DYRS: Bandwidth-Aware Disk-to-Memory
Migration of Cold Data in Big-Data File Systems

Simbarashe Dzinamarira*, Florin Dinuf, T. S. Eugene Ng*

Rice University*, University of SydneyJr

Abstract—Migrating data into memory can significantly accel-
erate big-data applications by hiding low disk throughput. While
prior work has mostly targeted caching frequently used data, the
techniques employed do not benefit jobs that read cold data. For
these jobs, the file system has to pro-actively migrate the inputs
into memory. Successfully migrating cold inputs can result in
a large speedup for many jobs, especially those that spend a
significant part of their execution reading inputs.

In this paper, we use data from the Google cluster trace to
make the case that the conditions in production workloads are
favorable for migration. We then design and implement DYRS, a
framework for migrating cold data in big-data file systems. DYRS
can adapt to match the available bandwidth on storage nodes,
ensuring all nodes are fully utilized throughout the migration. In
addition to balancing the load, DYRS optimizes the placement of
each migration to maximize the number of successful migrations
and eliminate stragglers at the end of a job.

We evaluate DYRS using several Hive queries, a trace-based
workload from Facebook, and the Sort application. Our results
show that DYRS successfully adapts to bandwidth heterogeneity
and effectively migrates data. DYRS accelerates Hive queries
by up to 48%, and by 36% on average. Jobs in a trace-based
workload experience a speedup of 33% on average. The mapper
tasks in this workload have an even greater speedup of 46%.
DYRS accelerates sort jobs by up to 20%.

I. INTRODUCTION

A lot of big-data analytics applications spend a significant
part of their execution in the input stage. This is primarily
because of two factors. First, many jobs either filter or aggre-
gate data before further processing, so the input stage typically
reads a very large amount of data, while later stages often only
process a much smaller fraction of that data. Second, there
has been a series of improvements in computation frameworks
that have accelerated the later stages of jobs, but they do not
accelerate the input stage. Consequently, the input stage of
jobs is accounting for an even larger share of jobs’ run time.
Unfortunately, common techniques for accelerating reads do so
by keeping hot-data in memory, and do not benefit the many
applications that read cold data. These applications have to
incur the penalty of slow disk reads.

Prior work that analyzed production workloads from Face-
book and Bing [3] reported that over 30% of tasks in these
workloads read singly accessed data. These are likely recurring
jobs that regularly process new data such as logs or new user-
generated data like click-streams. Because this data is large
and only processed periodically [27], it is persisted to disk
and then has to be read cold when it is being processed.

State of the art schemes to avoid disk reads do not benefit
these applications. For example, Resilient Distributed Dataset
(RDDs) [29] allow repeatedly accessed data to be pinned
in memory. RDDs have resulted in an order of magnitude
speedup for Spark over Hadoop for iterative jobs [30] but they
do not accelerate reads to cold data. PACMan [3] optimizes
the eviction of cached data that is already in memory but
does not help speed up cold reads. Triple-H [14] analyzes
the frequency and recency of accesses to data in a file system
and moves popular data into faster storage to accelerate future
reads. However, Triple-H only migrates hot data into memory
and so it does not help with accesses to singly read cold data.

If we could accelerate reads to cold data, we expect to see a
large speedup in many applications. One detailed study of SQL
workloads on Hive [20] reported that queries spent about 19%
of their duration blocked on 10, and 80% of that IO was spent
reading data. Accelerating these reads by migrating the inputs
into memory could result in a 15% speedup. When various
optimizations that accelerate computation [17], [6], [11] are
also applied, we expected the speedup from accelerating reads
to be even larger since reading will be a proportionally larger
part of the job. In the SQL study above, using C++ instead
of Scala halved the CPU time. This would amplify the time
spent on reads from 15% to 25%. Even for iterative jobs,
accelerating the initial read can provide a significant speedup.
Reading data from disk can cause the first iteration in Logistic
Regression and K-Means to run 15x and 2.5x longer than later
iterations respectively [29]. Reducing this initial slowdown
would significantly speed up both applications.

For a more concrete comparison, we ran jobs from a trace
workload from Facebook [5] with HDFS to determine the
expected speedup of reading from memory. We first ran the
workload with the input on disk, and then with the input
pinned in RAM. At the application level, block reads from
RAM were 160x faster on average than reads from the disk.
We observed a large 10x speedup for map tasks that read from
RAM, despite these tasks having other overheads unrelated to
reads. SSDs can provide a speedup over disks, however, reads
from RAM were still 7x faster than SSD.

Thus, pro-actively migrating job inputs upwards into mem-
ory has the potential to significantly accelerate those jobs that
read cold data. In order to determine whether such migration
is feasible in practice, we analyze the workload in the Google
cluster trace. The feasibility of migration in practice depends
on two conditions: 1) the system can identify cold data that

will be accessed soon, and 2) there is sufficient time and
residual bandwidth to migrate the data into memory before it
is accessed. Our analysis suggests that both these conditions
hold true, so effective migration is feasible.

However it is challenging to realize the potential of data
migration in practice, particularly because the nodes in the
cluster can be heterogeneous and the load on them is dynamic.
The contribution of this work is the design and implementation
of a migration system called DYRS that is bandwidth aware
and so can adapt to heterogeneous and dynamic conditions.
DYRS can adapt to match the available bandwidth on storage
nodes, ensuring all nodes are fully utilized throughout the
migration. In addition to balancing the load, DYRS optimizes
the placement of each migration in order to maximize the
number of successful migrations and eliminate stragglers at
the end of a job. We implemented DYRS in a popular big-data
file system and we show that is it both adaptive and effective
at migrating data under dynamic conditions.

Specifically, we evaluate DYRS using several Hive queries,
a trace-based workload from Facebook, and the Sort appli-
cation. Our results show that DYRS successfully adapts to
bandwidth heterogeneity and effectively migrates data. DYRS
accelerates Hive queries by up to 48%, and by 36% on average.
Jobs in the trace-based workload experience a speedup of 33%
on average. The mapper tasks in this workload have an even
greater speedup of 46%. Sort jobs are sped up by up to 20%.

II. MOTIVATION

A. Which applications benefit most from migration?

Data migration is most beneficial for jobs whose initial stage
is a significant part of the overall execution. This is true for
many data analytics applications. The initial stage of these
jobs often filters out or aggregates the input so later stages
process much less data and are shorter. This data reduction
amplifies the importance of reads and the potential speedup
from migration.

