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Abstract—Migrating data into memory can significantly accel-
erate big-data applications by hiding low disk throughput. While
prior work has mostly targeted caching frequently used data, the
techniques employed do not benefit jobs that read cold data. For
these jobs, the file system has to pro-actively migrate the inputs
into memory. Successfully migrating cold inputs can result in
a large speedup for many jobs, especially those that spend a
significant part of their execution reading inputs.

In this paper, we use data from the Google cluster trace to
make the case that the conditions in production workloads are
favorable for migration. We then design and implement DYRS, a
framework for migrating cold data in big-data file systems. DYRS
can adapt to match the available bandwidth on storage nodes,
ensuring all nodes are fully utilized throughout the migration. In
addition to balancing the load, DYRS optimizes the placement of
each migration to maximize the number of successful migrations
and eliminate stragglers at the end of a job.

We evaluate DYRS using several Hive queries, a trace-based
workload from Facebook, and the Sort application. Our results
show that DYRS successfully adapts to bandwidth heterogeneity
and effectively migrates data. DYRS accelerates Hive queries
by up to 48%, and by 36% on average. Jobs in a trace-based
workload experience a speedup of 33% on average. The mapper
tasks in this workload have an even greater speedup of 46%.
DYRS accelerates sort jobs by up to 20%.

I. INTRODUCTION

A lot of big-data analytics applications spend a significant

part of their execution in the input stage. This is primarily

because of two factors. First, many jobs either filter or aggre-

gate data before further processing, so the input stage typically

reads a very large amount of data, while later stages often only

process a much smaller fraction of that data. Second, there

has been a series of improvements in computation frameworks

that have accelerated the later stages of jobs, but they do not

accelerate the input stage. Consequently, the input stage of

jobs is accounting for an even larger share of jobs’ run time.

Unfortunately, common techniques for accelerating reads do so

by keeping hot-data in memory, and do not benefit the many

applications that read cold data. These applications have to

incur the penalty of slow disk reads.

Prior work that analyzed production workloads from Face-

book and Bing [3] reported that over 30% of tasks in these

workloads read singly accessed data. These are likely recurring

jobs that regularly process new data such as logs or new user-

generated data like click-streams. Because this data is large

and only processed periodically [27], it is persisted to disk

and then has to be read cold when it is being processed.

State of the art schemes to avoid disk reads do not benefit

these applications. For example, Resilient Distributed Dataset

(RDDs) [29] allow repeatedly accessed data to be pinned

in memory. RDDs have resulted in an order of magnitude

speedup for Spark over Hadoop for iterative jobs [30] but they

do not accelerate reads to cold data. PACMan [3] optimizes

the eviction of cached data that is already in memory but

does not help speed up cold reads. Triple-H [14] analyzes

the frequency and recency of accesses to data in a file system

and moves popular data into faster storage to accelerate future

reads. However, Triple-H only migrates hot data into memory

and so it does not help with accesses to singly read cold data.

If we could accelerate reads to cold data, we expect to see a

large speedup in many applications. One detailed study of SQL

workloads on Hive [20] reported that queries spent about 19%

of their duration blocked on IO, and 80% of that IO was spent

reading data. Accelerating these reads by migrating the inputs

into memory could result in a 15% speedup. When various

optimizations that accelerate computation [17], [6], [11] are

also applied, we expected the speedup from accelerating reads

to be even larger since reading will be a proportionally larger

part of the job. In the SQL study above, using C++ instead

of Scala halved the CPU time. This would amplify the time

spent on reads from 15% to 25%. Even for iterative jobs,

accelerating the initial read can provide a significant speedup.

Reading data from disk can cause the first iteration in Logistic

Regression and K-Means to run 15x and 2.5x longer than later

iterations respectively [29]. Reducing this initial slowdown

would significantly speed up both applications.

For a more concrete comparison, we ran jobs from a trace

workload from Facebook [5] with HDFS to determine the

expected speedup of reading from memory. We first ran the

workload with the input on disk, and then with the input

pinned in RAM. At the application level, block reads from

RAM were 160x faster on average than reads from the disk.

We observed a large 10x speedup for map tasks that read from

RAM, despite these tasks having other overheads unrelated to

reads. SSDs can provide a speedup over disks, however, reads

from RAM were still 7x faster than SSD.

Thus, pro-actively migrating job inputs upwards into mem-

ory has the potential to significantly accelerate those jobs that

read cold data. In order to determine whether such migration

is feasible in practice, we analyze the workload in the Google

cluster trace. The feasibility of migration in practice depends

on two conditions: 1) the system can identify cold data that



will be accessed soon, and 2) there is sufficient time and

residual bandwidth to migrate the data into memory before it

is accessed. Our analysis suggests that both these conditions

hold true, so effective migration is feasible.

However it is challenging to realize the potential of data

migration in practice, particularly because the nodes in the

cluster can be heterogeneous and the load on them is dynamic.

The contribution of this work is the design and implementation

of a migration system called DYRS that is bandwidth aware

and so can adapt to heterogeneous and dynamic conditions.

DYRS can adapt to match the available bandwidth on storage

nodes, ensuring all nodes are fully utilized throughout the

migration. In addition to balancing the load, DYRS optimizes

the placement of each migration in order to maximize the

number of successful migrations and eliminate stragglers at

the end of a job. We implemented DYRS in a popular big-data

file system and we show that is it both adaptive and effective

at migrating data under dynamic conditions.

