CaSym: Cache Aware Symbolic Execution for
Side Channel Detection and Mitigation

Robert Brotzman, Shen Liu, Danfeng Zhang, Gang Tan, Mahmut Kandemir
Department of Computer Science and Engineering
Pennsylvania State University
State College, PA
{rcb44, sxl463, zhang, gtan, kandemir} @cse.psu.edu

Abstract—Cache-based side channels are becoming an im-
portant attack vector through which secret information can
be leaked to malicious parties. Previous work on cache-based
side channel detection, however, suffers from the code coverage
problem or does not provide diagnostic information that is
crucial for applying mitigation techniques to vulnerable soft-
ware. We propose CaSym, a cache-aware symbolic execution
to identify and report precise information about where side
channels occur in an input program. Compared with existing
work, CaSym provides several unique features: (1) CaSym
enables verification against various attack models and cache
models, (2) unlike many symbolic-execution systems for bug
finding, CaSym verifies all program execution paths in a
sound way, (3) CaSym uses two novel abstract cache models
that provide good balance between analysis scalability and
precision, and (4) CaSym provides sufficient information on
where and how to mitigate the identified side channels through
techniques including preloading and pinning. Evaluation on a
set of crypto and database benchmarks shows that CaSym
is effective at identifying and mitigating side channels, with
reasonable efficiency.

Keywords-side-channels; symbolic execution; cache

I. INTRODUCTION

Side-channel attacks exploit information gathered from
the physical implementation of computer systems to steal
sensitive data. Among all side channels, side channels re-
sulting from shared data/instruction cache have shown to
be extremely effective. The first cache-based attacks on
crypto systems learn AES [1], [2] and RSA keys [3] by
analyzing the timing variance due to cache usage of the
victim, assuming the attacker shares the L1 cache with the
victim. More realistic attacks have recently emerged showing
the practicality of various timing attacks using the shared
CPU cache, including the last-level cache. For example, in
a multi-tenant cloud system, cache-based timing attacks are
shown to be a potential risk across VMs [4], [5], [6] and
across isolated applications in secure enclaves [7]; more
evidence is emerging showing practical timing attacks that
break crypto systems [8], [9], [10].

To counter cache-based side channels, developers of popu-
lar cipher implementations (e.g., RSA and AES in OpenSSL
and Libgcrypt) have been manually identifying side chan-

nels and patching their software with counter measures.!
However, the manual process often misses important side
channels, as evidenced by recent discoveries of new side
channels in crypto implementations [11]. Furthermore, the
highly-specialized patches by crypto developers are of little
help for non-experts to fix side channels in other crypto
implementations and other security-sensitive applications.

Previous work has made good progress in automatic
detection of cache-based side channels. Example systems
include CacheAudit [12], [13] and CacheD [11]. While those
systems have successfully identified side channels in real-
world programs, they still face a couple of limitations.

First, although some of the work based on symbolic
execution (e.g., [11]) naturally offers counterexamples that
represent program executions that exhibit the identified side
channels, they only explore one or multiple dynamic exe-
cution paths and suffer from the problem of code coverage.
That is, they are unable to detect side channels in unexecuted
code, and side channels due to branches conditioned on
confidential data. Some systems [12], [13] use abstract
interpretation, which covers all program paths. But they
do not show developers where the side channels are and
why they are side channels. More importantly, such missing
information could be used to construct mitigations that fix
the identified side channels.

Second, an adequate cache model is important for
language-based analysis. To detect cache-based side chan-
nels, one approach is to directly check the existence or
absence of data in the cache via architecture-dependent
cache models (e.g., [12]). But the unpleasant consequence is
that the security guarantee offered by those systems becomes
architecture-dependent, and reasoning on concrete cache
models is typically costly. Other systems (e.g., [13], [11])
check that the entire trace of accessed memory addresses is
secret-independent, without using a concrete cache model.
However, doing so can be too conservative. For example,
AES implementations with preloading still exhibit key-
dependent memory accesses, but they are secure since all

ISee Section 5 of [2] for a discussion of common counter measures used
in crypto implementations.

key-dependent memory accesses will result in a cache hit
with preloading.