Prior work on MapReduce workloads at Google shows
ratios of up to 10:1 between map stage input and output
sizes [7]. Similarly, Rhea [12] shows a reduction of 2-20000x
between input and output sizes for Hadoop mappers. Other
studies corroborate these findings [4], [5].

We ran several TPC-DS queries on Hive and examined
the proportion of time they spent in the initial map phase.
On average, the map tasks account for 97% of the total run
time. These map tasks read inputs and filter out much of the
data because of the SELECT statement and predicates in the
WHERE clause. Such selectively is common amongst database
queries and data analytics in general which makes such jobs
good candidates for acceleration using data migration.

B. Effective migration must be heterogeneity-aware

To effectively migrate data, a migration framework should
adapt to the amount of residual bandwidth on cluster nodes.
This is particularly important since we observe significant
heterogeneity among nodes in production clusters.

w
S

Node 1

Node 2 Node 3

n
o

Disk utilization (%)
>

0 4 8 12 16 20 24
Time of day (hrs)
Fig. 1: Disk bandwidth utilization over a 24 hour period for
three servers in the Google cluster. There is heterogeneity in
the residual disk bandwidth across both nodes and time.

We analyzed the Google trace [22] and found that the disk
utilization is highly heterogeneous and dynamic. The Google
trace provides per-task IO time at a 5-minute granularity. We
used this data to derive per-node disk utilization. We assume
that each task performs IO at a constant rate. Thus, we can
compute the per-second IO time for each task. The per-second
disk utilization for a node is the sum of disk 1O time for all
tasks that are active on that node during that second. Lastly,
we averaged the data to obtain per-node disk utilization at
S-minute granularity.

Figure 1 shows the disk utilization for three typical nodes in
the Google trace. There is heterogeneity across both nodes and
time. First, heterogeneity across nodes is seen from the fact
that there are nodes that consistently have different amounts
of residual disk bandwidth. For example, in Figure 1, node
1 is consistently busier than nodes 1 and 2. Its utilization
is 13x and 5x that of nodes 2 and 3 on average. This can
be caused by differences in the storage media or by an IO
intensive application running on node 1 but not on nodes 2 and
3. Second, heterogeneity across time can be observed on each
node but is more apparent on node 1. An efficient migration
scheme must handle both types of heterogeneity.

C. Despite the challenge of heterogeneity, productions work-
loads have conditions favorable for migration

Effective migration also requires there to be enough time
and residual bandwidth to read the data into memory before
it is accessed. The nodes in the cluster must also have enough
free memory to hold the buffered data. We again leverage the
Google trace to ascertain that both these conditions are present.
We analyze the time jobs spend on IO and logs of events like
the submission, scheduling, and termination of jobs and tasks.

1) For most jobs, there is enough time to migrate a signifi-
cant portion of the input into memory: We define lead-time as
the amount of time between job submission and data access.
This is the time during which migration needs to take place for
it to be effective. Lead-time for a task is the time between job
submission and task start time. Lead-time for a job is the time
between job submission and the start of the first task in the
job. It is common for tasks in a job to start at different times,
therefore our definition of job lead-time is a lower bound.

Sources of lead-time: The two main sources of lead-
time in big-data frameworks are queueing time and platform
overheads. After job submission, a job’s tasks are queued until

I [cad-time >= Read-time
1 b | Lead-time < Read-time i

10

Probability density
S

<

-4 3

0

102 10" 100 10
Ratio of lead-time to read-time

3

107

Fig. 2: 81% of jobs in the Google trace have enough lead-time
to migrate the entire input into memory.

resources are available to launch them. This holds irrespective
of the type of cluster scheduler: centralized [28], distributed
[20] or hybrid [21]. Regardless of where tasks are queued,
we can use the queueing time as lead-time to migrate job
inputs into memory. In the Google trace, the mean lead-time
for jobs is 8.8 seconds. This time can be used to migrate
several hundred MBs of data per disk.

Platform overheads provide additional lead-time for mi-
gration. These include operations such as shipping binaries
to workers and JVM warm-up costs [16] in some systems.
The coordination overhead between workers and a centralized
master via heartbeats may also increase lead-time [21].

Most jobs have a lot of lead-time relative to the amount
of data they read: Jobs in the Google trace have a lead-
time of 8.8 seconds on average. To determine whether this is
sufficient for effective migration, we have to compare the lead-
time to the time it would take to read the inputs into memory.
For each job in the trace, we compute the time it takes to
read input data into memory, which we call the read-time.
Summing the time spent on IO by each task in a job gives us
the read-time for the job in the trace. This simple sum likely
overestimates the read-time because it includes time spent
writing and does not consider that IO can be parallelized across
multiple disks. Figure 2 shows a probability density function
of the ratio between lead-time and read-time. Despite likely
overestimating the read-time, 81% of jobs have a lead-time that
is greater than the read-time, meaning there is sufficient time
for migration. Even those jobs whose input is only partially
migrated will be sped up by data migration.

2) Production clusters have enough residual bandwidth and
free memory for cold data migration: Servers in production
environments have a lot of residual bandwidth that can
be used for migration: The amount of data that can be
migrated within the lead-time depends on the amount of
residual bandwidth in the cluster. The read-time we presented
above may become larger if the disks are heavily utilized.
Fortunately, analysis of the disk utilization in the Google trace
shows that disks are often under-utilized.

Figure 3 shows a CDF of disk utilization samples from
40 servers in the Google cluster[22] over a 24h period. For
80% of these measurements, the utilization is under 4%. For
all 12,000+ servers, the mean disk utilization during the 24h
period is 3.1%; and 1.3% for the entire month the trace covers.
This shows that current clusters are heavily over-provisioned
for 10 and this provides ample free bandwidth for migration.
Prior work on a small academic cluster also shows that disks
are often under-utilized [9].

0.8
w 0.6
o
© 04
0.2

0 I I I I I]
0 4 8 12 16 20 24

Disk utilization (%)

Fig. 3: CDF of disk bandwidth utilization over 24h for 40
servers in the Google workload. 80% of time utilization is
under 4%. Thus, there is abundant residual disk bandwidth to
use for data migration.