Specifically, we evaluate DYRS using several Hive queries,

a trace-based workload from Facebook, and the Sort appli-

cation. Our results show that DYRS successfully adapts to

bandwidth heterogeneity and effectively migrates data. DYRS

accelerates Hive queries by up to 48%, and by 36% on average.

Jobs in the trace-based workload experience a speedup of 33%

on average. The mapper tasks in this workload have an even

greater speedup of 46%. Sort jobs are sped up by up to 20%.

II. MOTIVATION

A. Which applications benefit most from migration?

Data migration is most beneficial for jobs whose initial stage

is a significant part of the overall execution. This is true for

many data analytics applications. The initial stage of these

jobs often filters out or aggregates the input so later stages

process much less data and are shorter. This data reduction

amplifies the importance of reads and the potential speedup

from migration.

Prior work on MapReduce workloads at Google shows

ratios of up to 10:1 between map stage input and output

sizes [7]. Similarly, Rhea [12] shows a reduction of 2-20000x

between input and output sizes for Hadoop mappers. Other

studies corroborate these findings [4], [5].

We ran several TPC-DS queries on Hive and examined

the proportion of time they spent in the initial map phase.

On average, the map tasks account for 97% of the total run

time. These map tasks read inputs and filter out much of the

data because of the SELECT statement and predicates in the

WHERE clause. Such selectively is common amongst database

queries and data analytics in general which makes such jobs

good candidates for acceleration using data migration.

B. Effective migration must be heterogeneity-aware

To effectively migrate data, a migration framework should

adapt to the amount of residual bandwidth on cluster nodes.

This is particularly important since we observe significant

heterogeneity among nodes in production clusters.
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Fig. 1: Disk bandwidth utilization over a 24 hour period for

three servers in the Google cluster. There is heterogeneity in

the residual disk bandwidth across both nodes and time.

We analyzed the Google trace [22] and found that the disk

utilization is highly heterogeneous and dynamic. The Google

trace provides per-task IO time at a 5-minute granularity. We

used this data to derive per-node disk utilization. We assume

that each task performs IO at a constant rate. Thus, we can

compute the per-second IO time for each task. The per-second

disk utilization for a node is the sum of disk IO time for all

tasks that are active on that node during that second. Lastly,

we averaged the data to obtain per-node disk utilization at

5-minute granularity.

Figure 1 shows the disk utilization for three typical nodes in

the Google trace. There is heterogeneity across both nodes and

time. First, heterogeneity across nodes is seen from the fact

that there are nodes that consistently have different amounts

of residual disk bandwidth. For example, in Figure 1, node

1 is consistently busier than nodes 1 and 2. Its utilization

is 13x and 5x that of nodes 2 and 3 on average. This can

be caused by differences in the storage media or by an IO

intensive application running on node 1 but not on nodes 2 and

3. Second, heterogeneity across time can be observed on each

node but is more apparent on node 1. An efficient migration

scheme must handle both types of heterogeneity.

C. Despite the challenge of heterogeneity, productions work-

loads have conditions favorable for migration

Effective migration also requires there to be enough time

and residual bandwidth to read the data into memory before

it is accessed. The nodes in the cluster must also have enough

free memory to hold the buffered data. We again leverage the

Google trace to ascertain that both these conditions are present.

We analyze the time jobs spend on IO and logs of events like

the submission, scheduling, and termination of jobs and tasks.

1) For most jobs, there is enough time to migrate a signifi-

cant portion of the input into memory: We define lead-time as

the amount of time between job submission and data access.

This is the time during which migration needs to take place for

it to be effective. Lead-time for a task is the time between job

submission and task start time. Lead-time for a job is the time

between job submission and the start of the first task in the

job. It is common for tasks in a job to start at different times,

therefore our definition of job lead-time is a lower bound.

Sources of lead-time: The two main sources of lead-

time in big-data frameworks are queueing time and platform

overheads. After job submission, a job’s tasks are queued until
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Fig. 2: 81% of jobs in the Google trace have enough lead-time

to migrate the entire input into memory.

resources are available to launch them. This holds irrespective

of the type of cluster scheduler: centralized [28], distributed

[20] or hybrid [21]. Regardless of where tasks are queued,

we can use the queueing time as lead-time to migrate job

inputs into memory. In the Google trace, the mean lead-time

for jobs is 8.8 seconds. This time can be used to migrate

several hundred MBs of data per disk.

Platform overheads provide additional lead-time for mi-

gration. These include operations such as shipping binaries

to workers and JVM warm-up costs [16] in some systems.

The coordination overhead between workers and a centralized

master via heartbeats may also increase lead-time [21].

Most jobs have a lot of lead-time relative to the amount

of data they read: Jobs in the Google trace have a lead-

time of 8.8 seconds on average. To determine whether this is

sufficient for effective migration, we have to compare the lead-

time to the time it would take to read the inputs into memory.

For each job in the trace, we compute the time it takes to

read input data into memory, which we call the read-time.

Summing the time spent on IO by each task in a job gives us

the read-time for the job in the trace. This simple sum likely

overestimates the read-time because it includes time spent

writing and does not consider that IO can be parallelized across

multiple disks. Figure 2 shows a probability density function

of the ratio between lead-time and read-time. Despite likely

overestimating the read-time, 81% of jobs have a lead-time that

is greater than the read-time, meaning there is sufficient time

for migration. Even those jobs whose input is only partially

migrated will be sped up by data migration.

