shared PS
for multiple DL jobs, the PS location becomes fixed.

At the level of the transmission layer, instead of us-
ing conventional network transmission protocols such as
TCP (e.g., as in PyTorch [15]) or gRPC/HTTP2 (e.g., as
in TensorFlow [14]), a customized protocol to coordinate
model/gradient updates may be deployed, so that the up-
date traffic would be orchestrated by a logically centralized
coordinator, which is similar to the strategies in [43, 50].
However, this approach incurs non-trivial coordination over-
head. It further requires modifications to various layers of the
cluster stack, such as modifying the application to use the
new protocol, modifying the host machines to install necessary
libraries, and even modifying the hardware to provide support
in the switches. Many existing solutions [43, 44, 45, 50, 51]
apply transmission rate control at the sender to orchestrate
traffic. However, inaccurate rate allocation would lead to lower
network utilization.

In summary, these future directions also require careful de-
signs to handle the subtle interactions among the applications,
the scheduler, and the underlying network architecture.

VIII. CONCLUSIONS

We have presented TensorLights, a traffic scheduler at end-
host NICs to mitigate the straggler effect for distributed DL
applications under traffic contention. TensorLights acts like
“traffic lights” for the model update traffic from the PS,
so that contending DL applications take turns to pass or
yield, which is helpful to improve all applications’ barrier
waiting efficiency. Testbed evaluations show that TensorLights
improves the average job completion time for distributed DL
by up to 31%, increasing the utilization of CPUs and network
bandwidth. As the trends of scaling up DL applications
continue to introduce more traffic contention in the cluster
network, an efficient traffic scheduler such as TensorLights
would play an increasingly crucial role to support distributed
DL efficiently at scale.
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