The working set for migration uses a relatively small
amount of memory: In the Google trace, on average 10
tasks run on a server at a time. For a worst-case analysis, let’s
assume the latest generation dual-socket CPUs with 28 cores
each, so the number of tasks on a server at a given time is
unlikely to be greater than 56. Further, assume that all of the 56
tasks are mappers that each reads a large 256MB data block.
Even under these conditions, 14.3GB of RAM is sufficient to
hold the migrated data. This is a small amount of memory for
today’s servers which are provisioned with hundreds of GB
of RAM. Another study’s analysis of two private workloads
[3] draws similar conclusions that there is sufficient RAM to
keep a significant portion of the working set in RAM.

III. DESIGN

In this section, we walk through the decisions we made
when designing DYRS. DYRS is structured in a master-slave
architecture. The master is responsible for initiating migrations
and deciding where these migrations will be performed. Slaves
in DYRS are responsible for physically copying data into
memory. When a client needs to have its input files migrated,
it sends the list of filenames to the DYRS master. The master
then maps the files to blocks in the file system and instructs
slaves to migrate these blocks. DYRS schedules migrations
using a First-In-First-Out (FIFO) policy. In future work, we
plan to explore how alternative policies, and cooperation with
the job scheduler, can improve performance. Once a block has
been migrated, reads will be directed to the in-memory replica
whether it is local or remote to the task making the read.

A. When and how to choose which replica to migrate

When the DYRS master receives a migration instruction,
it constructs a list of blocks waiting to be migrated. We call
these pending migrations. The master then assigns them to
the slaves. We use the term binding to describe assigning a
pending migration to a particular slave. Each slave also keeps
a queue of migrations locally so the master can bind several
blocks to the slave at once. All binding decisions are final.

1) When to choose the replica to migrate: DYRS delays
the binding of migrations until as late as is possible without
sacrificing performance. The delay allows the DYRS to gather
the most up-to-date feedback about the performance of slave
nodes and incorporate this information in order to make the
best future binding decisions. In the extreme, we can bind
new migrations to a slave node one at a time after the

slave completes the previous migration. However, after each
migration, the disk on the slave would be idle while the
master is in the process of assigning it the next migration.
In order to avoid disk idleness, DYRS ensures each slave has
a few pending blocks queued locally. These queues should be
deep enough to avoid idleness, and yet as shallow as possible
to avoid binding migrations earlier than necessary. Slaves
periodically query the master for more migrations whenever
there is space in their local queues.

2) Selecting which replica to migrate: In DYRS, we choose
to migrate only a single replica for each block regardless of
how many replicas exist. This is because in most applications
only a single task will read a block of data. Therefore, DYRS
has to select which replica of a block to migrate. The previous
section described when the choice is made; we now describe
how it is made. When a slave queries the master for more
work, we only bind a migration to the slave if we expect
that the migration would complete soonest on it, compared to
the other replica locations. Carefully selecting the replica to
migrate increases the chance the data will be in memory by the
time it is read. This optimization also helps avoid stragglers
at the end of the migration.

Imagine if a very slow node is assigned one of the last
migrations at the end of a file. That migration would likely
still be in progress long after the faster nodes have completed
all queued work and there is no more pending work at the
master. It would have been better to leave the slow node idle
and instead wait until a faster node is ready to process the
migration. Assuming we can estimate how long a migration
would take on each node Algorithm 1 shows how we estimate
which node would complete a particular migration soonest.
We then mark that node as the target for the migration. DYRS
uses past migrations to estimate how long future migrations
will take. Details are provided later in Section IV-A.

Algorithm 1 works as follows. We scan through the list
of blocks and greedily set the target for each block as the
node where assigning the block would result in the lowest new
completion time. For each node, we keep a running estimate
for the amount of time we expect the node to finish all the
blocks that have been targeted to it. This algorithm is run
regularly in a separate thread that is off the critical path of
any coordination between the master and slave. When a slave
queries the master for more work, the master searches its list of
pending migrations for blocks that are targeted to that slave. If
these exist, the master then assigns some of them to the slave.
Guided by the reasoning in Section III-Al, we only assign
enough migrations so that the slave does not go idle before
the next time it queries for more work.

B. Ensuring efficient utilization of the disk

In Section III-A1 we described how it is necessary to keep
some migration work queued on the slave in order to avoid
disk under-utilization while the slave is querying the master
for more work. The queue should be long enough such that
it does not totally drain in the interval it takes to fetch more
work. This ideal queue length can be computed by dividing

Input: Estimated migration times and the number of queued
blocks for each slave
Result: Mapping of each block to a target node

// initialize estimated finish times for each node
// assuming next pending block is assigned to this node
foreach node in DATANODES do

| finishTime[node] = migTime[node] x (numQueued[node]+1)
end

// set target for each block
foreach block in PENDING do
locations = block.getReplical.ocations();

target = locWithMinFinishTime(locations, finishTimes);

block.migrationTarget = target;

finishTime[target] = finishTime[target] + migTime[target]
end

Algorithm 1: Sets the target for each block as the node where
its migration is expected to finish earliest.

the heartbeat interval by the time it takes to read a block of
data using the maximum disk bandwidth.

Another way the disk can end up under-performing is if
there are too many concurrent reads causing the disk to per-
form seeks too often. DYRS, therefore, serializes migrations
and moves one block at a time into memory in order to limit
disk read concurrency. Migrations are handled in FIFO order at
the slaves. More sophisticated scheduling between applications
can be implemented at the master. However, this is beyond the
scope of this work.

C. Failure resilience

DYRS is highly resilient to failures. When there is a failure,
DYRS reverts to the default behavior of the file system with no
migration. The only adverse effect is the loss of the speedup
from migration. Additionally, only active migrations are af-
fected by failures. DYRS keeps only soft state so the system
returns to normal quickly when DYRS’ recovery mechanisms
are run. The failure mechanisms in DYRS are similar to those
in file systems with a master-slave architecture like HDFS [26].

1) DYRS master failure: If only the master process failed,
we can restart it on the same server and it can immediately
start receiving migration requests. If the server itself has failed,
we have to launch the master on a new server and reroute
migration requests to the new location. To reroute migration
requests, the new master can broadcast an update to the clients
configuration which stores the IP address of the master. Alter-
natively, we can maintain a live-backup of the master running
and pre-list its address in the configuration file. Though the
new master starts up with no state about which blocks are in
memory at the slaves, its state eventually becomes consistent
as slaves clean up their buffers as described in Section III-C3.
The only adverse effect of the inconsistency is that even though
some replicas are in memory, the master is unable to direct
the block reads to them.