2) Production clusters have enough residual bandwidth and

free memory for cold data migration: Servers in production

environments have a lot of residual bandwidth that can

be used for migration: The amount of data that can be

migrated within the lead-time depends on the amount of

residual bandwidth in the cluster. The read-time we presented

above may become larger if the disks are heavily utilized.

Fortunately, analysis of the disk utilization in the Google trace

shows that disks are often under-utilized.

Figure 3 shows a CDF of disk utilization samples from

40 servers in the Google cluster[22] over a 24h period. For

80% of these measurements, the utilization is under 4%. For

all 12,000+ servers, the mean disk utilization during the 24h

period is 3.1%; and 1.3% for the entire month the trace covers.

This shows that current clusters are heavily over-provisioned

for IO and this provides ample free bandwidth for migration.

Prior work on a small academic cluster also shows that disks

are often under-utilized [9].
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Fig. 3: CDF of disk bandwidth utilization over 24h for 40

servers in the Google workload. 80% of time utilization is

under 4%. Thus, there is abundant residual disk bandwidth to

use for data migration.

The working set for migration uses a relatively small

amount of memory: In the Google trace, on average 10

tasks run on a server at a time. For a worst-case analysis, let’s

assume the latest generation dual-socket CPUs with 28 cores

each, so the number of tasks on a server at a given time is

unlikely to be greater than 56. Further, assume that all of the 56

tasks are mappers that each reads a large 256MB data block.

Even under these conditions, 14.3GB of RAM is sufficient to

hold the migrated data. This is a small amount of memory for

today’s servers which are provisioned with hundreds of GB

of RAM. Another study’s analysis of two private workloads

[3] draws similar conclusions that there is sufficient RAM to

keep a significant portion of the working set in RAM.

III. DESIGN

In this section, we walk through the decisions we made

when designing DYRS. DYRS is structured in a master-slave

architecture. The master is responsible for initiating migrations

and deciding where these migrations will be performed. Slaves

in DYRS are responsible for physically copying data into

memory. When a client needs to have its input files migrated,

it sends the list of filenames to the DYRS master. The master

then maps the files to blocks in the file system and instructs

slaves to migrate these blocks. DYRS schedules migrations

using a First-In-First-Out (FIFO) policy. In future work, we

plan to explore how alternative policies, and cooperation with

the job scheduler, can improve performance. Once a block has

been migrated, reads will be directed to the in-memory replica

whether it is local or remote to the task making the read.

A. When and how to choose which replica to migrate

When the DYRS master receives a migration instruction,

it constructs a list of blocks waiting to be migrated. We call

these pending migrations. The master then assigns them to

the slaves. We use the term binding to describe assigning a

pending migration to a particular slave. Each slave also keeps

a queue of migrations locally so the master can bind several

blocks to the slave at once. All binding decisions are final.

1) When to choose the replica to migrate: DYRS delays

the binding of migrations until as late as is possible without

sacrificing performance. The delay allows the DYRS to gather

the most up-to-date feedback about the performance of slave

nodes and incorporate this information in order to make the

best future binding decisions. In the extreme, we can bind

new migrations to a slave node one at a time after the



slave completes the previous migration. However, after each

migration, the disk on the slave would be idle while the

master is in the process of assigning it the next migration.

In order to avoid disk idleness, DYRS ensures each slave has

a few pending blocks queued locally. These queues should be

deep enough to avoid idleness, and yet as shallow as possible

to avoid binding migrations earlier than necessary. Slaves

periodically query the master for more migrations whenever

there is space in their local queues.

2) Selecting which replica to migrate: In DYRS, we choose

to migrate only a single replica for each block regardless of

how many replicas exist. This is because in most applications

only a single task will read a block of data. Therefore, DYRS

has to select which replica of a block to migrate. The previous

section described when the choice is made; we now describe

how it is made. When a slave queries the master for more

work, we only bind a migration to the slave if we expect

that the migration would complete soonest on it, compared to

the other replica locations. Carefully selecting the replica to

migrate increases the chance the data will be in memory by the

time it is read. This optimization also helps avoid stragglers

at the end of the migration.

Imagine if a very slow node is assigned one of the last

migrations at the end of a file. That migration would likely

still be in progress long after the faster nodes have completed

all queued work and there is no more pending work at the

master. It would have been better to leave the slow node idle

and instead wait until a faster node is ready to process the

migration. Assuming we can estimate how long a migration

would take on each node Algorithm 1 shows how we estimate

which node would complete a particular migration soonest.

We then mark that node as the target for the migration. DYRS

uses past migrations to estimate how long future migrations

will take. Details are provided later in Section IV-A.

Algorithm 1 works as follows. We scan through the list

of blocks and greedily set the target for each block as the

node where assigning the block would result in the lowest new

completion time. For each node, we keep a running estimate

for the amount of time we expect the node to finish all the

blocks that have been targeted to it. This algorithm is run

regularly in a separate thread that is off the critical path of

any coordination between the master and slave. When a slave

queries the master for more work, the master searches its list of

pending migrations for blocks that are targeted to that slave. If

these exist, the master then assigns some of them to the slave.

Guided by the reasoning in Section III-A1, we only assign

enough migrations so that the slave does not go idle before

the next time it queries for more work.