In this paper, we propose a novel framework, called
CaSym, for detecting and mitigating cache-based side chan-
nels. CaSym tackles the aforementioned limitations via the
following components.

o Cache-aware symbolic execution (Section V). CaSym
takes a program in a compiler IR (specifically, LLVM
IR) as input and performs symbolic execution to track
both program and cache states. The symbolic state
produced by CaSym’s symbolic execution is used to
construct a formula fed to an SMT solver. A satisfying
solution to the formula produces public values as well
as two sensitive values that demonstrate the existence
of a cache-based side channel: those values trigger two
program executions that result in different cache states.
Unlike previous work that uses symbolic execution
for detecting cache-based side channels [11], CaSym
overestimates all program paths and therefore does not
suffer from the code-coverage problem. CaSym soundly
translates loops into loop-free code before performing
symbolic execution (at the cost of some precision loss).

e Cache models (Section VI). For generality, CaSym takes
any cache model that defines two operations (initialize
and update) and an equality test. Besides the concrete
cache models (such as LRU) used in previous work,
CaSym also employs two novel cache models: the
infinite cache model and the age model. Unlike other
existing models, they hide implementation details and
provide good balance between precision and generality.
The infinite cache model represents an optimistic view
of cache: if there is a side channel under the this
model, then the side channel likely will exist in other
more realistic cache models. The age model represents
a pessimistic view of the cache: if there is a side
channel under this model, then the side channel likely
will exist in some realistic cache models. Compared
with concrete cache models (e.g., LRU), the infinite
cache model and the age model offer significantly better
scalability and comparable precision.

o Localizing and fixing side channels (Section VII). From
the counterexample (i.e., values that trigger two pro-
gram executions that result in different cache states),
CaSym utilizes the solver solution to localize the causes
of the identified side channels and reports the problem-
atic program points. From those problematic program
points, mitigation mechanisms, such as preloading and
pinning, can then be applied to eliminate those side
channels in a straightforward manner.

We have applied CaSym on a set of crypto benchmarks
using both symmetric and asymmetric ciphers as well as
database benchmarks (Section IX). The experiments con-
firmed that CaSym can identify known side channels in these

void Example () {

... // computing RK[0..3] from key
RK[4]=RK[0] "Sbox[(RK[3] >> 8) & OxFF];
res = res x res;
res = res % mod;
if (bit_set_at_1i(key[0],1i)) {

res = base x res;

res = res % mod;

Figure 1: Example program composed of snippets of real
code which demonstrate the two kinds of side channels.

benchmarks, report precise information about where the side
channels are and why they are side channels, as well as
verify that some benchmarks are side-channel free (based
on realistic attack and cache models). We also present new
vulnerabilities, which to the best of our knowledge have
not been found before in the glibc library code and the
PostgreSQL database.

II. BACKGROUND INFORMATION
A. Cache-based side channels

Side channels are information channels that were not
intended to convey information. These come in many forms,
such as timing, power consumption, network traffic, etc. In
this paper, we consider cache-based side channels. Fig. 1
illustrates two kinds of cache-based side channels: secret-
dependent array accesses and secret-dependent branches?.

A secret-dependent array access occurs when the value
of the index into an array is dependent on secrets. In this
case, given two different secret values, different memory
addresses will be loaded, causing different data to be stored
into or evicted from cache. For example, line 3 in Fig. 1 is a
secret-dependent array access, since the index into Sbox is
part of the round key. The round key in AES can reveal the
decryption key. Such vulnerabilities have led to real cache-
based side channel attacks on AES (e.g., [14], [2], [15]).