2) DYRS slave failure: When a slave process fails, all buffer
space is reclaimed by the operating system and we can start a

new process to handle new migrations. The new slave process
should direct the master to drop state about blocks that were
previously buffered on that server. This is because the master
keeps track of where blocks are in memory so that reads can
be directed to in memory replicas. The API for reading data
from the worker is oblivious to whether the data is in memory
or not so a block read can be served without error before the
state has been dropped.

If the entire server has failed, then all data on that server
will be unavailable. When a client queries DYRS for the
in-memory replica of a block, DYRS only returns a choice
amongst replicas on nodes that are available. A node is marked
as unavailable when the file system misses several consecutive
heartbeats from it. If a read occurs before the node is marked
as unavailable the client can fail-over to one of the available
replicas. HDFS handles DataNode failures in the same manner.

3) Job failure: For each migrated data block, the slave
maintains a reference list of job IDs for jobs that are expected
to read the block. A job ID is appended to this list when the
slave receives a command to migrate the block and removed
when the job sends an evict command to clear its ID from the
blocks’ reference list. If DYRS is working alongside a caching
framework, the responsibility to call the evict command could
be delegated to the caching framework. The evict command
is handled through the DYRS master. A block is evicted from
memory when its reference list is empty. If a job fails or is
terminated before it issues the evict instruction, we need an
alternative mechanism to clean the memory buffer and avoid
memory-leaks. In DYRS, once the memory usage reaches a
set threshold, the slave queries the cluster scheduler to check
which jobs are active. It can then clear all inactive jobs from
its blocks’ reference lists and evict the blocks with empty lists
from memory. This mechanism ensures DYRS keeps data in
memory only for jobs that are still running. As a performance
optimization to keep memory usage low, we also allow DYRS
to implicitly remove a job from a block’s reference list as
soon as the job reads the block of data. This causes data to be
evicted sooner if the reference list becomes empty. A job can
opt into this implicit eviction mode when the job submitter
issues the migration instruction.

D. Scalability

DYRS has a master-slave architecture like that of HDFS.
This architecture has been shown to scale to thousands of
servers [26]. The DYRS master only has to 1) handle migration
and eviction requests for files, 2) map the files to blocks, 3)
compute the target replica for each block and, 4) respond to
slave queries for migration work. The most computationally
intensive task is updating the target for each pending block
at the master. Fortunately, the update process is not on the
critical path of the heartbeat messages between the master
and slaves. During heartbeats, the master stores each slave’s
estimate of migration time and the number of blocks currently
queued on the slave. In a separate thread, the master then uses
these estimates to update the targets. The cluster administrator
can control the rate of updates in order to limit their load.

However, each update involves only a single pass through the
list of pending migrations. Our prototype updates the targets
for 50GB of pending migrations in under a millisecond.
Lastly, there is no coordination overhead between slaves as
all messages are to and from the master. Each slave migrates
blocks and computes its estimated migration time indepen-
dently. Therefore, slaves are not a scalability bottleneck.

IV. IMPLEMENTATION

We have implemented DYRS within the Hadoop Distributed
File System (HDFS). We were able to do so naturally because
the master-slave architecture of DYRS matches that of HDFS.
The DYRS master is implemented within the HDFS NameN-
ode and the DYRS slave in the DataNode.

1) Migration mechanism at the slaves: DYRS slaves use
the mmap, mlock and munmap system calls to migrate data
from disk to the buffer cache. We favored this approach
compared to migrating data onto a slave’s heap for two rea-
sons. First, the implementation is simpler and more restricted.
Migration to the heap would require additional changes to the
IO path for a task’s reads. Second, data in the buffer cache
can be accessed by multiple processes.

To start migration, mmap is used to map a file to the virtual
address space of the DYRS slave process. Next, the mlock call
reads the data into memory before returning. Mlocked data will
not be swapped to disk. Finally, the munmap call is used to
unlock and unmap the file data and release memory back to
the OS. Since the input is read-only, the OS need not write
anything back to disk. The data can be simply discarded.

A. Estimating per block migration time

A critical part of the replica selection algorithm in DYRS is
estimating how long migration will take on each node hosting
areplica. We consider migration time to be the time it takes the
mlock system call to return. We use an exponentially weighted
moving average (EWMA) of past migration durations to
minimize the effect of random fluctuations while giving more
weight to recent migrations.

After a sudden drop in available disk bandwidth, the cur-
rently active migration may take a long time to complete.
It is important to incorporate this signal into our estimate
as soon as possible and not wait (potentially a long time)
until migration completes. Thus, when the elapsed duration
of an active migration becomes greater than its estimate,
we update the estimate periodically (every heartbeat) until
migration completes.

1) Memory management: Though DYRS pro-actively
evicts data from memory as jobs finish or read the data, we
also allow a hard limit to be set. When this limit is reached,
migration commands are queued until buffer space is available
or until they are discarded due to missed reads.

The reference lists described in Section III-C are realized as
a hash-map that maps a job’s ID to the list of blocks migrated
for the job. This hash-map allows DYRS to efficiently locate
the blocks that need to have their reference lists modified.
When implicit eviction is being used, the slaves can extract the

job ID directly from the read calls and do not need to contact
the DYRS master. A job chooses whether or not to enable
implicit eviction when the migration command is issued.

B. Running applications on DYRS

Applications run transparently on DYRS, no changes to the
mapper or reducer code are necessary. We only made simple,
non-application-specific changes to the framework.

In Hadoop, to make the most of the available lead-time,
migration should be triggered as early as possible in the job’s
lifetime, ideally during job submission. Thus, we inserted the
migration call in the job-submitter, the first element in a job’s
life cycle. Inside the job-submitter, we created an instance of
the file system client (DFSClient). The DFSClient handles file
operations (open, close, create, delete) and we extended it with
a migration method. The arguments to this method are: a list
of files, the operation to be performed (migration or eviction)
and the type of eviction (explicit or implicit). The DFSClient
communicates with the DYRS master via RPCs.