B. Ensuring efficient utilization of the disk

In Section III-A1 we described how it is necessary to keep

some migration work queued on the slave in order to avoid

disk under-utilization while the slave is querying the master

for more work. The queue should be long enough such that

it does not totally drain in the interval it takes to fetch more

work. This ideal queue length can be computed by dividing

Input: Estimated migration times and the number of queued

blocks for each slave

Result: Mapping of each block to a target node

// initialize estimated finish times for each node

// assuming next pending block is assigned to this node

foreach node in DATANODES do
finishTime[node] = migTime[node]×(numQueued[node]+1)

end

// set target for each block

foreach block in PENDING do
locations = block.getReplicaLocations();

target = locWithMinFinishTime(locations, finishTimes);

block.migrationTarget = target;

finishTime[target] = finishTime[target] + migTime[target]
end

Algorithm 1: Sets the target for each block as the node where

its migration is expected to finish earliest.

the heartbeat interval by the time it takes to read a block of

data using the maximum disk bandwidth.

Another way the disk can end up under-performing is if

there are too many concurrent reads causing the disk to per-

form seeks too often. DYRS, therefore, serializes migrations

and moves one block at a time into memory in order to limit

disk read concurrency. Migrations are handled in FIFO order at

the slaves. More sophisticated scheduling between applications

can be implemented at the master. However, this is beyond the

scope of this work.

C. Failure resilience

DYRS is highly resilient to failures. When there is a failure,

DYRS reverts to the default behavior of the file system with no

migration. The only adverse effect is the loss of the speedup

from migration. Additionally, only active migrations are af-

fected by failures. DYRS keeps only soft state so the system

returns to normal quickly when DYRS’ recovery mechanisms

are run. The failure mechanisms in DYRS are similar to those

in file systems with a master-slave architecture like HDFS [26].

1) DYRS master failure: If only the master process failed,

we can restart it on the same server and it can immediately

start receiving migration requests. If the server itself has failed,

we have to launch the master on a new server and reroute

migration requests to the new location. To reroute migration

requests, the new master can broadcast an update to the clients

configuration which stores the IP address of the master. Alter-

natively, we can maintain a live-backup of the master running

and pre-list its address in the configuration file. Though the

new master starts up with no state about which blocks are in

memory at the slaves, its state eventually becomes consistent

as slaves clean up their buffers as described in Section III-C3.

The only adverse effect of the inconsistency is that even though

some replicas are in memory, the master is unable to direct

the block reads to them.

2) DYRS slave failure: When a slave process fails, all buffer

space is reclaimed by the operating system and we can start a



new process to handle new migrations. The new slave process

should direct the master to drop state about blocks that were

previously buffered on that server. This is because the master

keeps track of where blocks are in memory so that reads can

be directed to in memory replicas. The API for reading data

from the worker is oblivious to whether the data is in memory

or not so a block read can be served without error before the

state has been dropped.

If the entire server has failed, then all data on that server

will be unavailable. When a client queries DYRS for the

in-memory replica of a block, DYRS only returns a choice

amongst replicas on nodes that are available. A node is marked

as unavailable when the file system misses several consecutive

heartbeats from it. If a read occurs before the node is marked

as unavailable the client can fail-over to one of the available

replicas. HDFS handles DataNode failures in the same manner.

3) Job failure: For each migrated data block, the slave

maintains a reference list of job IDs for jobs that are expected

to read the block. A job ID is appended to this list when the

slave receives a command to migrate the block and removed

when the job sends an evict command to clear its ID from the

blocks’ reference list. If DYRS is working alongside a caching

framework, the responsibility to call the evict command could

be delegated to the caching framework. The evict command

is handled through the DYRS master. A block is evicted from

memory when its reference list is empty. If a job fails or is

terminated before it issues the evict instruction, we need an

alternative mechanism to clean the memory buffer and avoid

memory-leaks. In DYRS, once the memory usage reaches a

set threshold, the slave queries the cluster scheduler to check

which jobs are active. It can then clear all inactive jobs from

its blocks’ reference lists and evict the blocks with empty lists

from memory. This mechanism ensures DYRS keeps data in

memory only for jobs that are still running. As a performance

optimization to keep memory usage low, we also allow DYRS

to implicitly remove a job from a block’s reference list as

soon as the job reads the block of data. This causes data to be

evicted sooner if the reference list becomes empty. A job can

opt into this implicit eviction mode when the job submitter

issues the migration instruction.

D. Scalability

DYRS has a master-slave architecture like that of HDFS.

This architecture has been shown to scale to thousands of

servers [26]. The DYRS master only has to 1) handle migration

and eviction requests for files, 2) map the files to blocks, 3)

compute the target replica for each block and, 4) respond to

slave queries for migration work. The most computationally

intensive task is updating the target for each pending block

at the master. Fortunately, the update process is not on the

critical path of the heartbeat messages between the master

and slaves. During heartbeats, the master stores each slave’s

estimate of migration time and the number of blocks currently

queued on the slave. In a separate thread, the master then uses

these estimates to update the targets. The cluster administrator

can control the rate of updates in order to limit their load.

However, each update involves only a single pass through the

list of pending migrations. Our prototype updates the targets

for 50GB of pending migrations in under a millisecond.

Lastly, there is no coordination overhead between slaves as

all messages are to and from the master. Each slave migrates

blocks and computes its estimated migration time indepen-

dently. Therefore, slaves are not a scalability bottleneck.

IV. IMPLEMENTATION

We have implemented DYRS within the Hadoop Distributed

File System (HDFS). We were able to do so naturally because

the master-slave architecture of DYRS matches that of HDFS.

The DYRS master is implemented within the HDFS NameN-

ode and the DYRS slave in the DataNode.

1) Migration mechanism at the slaves: DYRS slaves use

the mmap, mlock and munmap system calls to migrate data

from disk to the buffer cache. We favored this approach

compared to migrating data onto a slave’s heap for two rea-

sons. First, the implementation is simpler and more restricted.

Migration to the heap would require additional changes to the

IO path for a task’s reads. Second, data in the buffer cache

can be accessed by multiple processes.

To start migration, mmap is used to map a file to the virtual

address space of the DYRS slave process. Next, the mlock call

reads the data into memory before returning. Mlocked data will

not be swapped to disk. Finally, the munmap call is used to

unlock and unmap the file data and release memory back to

the OS. Since the input is read-only, the OS need not write

anything back to disk. The data can be simply discarded.

A. Estimating per block migration time

A critical part of the replica selection algorithm in DYRS is

estimating how long migration will take on each node hosting

a replica. We consider migration time to be the time it takes the

mlock system call to return. We use an exponentially weighted

moving average (EWMA) of past migration durations to

minimize the effect of random fluctuations while giving more

weight to recent migrations.

After a sudden drop in available disk bandwidth, the cur-

rently active migration may take a long time to complete.

It is important to incorporate this signal into our estimate

as soon as possible and not wait (potentially a long time)

until migration completes. Thus, when the elapsed duration

of an active migration becomes greater than its estimate,

we update the estimate periodically (every heartbeat) until

migration completes.

1) Memory management: Though DYRS pro-actively

evicts data from memory as jobs finish or read the data, we

also allow a hard limit to be set. When this limit is reached,

migration commands are queued until buffer space is available

or until they are discarded due to missed reads.

The reference lists described in Section III-C are realized as

a hash-map that maps a job’s ID to the list of blocks migrated

for the job. This hash-map allows DYRS to efficiently locate

the blocks that need to have their reference lists modified.

When implicit eviction is being used, the slaves can extract the



job ID directly from the read calls and do not need to contact

the DYRS master. A job chooses whether or not to enable

implicit eviction when the migration command is issued.

B. Running applications on DYRS

Applications run transparently on DYRS, no changes to the

mapper or reducer code are necessary. We only made simple,

non-application-specific changes to the framework.

In Hadoop, to make the most of the available lead-time,

migration should be triggered as early as possible in the job’s

lifetime, ideally during job submission. Thus, we inserted the

migration call in the job-submitter, the first element in a job’s

life cycle. Inside the job-submitter, we created an instance of

the file system client (DFSClient). The DFSClient handles file

operations (open, close, create, delete) and we extended it with

a migration method. The arguments to this method are: a list

of files, the operation to be performed (migration or eviction)

and the type of eviction (explicit or implicit). The DFSClient

communicates with the DYRS master via RPCs.

Frameworks like Hive submit a sequence of MapReduce

jobs to complete a single query. Hive adds a query compilation

phase before the job submissions. We inserted the migration

call right after the query compilation. We leveraged the fact

that Hive allows hooks to inject code at various steps in a

query’s life. We also had to map the Hive table names in the

query to a list of HDFS file names. Similarly to Hadoop, the

changes are done in the framework in a query-agnostic manner.

V. EVALUATION

We have implemented DYRS within HDFS to evaluate

its performance with real applications. We use several Hive

queries, a multi-job workload derived from a Facebook trace

and the Sort application. Before presenting experimental re-

sults, we first describe our hardware and software setup and

the methodology we use to create heterogeneity.

A. Hardware setup and software configuration

Hardware setup - We use an 8 node cluster. One node

hosts the HDFS NameNode and the Yarn Resource Manager.

The other 7 nodes run HDFS DataNode processes and Yarn

Node Managers. Each server has a 1TB HDD drive, 128GB

of RAM and a Xeon E5-1650 CPU with 6 cores and 12

hyperthreads. There is a 10Gbps network between the servers.

Software setup - Our experiments compare DYRS against

three other configurations of HDFS 2.7.3. The first two setups

use default HDFS. In the first case, all inputs are stored on disk

while in the second we use the vmtouch tool [1] to lock all

input data in RAM. The second setup, which we call HDFS-

Inputs-in-RAM, gives up an upper bound on the speedup we

can expect. We only lock the initial input in RAM and do not

modify the location of intermediate results nor the output. The

third configuration we compare against is Ignem, a scheme that

randomly chooses a replica of input data blocks to copy from

disk to memory as soon as a job is submitted [8].

For all experiments, we flush the buffer cache before

running our workloads to ensure the inputs are read from

disk unless we have explicitly locked them in memory as

in the HDFS-Inputs-in-RAM configuration. For the HDFS-

Inputs-in-RAM setup, we still flush the buffer cache to ensure

background syncing of the inputs to disk completes before we

launch a workload. All our experiments are run on Apache

Tez 0.9.0 coupled with Hadoop Yarn 2.7.3.

B. Workloads

We select three workloads to evaluate DYRS. We use Hive

to study how DYRS handles complex, multi-job queries in

isolation. The SWIM workload shows the behavior of DYRS

in a complex and concurrent multi-job setting. Finally, Sort is

a popular operation in many data transformation pipelines.