Frameworks like Hive submit a sequence of MapReduce
jobs to complete a single query. Hive adds a query compilation
phase before the job submissions. We inserted the migration
call right after the query compilation. We leveraged the fact
that Hive allows hooks to inject code at various steps in a
query’s life. We also had to map the Hive table names in the
query to a list of HDFS file names. Similarly to Hadoop, the
changes are done in the framework in a query-agnostic manner.

V. EVALUATION

We have implemented DYRS within HDFS to evaluate
its performance with real applications. We use several Hive
queries, a multi-job workload derived from a Facebook trace
and the Sort application. Before presenting experimental re-
sults, we first describe our hardware and software setup and
the methodology we use to create heterogeneity.

A. Hardware setup and software configuration

Hardware setup - We use an 8 node cluster. One node
hosts the HDFS NameNode and the Yarn Resource Manager.
The other 7 nodes run HDFS DataNode processes and Yarn
Node Managers. Each server has a 1'TB HDD drive, 128GB
of RAM and a Xeon E5-1650 CPU with 6 cores and 12
hyperthreads. There is a 10Gbps network between the servers.

Software setup - Our experiments compare DYRS against
three other configurations of HDFS 2.7.3. The first two setups
use default HDFS. In the first case, all inputs are stored on disk
while in the second we use the vmtouch tool [1] to lock all
input data in RAM. The second setup, which we call HDFS-
Inputs-in-RAM, gives up an upper bound on the speedup we
can expect. We only lock the initial input in RAM and do not
modify the location of intermediate results nor the output. The
third configuration we compare against is Ignem, a scheme that
randomly chooses a replica of input data blocks to copy from
disk to memory as soon as a job is submitted [8].

For all experiments, we flush the buffer cache before
running our workloads to ensure the inputs are read from

disk unless we have explicitly locked them in memory as
in the HDFS-Inputs-in-RAM configuration. For the HDFS-
Inputs-in-RAM setup, we still flush the buffer cache to ensure
background syncing of the inputs to disk completes before we
launch a workload. All our experiments are run on Apache
Tez 0.9.0 coupled with Hadoop Yarn 2.7.3.

B. Workloads

We select three workloads to evaluate DYRS. We use Hive
to study how DYRS handles complex, multi-job queries in
isolation. The SWIM workload shows the behavior of DYRS
in a complex and concurrent multi-job setting. Finally, Sort is
a popular operation in many data transformation pipelines.

1) Hive queries: We use a set of ten queries from the TPC-
DS[19] benchmark to evaluate DYRS on Hive 2.3.2. The TPC-
DS dataset has more queries written in SQL, but we could only
find ten that had been translated in HiveQL which is required
to run them on Hive. We run each query independently on all
four file system configurations. Hive queries are commonly
used by data analysts to analyze large amounts of tabular data.
By migrating data while a query is queued to run, a framework
like DYRS improves the turn-around time for the analysis.

2) SWIM workload: The SWIM workload [5] is a trace-
based workload derived from a production Hadoop cluster at
Facebook. Jobs are sized (input, shuffle and output data size)
and submitted according to the trace. We use the first 200 jobs
in the trace. We scale down the job input sizes to fit on our
8-node cluster. The scaled cumulative job input size across all
200 jobs is 170GB. To have multiple jobs running concurrently
we reduced job inter-arrival times by 75%. The distribution of
job input sizes is heavy-tailed which is typical of production
clusters [2]: 85% of jobs read little data (less than 64MB) but
most of the data is read by a few large jobs (up to 24GB).

3) Sort job: We run sort across a range of different data
sizes and with varying amounts of lead-time to study how
the benefits of migration relate to the input size of a job and
the available lead-time. We also use the sort application to
understand and visualize the adaptive nature of DYRS.

C. Creating bandwidth heterogeneity

In production environments, the residual bandwidth avail-
able for migration is likely to be heterogeneous. This can
be either due to fixed factors like different disk models on
servers or due to dynamic factors like running applications. We
introduce heterogeneity to evaluate if DYRS can effectively
migrate cold data in a heterogeneous cluster. We reduce the
residual bandwidth available on a node by running two Linux
dd jobs that repeatedly read from two files on the disk. To
ensure that dd reads come from the disk and not memory,
we first flush the buffer cache and then use the “I_DIRECT”
flag in dd to prevent buffering. For the set of experiments
evaluating dynamic heterogeneity, we use a custom C++
application to generate different patterns of interference on
one or two nodes.

1.6 T

|CJHDES-Inputs-in-RAM [Ignem IEMDYRS |

Job duration w.r.t. HDFS

26 15 40 3 7 19 82 24 25 29
Query #
(a) Query durations. DYRS accelerates most queries by more than
25%.

o 40

(3]
(=)

Input size (GB

]

26 15 40 3 7 19 82 24 25 29
Query #
(b) Query input size.

Fig. 4: Hive query durations and their respective input sizes.
Queries in both figures are sorted by input size.

Absolute Duration (s) | Speedup w.r.t HDFS
FIDFS T —
HDFS-Inputs-in-RAM 16.9 46%
Ignem 66.4 -111%
DYRS 20.9 33%

TABLE I: Average job-duration and speedup across all jobs
in the SWIM workload.

D. Hive query results

Figure 4a shows the durations of Hive queries normalized
to default HDFS. HDFS-Inputs-in-RAM speeds up execution
by 50% on average which shows Hive queries can benefit
significantly from faster reads. Most queries perform aggrega-
tions or filtering early in their execution so the input stage is
the dominant part of the queries. DYRS realizes the potential
speedup and improves query runtime by up to 48% for query
#15, and by 36% on average. While DYRS produces a large
speedup, Ignem makes the queries run slower because its
replica selection strategy does not avoid the slow node in
the cluster. When the input size of the queries increases,
the proportion of data that can be migrated within the lead-
time decreases because the lead-time is constant. Despite this,
DYRS provides over 25% speedup for the largest queries.

E. SWIM workload results

1) DYRS accelerates jobs of all sizes: We ran the SWIM
workload to study how DYRS performs in a more realistic and
complex setup. Table I shows the overall performance over the
whole workload. DYRS accelerates jobs by 33% on average
while Ignem results in a slowdown of more than 2x.