1) Hive queries: We use a set of ten queries from the TPC-

DS[19] benchmark to evaluate DYRS on Hive 2.3.2. The TPC-

DS dataset has more queries written in SQL, but we could only

find ten that had been translated in HiveQL which is required

to run them on Hive. We run each query independently on all

four file system configurations. Hive queries are commonly

used by data analysts to analyze large amounts of tabular data.

By migrating data while a query is queued to run, a framework

like DYRS improves the turn-around time for the analysis.

2) SWIM workload: The SWIM workload [5] is a trace-

based workload derived from a production Hadoop cluster at

Facebook. Jobs are sized (input, shuffle and output data size)

and submitted according to the trace. We use the first 200 jobs

in the trace. We scale down the job input sizes to fit on our

8-node cluster. The scaled cumulative job input size across all

200 jobs is 170GB. To have multiple jobs running concurrently

we reduced job inter-arrival times by 75%. The distribution of

job input sizes is heavy-tailed which is typical of production

clusters [2]: 85% of jobs read little data (less than 64MB) but

most of the data is read by a few large jobs (up to 24GB).

3) Sort job: We run sort across a range of different data

sizes and with varying amounts of lead-time to study how

the benefits of migration relate to the input size of a job and

the available lead-time. We also use the sort application to

understand and visualize the adaptive nature of DYRS.

C. Creating bandwidth heterogeneity

In production environments, the residual bandwidth avail-

able for migration is likely to be heterogeneous. This can

be either due to fixed factors like different disk models on

servers or due to dynamic factors like running applications. We

introduce heterogeneity to evaluate if DYRS can effectively

migrate cold data in a heterogeneous cluster. We reduce the

residual bandwidth available on a node by running two Linux

dd jobs that repeatedly read from two files on the disk. To

ensure that dd reads come from the disk and not memory,

we first flush the buffer cache and then use the “I DIRECT”

flag in dd to prevent buffering. For the set of experiments

evaluating dynamic heterogeneity, we use a custom C++

application to generate different patterns of interference on

one or two nodes.
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Fig. 4: Hive query durations and their respective input sizes.

Queries in both figures are sorted by input size.

Absolute Duration (s) Speedup w.r.t HDFS

HDFS 31.5

HDFS-Inputs-in-RAM 16.9 46%

Ignem 66.4 -111%

DYRS 20.9 33%

TABLE I: Average job-duration and speedup across all jobs

in the SWIM workload.

D. Hive query results

Figure 4a shows the durations of Hive queries normalized

to default HDFS. HDFS-Inputs-in-RAM speeds up execution

by 50% on average which shows Hive queries can benefit

significantly from faster reads. Most queries perform aggrega-

tions or filtering early in their execution so the input stage is

the dominant part of the queries. DYRS realizes the potential

speedup and improves query runtime by up to 48% for query

#15, and by 36% on average. While DYRS produces a large

speedup, Ignem makes the queries run slower because its

replica selection strategy does not avoid the slow node in

the cluster. When the input size of the queries increases,

the proportion of data that can be migrated within the lead-

time decreases because the lead-time is constant. Despite this,

DYRS provides over 25% speedup for the largest queries.

E. SWIM workload results

1) DYRS accelerates jobs of all sizes: We ran the SWIM

workload to study how DYRS performs in a more realistic and

complex setup. Table I shows the overall performance over the

whole workload. DYRS accelerates jobs by 33% on average

while Ignem results in a slowdown of more than 2x.

Figure 5 shows job duration binned by job input size.

DYRS provides significant speedup across all job sizes: 34%,

47% and 26% for small, medium and large jobs respectively.

Medium sized jobs have a bigger speedup than smaller ones

because non-read overheads are a proportionally smaller part

of their end-to-end runtime. For large jobs, a relatively smaller
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Fig. 5: DYRS speeds up small, medium and large jobs by 34%,

47% and 26% respectively. Across all job sizes, the average

speedup is 33%.
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Fig. 6: DYRS significantly reduces map task duration.

amount of the input can be migrated successfully compared to

medium sized jobs, therefore, we see a smaller speedup. For

small and medium-sized jobs, DYRS realizes over 75% of the

potential speedup obtained by HDFS-Inputs-in-RAM.

2) Mapper tasks complete much faster under DYRS, im-

proving cluster utilization: Looking at end-to-end job duration

masks some of the benefits of DYRS since the end-to-end

duration includes the shuffle and reduce phases that cannot

be accelerated by migration. Figure 6 shows the speedup for

mapper tasks in the SWIM workload. Mapper tasks run 1.8x

faster under DYRS than with HDFS. This improves overall

resource utilization as IO-bound mapper tasks spend less time

holding CPU slots and memory. Ignem overloads the slow

node while leaving the faster ones underutilized, which results

in very short tasks on the fast nodes and very long ones on

the slow node. DYRS, on the other hand, keeps all nodes well

utilized. Though there are fewer very short tasks with DYRS,

the average completion time is better.

3) DYRS obtains a large speedup while keeping a low

memory footprint.: In this section, we estimate the amount

of memory needed to achieve performance similar to HDFS-

Inputs-in-RAM and compare this to DYRS. The performance

of HDFS-Inputs-in-RAM can be achieved with minimal mem-

ory usage by a hypothetical scheme that migrates the input

instantly when the job is submitted and evicts it when the job

completes. Figure 7 shows the distribution for the amount of

memory used on individual servers to store blocks migrated

into memory for both DYRS and the hypothetical scheme.

DYRS can only migrate 45% as much data as this hypothetical

scheme but provides 72% of the speedup HDFS-Inputs-in-

RAM provides in Table I. There is a diminishing return in

speedup from using more memory because of the non-read

parts of jobs. DYRS uses less memory because in reality there

is limited bandwidth for migration, but also because DYRS

pro-actively evicts data as soon as it has been read just as the

hypothetical scheme does.
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(a) Per server memory usage under DYRS.
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Fig. 7: Memory usage in DYRS vs. a hypothetical scheme

based on HDFS-Inputs-in-RAM. The y-axes are in log scale.

Interference Pattern Figure Sort job runtime (s)

Node #1 only: Persistently active 9a 137

Node #1 only: Alternates every 10s 9b 127

Node #1 only: Alternates every 20s 9c 129

Node #1 and #2: Alternates every 10s 9d 135

Node #1 and #2: Alternates every 20s 9e 137

TABLE II: DYRS effectively uses residual bandwidth regard-

less of the interference pattern so setups with the same overall

amount of interference have similar runtimes. The row shading

indicates setups with the same overall amount of interference.

F. Sort job: Effective migration needs to be adaptive

1) DYRS adapts the number of migrations on each node to

match the available bandwidth: In this section, we analyze

why Ignem fails to provide speedup when there is a handi-

capped node in the cluster. We ran a Sort job and recorded

the number of reads on each data node. Figure 8a shows

the distribution of reads for a homogeneous cluster when we

do not introduce any interference. As expected, each node

receives a similar number of blocks. In Figure 8b one node

is slowed down. Ignem still distributes the migration load

equally. Ignem does not use historical data to guide its load

distribution nor can it leverage the current node status because

it binds migrations to replicas immediately upon receiving

the migration command. DYRS, on the other hand, delays its

binding. The completion of earlier migrations can, therefore,

inform binding decisions for later ones. This delayed binding

gives DYRS the ability to adapt to the residual bandwidth

on each node. For default HDFS, tasks are placed on a node

only when previous ones completed. This provides implicit

feedback which results in fewer tasks on the slow node.

2) DYRS can quickly track and adapt to bandwidth

changes: Heterogeneity in a cluster may arise from fixed

factors such as hardware differences, or from the dynamics

of the workload on the cluster. DYRS has to be adaptive to

both types of heterogeneity. We now show how DYRS closely

tracks the amount of residual bandwidth on each node. The
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(b) Residual bandwidth on Node #1 is lower.

Fig. 8: Distribution of reads on DataNodes. DYRS and HDFS

adapt to node heterogeneity, unlike Ignem which always

balances the migration load equally.
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(a) Persistent interference on Node #1.
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(b) Interference on Node #1 turned ON/OFF every 10 seconds.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

5

10

15

M
ig

ra
ti
o
n
 t
im

e

(s
e
c
o
n
d
s
/b

lo
c
k
)

(c) Interference on Node #1 turned ON/OFF every 20 seconds.
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(d) Interference on Nodes #1 & #2 alternating every 10 seconds.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

5

10

15

M
ig

ra
ti
o
n
 t
im

e

(s
e
c
o
n
d
s
/b

lo
c
k
)

(e) Interference on Nodes #1 & #2 alternating every 20 seconds.

Fig. 9: Impact of interference on estimated migration time.

DYRS adapts quickly.



metric we track is the estimated time to migrate a single

block. Figure 9 shows the migration time estimate as we apply

different patterns of interference. For easy comparison, we

highlight the trendlines for two nodes in our cluster.

In Figure 9a, there is persistent interference on Node #1.

DYRS’ estimate for migration time is correctly higher on

Node #1 than on Node #2. We expect the estimates to have

some fluctuations because hard disk bandwidth varies a lot

as tasks start and finish. In Figure 9b and Figure 9c we

make the interference on Node #1 active/inactive every 10 and

20 seconds respectively. DYRS’ estimate follows this pattern

correctly. In an earlier prototype, we only updated the estimate

upon the completion of a migration which resulted in a slow

update after the residual bandwidth suddenly dropped. The

extra update described in Section IV-A makes DYRS respond

quicker to slowdowns. Though the frequency of alternation

between active/inactive is different in Figure 9b and Figure 9c,

there is interference only 50% of the time in both experiments

so we should expect the runtimes of the sort jobs to be the

same. The runtimes in Figures 9b and 9c should also be lower

than that in Figure 9a since there is less interference. Table II

shows these expected comparisons hold in practice.

For Figure 9d and Figure 9e we now introduce interference

on both nodes #1 and #2, and cycle between active/inactive

periodically. When interference is active on Node #1 it is

inactive on Node #2 and vice versa. The figures show that

DYRS correctly tracks the estimated block completion times.

Each slave computes its own estimate independently so DYRS

can track the migration time estimates for all nodes in the

cluster with minimal overhead. Table II shows that the jobs in

Figure 9d and Figure 9e have the same duration. These two

also have a similar duration to Figure 9a. This is expected

since all three experiments always have one node worth of

interference at any time. In experiments with the same overall

amount of interference, DYRS produces the same runtime

because it is able to quickly adapt to changing load and fully

utilize any residual bandwidth.