Figure 5 shows job duration binned by job input size.
DYRS provides significant speedup across all job sizes: 34%,
47% and 26% for small, medium and large jobs respectively.
Medium sized jobs have a bigger speedup than smaller ones
because non-read overheads are a proportionally smaller part
of their end-to-end runtime. For large jobs, a relatively smaller

150 T T T
|__JHDFS-Inputs-in-RAM [__JHDFS [l Ignem [DYRS |

100 -

U T A

0-64 64 -512 >512
Job Input Size(MB)

Job duration (s)

S

Fig. 5: DYRS speeds up small, medium and large jobs by 34%,
47% and 26% respectively. Across all job sizes, the average
speedup is 33%.

T
e

....................

-------- HDFS-Inputs in RAM :
HDFS : Mean-1.92 s
Ignem : Mean-3.94 s
DYRS : Mean-1.03 s

Mean-0.40s | |

L
10° 10'
Task duration (s)

Fig. 6: DYRS significantly reduces map task duration.

amount of the input can be migrated successfully compared to
medium sized jobs, therefore, we see a smaller speedup. For
small and medium-sized jobs, DYRS realizes over 75% of the
potential speedup obtained by HDFS-Inputs-in-RAM.

2) Mapper tasks complete much faster under DYRS, im-
proving cluster utilization: Looking at end-to-end job duration
masks some of the benefits of DYRS since the end-to-end
duration includes the shuffle and reduce phases that cannot
be accelerated by migration. Figure 6 shows the speedup for
mapper tasks in the SWIM workload. Mapper tasks run 1.8x
faster under DYRS than with HDFS. This improves overall
resource utilization as [0-bound mapper tasks spend less time
holding CPU slots and memory. Ignem overloads the slow
node while leaving the faster ones underutilized, which results
in very short tasks on the fast nodes and very long ones on
the slow node. DYRS, on the other hand, keeps all nodes well
utilized. Though there are fewer very short tasks with DYRS,
the average completion time is better.

3) DYRS obtains a large speedup while keeping a low
memory footprint.: In this section, we estimate the amount
of memory needed to achieve performance similar to HDFS-
Inputs-in-RAM and compare this to DYRS. The performance
of HDFS-Inputs-in-RAM can be achieved with minimal mem-
ory usage by a hypothetical scheme that migrates the input
instantly when the job is submitted and evicts it when the job
completes. Figure 7 shows the distribution for the amount of
memory used on individual servers to store blocks migrated
into memory for both DYRS and the hypothetical scheme.
DYRS can only migrate 45% as much data as this hypothetical
scheme but provides 72% of the speedup HDFS-Inputs-in-
RAM provides in Table I. There is a diminishing return in
speedup from using more memory because of the non-read
parts of jobs. DYRS uses less memory because in reality there
is limited bandwidth for migration, but also because DYRS
pro-actively evicts data as soon as it has been read just as the
hypothetical scheme does.

0
10 Mean - 480 MB

Probability density
)

% reads on node
w o O

T T

L

-4 | | | |
0 1 2 3 4 5 6 7
Memory Usage (GB)
(a) Per server memory usage under DYRS.

z 100 : :

Z Mean - 1050 MB

]

2

:-_.5'

<

=)

8 .

=0 1 2 3 4 5 6 7
Memory Usage (GB)

(b) Per server memory usage of a hypothetical scheme that can
migrate and evict data instantaneously and achieves the same per-
formance as HDFS-Inputs-in-RAM.

Fig. 7: Memory usage in DYRS vs. a hypothetical scheme
based on HDFS-Inputs-in-RAM. The y-axes are in log scale.

Interference Pattern Figure | Sort job runtime (s)
Node #1 only: Persistently active 9a 137
Node #1 only: Alternates every 10s 9b 127
Node #1 only: Alternates every 20s 9c 129
Node #1 and #2: Alternates every 10s | 9d 135
Node #1 and #2: Alternates every 20s | e 137

TABLE II: DYRS effectively uses residual bandwidth regard-
less of the interference pattern so setups with the same overall
amount of interference have similar runtimes. The row shading
indicates setups with the same overall amount of interference.

E. Sort job: Effective migration needs to be adaptive

1) DYRS adapts the number of migrations on each node to
match the available bandwidth: In this section, we analyze
why Ignem fails to provide speedup when there is a handi-
capped node in the cluster. We ran a Sort job and recorded
the number of reads on each data node. Figure 8a shows
the distribution of reads for a homogeneous cluster when we
do not introduce any interference. As expected, each node
receives a similar number of blocks. In Figure 8b one node
is slowed down. Ignem still distributes the migration load
equally. Ignem does not use historical data to guide its load
distribution nor can it leverage the current node status because
it binds migrations to replicas immediately upon receiving
the migration command. DYRS, on the other hand, delays its
binding. The completion of earlier migrations can, therefore,
inform binding decisions for later ones. This delayed binding
gives DYRS the ability to adapt to the residual bandwidth
on each node. For default HDFS, tasks are placed on a node
only when previous ones completed. This provides implicit
feedback which results in fewer tasks on the slow node.

2) DYRS can quickly track and adapt to bandwidth
changes: Heterogeneity in a cluster may arise from fixed
factors such as hardware differences, or from the dynamics
of the workload on the cluster. DYRS has to be adaptive to
both types of heterogeneity. We now show how DYRS closely
tracks the amount of residual bandwidth on each node. The

20+

T T T T T
|C_JHDFS I ignem EEEDYRS |

Node Index
(a) All nodes have equal residual bandwidth.

|C_JHDFS M ignem EEEEDYRS |

% reads on node

Node Index
(b) Residual bandwidth on Node #1 is lower.

Fig. 8: Distribution of reads on DataNodes. DYRS and HDFS
adapt to node heterogeneity, unlike Ignem which always
balances the migration load equally.

Node #1 Node #2

o

o

Migration time
(seconds/block)
(9] 8
\

] L

0 10 20 30 40 50 60 70 80 90 100
Time (s)

(a) Persistent interference on Node #1.

15 T T T T T T

Ll LA AN

1 i i
0 10 30 40 50 60 70 80 90 100
Time (s)

(b) Interference on Node #1 turned ON/OFF every 10 seconds.

Migration time
(seconds/block)

15 T T T T T T T T
o2
=]
=510
)
gt
B Nl A |
= 5 N 3
2 0 . N~ ye o ™ = i I T Nw L
0 10 20 30 40 50 60 70 80 90 100
Time (s)

(c) Interference on Node #1 turned ON/OFF every 20 seconds.