3) DYRS minimizes the risk of stragglers at the end migra-

tion: Figure 10 shows timelines for the last 30 blocks read

in Sort job with 10GB of input. We compare DYRS against a

naive load balancing scheme without DYRS’ straggler avoid-

ance. We mark time in reference to the last read so that we

can easily visualize how eliminating stragglers would affect

the makespan for reads. In DYRS, a node is only assigned a

block if we expect that block to finish earliest on that node.

We consider the time each node is expected to finish the block

in question given the work that is either already queued on the

node, or targeted towards it. Because of this, slow nodes only

get assigned migrations when there are still a lot of outstanding

migrations to keep faster nodes occupied. We can observe

this in Figure 10b. In contrast, if a migration scheme were

to simply assign migrations to any node with free slots in

its local queue, some of the last few migrations can end up

on a slow node as can be seen in Figure 10a. The last few

migrations have a high risk of becoming stragglers, especially

when they are assigned to a slow node.

4) Sort job: How migration is affected by input size and

lead-time: In this section, we ran Sort jobs with various lead-

times and input sizes to study how DYRS performs in these

different settings. We report both the duration of the map phase

and the end-to-end job duration which includes the lead-time.

Figure 11a shows that as we increase the data size but

keep the lead-time constant, the relative speedup for the map-

phase shrinks. This is expected because the amount of data

we can migrate is mostly determined by the lead-time. The

speedup from migration becomes less significant the longer

the job runs. If we artificially introduce more lead-time, we

can migrate more data and hence see a bigger speedup.

However, additional lead-time could increase the end-to-end

job duration if the speedup from more migrations does not

offset the extra lead-time. Figure 11b shows that for shorter

jobs, artificially inserting lead-time increases end-to-end job

duration. However, for longer jobs, the end-to-end duration

does not change despite the extra lead-time. DYRS effectively

uses the lead-time to migrate data and the speedup from

migration makes up for the additional lead-time. This improves

overall utilization since mapper tasks spend less time holding

resources like CPU slots and memory while blocked on reads.

VI. RELATED WORK

Ignem [8] is a disk-to-memory migration scheme that ran-

domly chooses a replica of input data blocks to copy from

disk to memory as soon as a job is submitted. This approach

suits the case where the node bandwidths are homogeneous.

Unfortunately, we observe significant bandwidth heterogeneity

among nodes in production clusters. As Section V showed,

Ignem could perform worse than default HDFS under hetero-

geneous bandwidth scenarios. In contrast, DYRS can adapt

quickly to match the available bandwidth on storage nodes,

ensuring all nodes are fully utilized throughout the migration,

and in addition to balancing the load, DYRS optimizes the

placement of each migration in order to maximize the number

of successful migrations and eliminate stragglers at the end of

a job. Pacman [3] is a caching scheme that coordinates caching

across a distributed file system. Its coordination is based on

the insight that jobs are only sped up when the inputs of all

tasks in a wave are cached. Pacman only manages data that

is already in memory so it does not improve the performance

of cold reads. However, the authors of Pacman acknowledge

that 30% of all tasks in their workloads read singly-accessed

data and Pacman cannot improve their performance. DYRS

fills this gap and complements Pacman by targeting cold

reads and pro-actively migrating the data into memory. Triple-

H [14] manages the placement of data within a tiered file

system composed of RAM, SSD, and HDD. In addition to

data placement when jobs write outputs, Triple-H monitors

accesses to files and moves popular/hot files into fast storage

and less popular ones to slower storage tiers. Triple-H pro-

motes hot-data into memory to speed up future reads. DYRS,

on the other hand, attempts to accelerate the initial reads to

speed up jobs that read singly accessed data. HPMR [25]

migrates data across the network to a server on the same
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Fig. 10: Blocks reads at the end of a Sort job. DYRS avoids stragglers by assigning the last few migrations to faster nodes.
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Fig. 11: Sort application. Artificially inserting lead-time can

improve utilization without hurting end-to-end job runtime.

rack a task will execute. DYRS would complement HPMR

by migrating the data into memory. Aqueduct [18] is a system

that controls the rate of background tasks like migration to

limit their impact on foreground operations. When the cluster

is busy, the techniques in Aqueduct can complement DYRS to

control its effects on foreground tasks. GPFS [23], Lustre [24],

Panache [10] as well as Zebra [13] perform prefetching for

large files but only once the file has already been accessed

sequentially. In contrast to these prefetching solutions, DYRS

migrates blocks before they are accessed, making full use of

the jobs’ lead-time. Alluxio, formely Tachyon [15], allows

users to manually load inputs into memory. However, it cannot

perform load balancing or effectively select replicas to migrate.

DYRS solves these problems and its API allows migration to

fully exploit the lead-time.

VII. CONCLUSION

We have presented DYRS, a migration scheme for cold

data that is bandwidth aware. DYRS’ design incorporates

methods that address the performance characteristics of pro-

duction clusters. Experimentally, we have shown that despite

bandwidth heterogeneity, DYRS accelerates Hive queries by

up to 48%, and by 36% on average; jobs in a SWIM trace-

based workload experience a speedup of 33% on average; sort

jobs are sped up by up to 20%. These benefits are due to

DYRS’ ability to quickly adapt to changes in the amount of

residual bandwidth on nodes and to optimize the placement of

migrations to eliminate stragglers.
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