15 T T T T T T T T T

X

E 8

=210+ g

Sa

g%

585y L~ /../_ / 7

= ,

30.._&_,/‘ NS e
0 10 20 30 40 50 60 70 80 90 100
Time (s)

(d) Interference on Nodes #1 & #2 alternating every 10 seconds.
15 T

0 X
E8
=210 E
Sa
22 /Y
©
53 °f ’
=3 . . : Pt . -
2k e en o A - . : 4
0 10 20 30 40 50 60 70 80 90 100
Time (s)

(e) Interference on Nodes #1 & #2 alternating every 20 seconds.

Fig. 9: Impact of interference on estimated migration time.
DYRS adapts quickly.

metric we track is the estimated time to migrate a single
block. Figure 9 shows the migration time estimate as we apply
different patterns of interference. For easy comparison, we
highlight the trendlines for two nodes in our cluster.

In Figure 9a, there is persistent interference on Node #1.
DYRS’ estimate for migration time is correctly higher on
Node #1 than on Node #2. We expect the estimates to have
some fluctuations because hard disk bandwidth varies a lot
as tasks start and finish. In Figure 9b and Figure 9c we
make the interference on Node #1 active/inactive every 10 and
20 seconds respectively. DYRS’ estimate follows this pattern
correctly. In an earlier prototype, we only updated the estimate
upon the completion of a migration which resulted in a slow
update after the residual bandwidth suddenly dropped. The
extra update described in Section IV-A makes DYRS respond
quicker to slowdowns. Though the frequency of alternation
between active/inactive is different in Figure 9b and Figure 9c,
there is interference only 50% of the time in both experiments
so we should expect the runtimes of the sort jobs to be the
same. The runtimes in Figures 9b and 9c should also be lower
than that in Figure 9a since there is less interference. Table II
shows these expected comparisons hold in practice.

For Figure 9d and Figure 9¢ we now introduce interference
on both nodes #1 and #2, and cycle between active/inactive
periodically. When interference is active on Node #1 it is
inactive on Node #2 and vice versa. The figures show that
DYRS correctly tracks the estimated block completion times.
Each slave computes its own estimate independently so DYRS
can track the migration time estimates for all nodes in the
cluster with minimal overhead. Table II shows that the jobs in
Figure 9d and Figure 9e have the same duration. These two
also have a similar duration to Figure 9a. This is expected
since all three experiments always have one node worth of
interference at any time. In experiments with the same overall
amount of interference, DYRS produces the same runtime
because it is able to quickly adapt to changing load and fully
utilize any residual bandwidth.

3) DYRS minimizes the risk of stragglers at the end migra-
tion: Figure 10 shows timelines for the last 30 blocks read
in Sort job with 10GB of input. We compare DYRS against a
naive load balancing scheme without DYRS’ straggler avoid-
ance. We mark time in reference to the last read so that we
can easily visualize how eliminating stragglers would affect
the makespan for reads. In DYRS, a node is only assigned a
block if we expect that block to finish earliest on that node.
We consider the time each node is expected to finish the block
in question given the work that is either already queued on the
node, or targeted towards it. Because of this, slow nodes only
get assigned migrations when there are still a lot of outstanding
migrations to keep faster nodes occupied. We can observe
this in Figure 10b. In contrast, if a migration scheme were
to simply assign migrations to any node with free slots in
its local queue, some of the last few migrations can end up
on a slow node as can be seen in Figure 10a. The last few
migrations have a high risk of becoming stragglers, especially
when they are assigned to a slow node.

4) Sort job: How migration is affected by input size and
lead-time: In this section, we ran Sort jobs with various lead-
times and input sizes to study how DYRS performs in these
different settings. We report both the duration of the map phase
and the end-to-end job duration which includes the lead-time.

Figure 1la shows that as we increase the data size but
keep the lead-time constant, the relative speedup for the map-
phase shrinks. This is expected because the amount of data
we can migrate is mostly determined by the lead-time. The
speedup from migration becomes less significant the longer
the job runs. If we artificially introduce more lead-time, we
can migrate more data and hence see a bigger speedup.
However, additional lead-time could increase the end-to-end
job duration if the speedup from more migrations does not
offset the extra lead-time. Figure 11b shows that for shorter
jobs, artificially inserting lead-time increases end-to-end job
duration. However, for longer jobs, the end-to-end duration
does not change despite the extra lead-time. DYRS effectively
uses the lead-time to migrate data and the speedup from
migration makes up for the additional lead-time. This improves
overall utilization since mapper tasks spend less time holding
resources like CPU slots and memory while blocked on reads.

VI. RELATED WORK

Ignem [8] is a disk-to-memory migration scheme that ran-
domly chooses a replica of input data blocks to copy from
disk to memory as soon as a job is submitted. This approach
suits the case where the node bandwidths are homogeneous.
Unfortunately, we observe significant bandwidth heterogeneity
among nodes in production clusters. As Section V showed,
Ignem could perform worse than default HDFS under hetero-
geneous bandwidth scenarios. In contrast, DYRS can adapt
quickly to match the available bandwidth on storage nodes,
ensuring all nodes are fully utilized throughout the migration,
and in addition to balancing the load, DYRS optimizes the
placement of each migration in order to maximize the number
of successful migrations and eliminate stragglers at the end of
a job. Pacman [3] is a caching scheme that coordinates caching
across a distributed file system. Its coordination is based on
the insight that jobs are only sped up when the inputs of all
tasks in a wave are cached. Pacman only manages data that
is already in memory so it does not improve the performance
of cold reads. However, the authors of Pacman acknowledge
that 30% of all tasks in their workloads read singly-accessed
data and Pacman cannot improve their performance. DYRS
fills this gap and complements Pacman by targeting cold
reads and pro-actively migrating the data into memory. Triple-
H [14] manages the placement of data within a tiered file
system composed of RAM, SSD, and HDD. In addition to
data placement when jobs write outputs, Triple-H monitors
accesses to files and moves popular/hot files into fast storage
and less popular ones to slower storage tiers. Triple-H pro-
motes hot-data into memory to speed up future reads. DYRS,
on the other hand, attempts to accelerate the initial reads to
speed up jobs that read singly accessed data. HPMR [25]
migrates data across the network to a server on the same

Fast Nodes

Slow node

=
o
T

@
S
T

Migration #
g
T

N
o

Migration #

T — L L L L L 140 L L L L L L
-3 -25 -2 -1.5 -1 -0.5 0 -3 -25 -2 -1.5 -0.5 0
Time until end of last read(s) Time until end of last read(s)

(a) Naive load balancing. (b) DYRS

Fig. 10: Blocks reads at the end of a Sort job. DYRS avoids

\ HDFS —fE3— DYRS **+¥** HDFS-Inputs-in-RAM DYRS+10s — %= DYRS+20s |
5

s
w.rt HDFS

(a) Map-phase
duration.

Input size (G8)

(b) End-to-end duration
including lead-time.

Fig. 11: Sort application. Artificially inserting lead-time can
improve utilization without hurting end-to-end job runtime.

rack a task will execute. DYRS would complement HPMR
by migrating the data into memory. Aqueduct [18] is a system
that controls the rate of background tasks like migration to
limit their impact on foreground operations. When the cluster
is busy, the techniques in Aqueduct can complement DYRS to
control its effects on foreground tasks. GPFS [23], Lustre [24],
Panache [10] as well as Zebra [13] perform prefetching for
large files but only once the file has already been accessed
sequentially. In contrast to these prefetching solutions, DYRS
migrates blocks before they are accessed, making full use of
the jobs’ lead-time. Alluxio, formely Tachyon [15], allows
users to manually load inputs into memory. However, it cannot
perform load balancing or effectively select replicas to migrate.
DYRS solves these problems and its API allows migration to
fully exploit the lead-time.

VII. CONCLUSION

We have presented DYRS, a migration scheme for cold
data that is bandwidth aware. DYRS’ design incorporates
methods that address the performance characteristics of pro-
duction clusters. Experimentally, we have shown that despite
bandwidth heterogeneity, DYRS accelerates Hive queries by
up to 48%, and by 36% on average; jobs in a SWIM trace-
based workload experience a speedup of 33% on average; sort
jobs are sped up by up to 20%. These benefits are due to
DYRS’ ability to quickly adapt to changes in the amount of
residual bandwidth on nodes and to optimize the placement of
migrations to eliminate stragglers.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their
thoughtful feedback. This research was sponsored by the
NSF under CNS-1422925, CNS-1718980, CNS-1801884, and
CNS-1815525.

stragglers by assigning the last few migrations to faster nodes.

REFERENCES

[1]
[2]

[3]

The Virtual Memory Toucher. https://hoytech.com/vmtouch/.
ANANTHANARAYANAN, G., ET AL. Effective straggler mitigation:
Attack of the clones. In NSDI 2013.

ANANTHANARAYANAN, G., ET AL. PACMan: Coordinated memory
caching for parallel jobs. In NSDI 2012.

APPUSWAMY, R., ET AL. Scale-up vs scale-out for hadoop: Time to
rethink? In SoCC 2013.

CHEN, Y., ET AL. Interactive analytical processing in big data systems:
A cross-industry study of mapreduce workloads. In VLDB 2012.
CROTTY, A., ET AL. Tupleware: Redefining modern analytics. arXiv
preprint arXiv:1406.6667 (2014).

DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified Data Processing
on Large Clusters. In OSDI 2004.

DZINAMARIRA, S., DINU, F., AND NG, T. E. Ignem: Upward migration
of cold data in big data file systems. In /CDCS 2018.

DZINAMARIRA, S., DINU, F., AND NG, T. E. Pfimbi: Accelerating big
data jobs through flow-controlled data replication. In MSST 2016.
ESHEL, M., ET AL. Panache: A parallel file system cache for global file
access. In Fast 2010 (2010).

FLORATOU, A., ET AL. Column-oriented storage techniques for mapre-
duce. In VLDB 2011.

GKANTSIDIS, C., ET AL. Rhea: Automatic filtering for unstructured
cloud storage. In NSDI 2013.

HARTMAN, J. H., AND OUSTERHOUT, J. K. The zebra striped network
file system. In SOSP 93.

ISLAM, N. S., ET AL. Triple-h: A hybrid approach to accelerate hdfs on
hpc clusters with heterogeneous storage architecture. In CCGrid 2015.
L1, H., ET AL. Tachyon: Reliable, memory speed storage for cluster
computing frameworks. In SoCC 2014.

LioN, D., ET AL. Don’t get caught in the cold, warm-up your
JVM: Understand and eliminate JVM warm-up overhead in data-parallel
systems. In OSDI 2016.

Liu, Z., AND NG, T. E. Leaky buffer: A novel abstraction for relieving
memory pressure from cluster data processing frameworks. IEEE Trans.
on Parallel and Distributed Systems 28, 1 (2017), 128-140.

Lu, C., ALVAREZ, G. A., AND WILKES, J. Aqueduct: Online data
migration with performance guarantees. In FAST 2002.

NAMBIAR, R. O., ET AL. The making of tpc-ds. In VLDB 2006.
OUSTERHOUT, K., ET AL. Sparrow: distributed, low latency scheduling.
In SOSP 2013.

RASLEY, J., ET AL. Efficient queue management for cluster scheduling.
In Eurosys 2016.

REIsSs, C., ET AL. Google cluster-usage traces. Google Inc. (2011).
SCHMUCK, F., AND HASKIN, R. Gpfs: A shared-disk file system for
large computing clusters. In FAST 2002.

SCHWAN, P. Lustre: Building a file system for 1,000-node clusters. In
PROCEEDINGS OF THE LINUX SYMPOSIUM 2003.

SEO, S., ET AL. HPMR: Prefetching and pre-shuffling in shared
mapreduce computation environment. In CLUSTER 2009.

SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R. The
Hadoop Distributed File System. In MSST 2010.

THUSOO, A., ET AL. Data warehousing and analytics infrastructure at
Facebook. In SIGMOD 2010.

VAVILAPALLI, V. K., ET AL. Apache Hadoop YARN: Yet another
resource negotiator. In SOCC 2013.

ZAHARIA, M., ET AL. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In NSDI 2012.
ZAHARIA, M., ET AL. Spark: cluster computing with working sets. In
HotCloud 2010.

[4]
(5]
[6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

[18]

[19]
[20]

(21]

[22]
(23]

[24]
[25]
[26]
(271
(28]
[29]

[30]