A secret-dependent branch occurs when the outcome of
a branch condition depends on secrets. In this case, given
two different secret values, different branches can be taken,
causing different data to be stored into or evicted from
cache if branches have different memory access patterns.
For example, the branch condition at line 6 in Fig. 1 is
secret dependent since the outcome depends on the i-th bit
of key[0]. Only when the i-th bit is set, variables res,
base and mod are accessed. Such vulnerabilities have led to
real cache-based side channel attacks on RSA and ElGamal

(e.g., [91, [10D).

2 Although the code is highly simplified, the code is composed of real
code from cipher implementations: lines 2 to 3 resembles a snippet of the
AES implementation in mbed TLS, and lines 6 to 10 resembles a snippet
of RSA implementation in Libgcrypt.

In summary, this paper targets cache-based side channels:
information leakage due to cache variants depending on
confidential data. Informally, a program is free of cache-
based side channels, if secrets in a program do not influence
the cache state. We note that while much work has been done
on timing channels in general (e.g., recent work of [16],
[171, [18], [19]), most of them model execution time as a
function of the number of instructions being executed. Since
such a simplified timing model ignores the effect of cache
on timing, they do not detect cache-based side channels.

B. Threat model

We consider an attacker who shares the same hardware
platform with the victim, a common scenario in the era
of cloud computing. The attacker has no direct access to
the memory bus. Hence, he cannot directly observe the
memory access traces from CPU. However, we assume the
attacker can probe the shared data cache state, in order
to detect whether some victim’s data is in cache or not.
This model captures most cache-based side channel attacks
in the literature, such as an attacker who observes cache
accesses by measuring the latency of the victim program
(e.g., cache reuse attacks [20], [21], [22], [14] and evict-
and-time attack [2]), or the latency of the attacker’s program
(e.g., prime-and-probe attacks [2], [15], [21], [8], [10]).

Based on at which point of the victim’s program the
attacker may probe the shared cache, there are two kinds of
attackers (here, we follow the terminology used in [12]%):

¢ access-based: when an attacker can probe the cache
(i.e., determine if data are in cache or not) only upon
the termination of the victim program.

« trace-based: when an attacker can probe the cache after
each program point in the victim program.

III. RELATED WORK

We next discuss related work on identifying and mitigat-
ing cache-based side channels.

Detecting and mitigating cache-based side channels:
CacheAudit [12] and its extension [13] statically provide
an upper bound of cache-based information leakage in a
program. To do so, they abstract concrete cache states and,
on top of that, estimate all possible final cache states using
abstract interpretation. While a sound estimation of leakage
bound is very useful for estimating the severeness of side
channels in a program, such a leakage bound provides little
insights on how to fix the side channels.

Recent work of CacheD [11] takes a concrete program
execution trace as input and symbolizes secret values during
a symbolic execution to identify secret-dependent memory
accesses. Since all values except secrets are concrete in the

3The work [12] also considers a time-based attacker, who may only
observe the overall execution time of victim program. We do not consider
this model since it is weaker than cache-probing attacks we consider in this
paper.

analysis, CacheD is likely to be more precise than a static
program analysis (i.e., have fewer false positives). However,
CacheD explores only the same execution path as the input
dynamic trace. Hence, vulnerabilities in the unexplored code
or those that are due to secret-dependent branches cannot be
detected by CacheD.

Moreover, we note that those analyses work on binary-
level code, while CaSym works on IR-level code. Low-
level details, such as memory allocation, could make a
binary-level analysis more accurate. For example, the work
by Doychev and Kopf [13] shows that some optimization
level of gcc removes a side channel that shows up with
other levels. However, using low-level details also makes the
security guarantee compiler-dependent, which is undesirable
for crucial software such as cipher implementations.

Some work uses program transformation to equalize the
memory access pattern of secret-dependent branches, either
by padding those branches to follow similar memory access
patterns [23], [24] or rewriting those branches to be sequen-
tial programs [25], [26]. However, such mechanisms do not
handle secret-dependent array accesses, which are the root
cause of attacks on AES (e.g., [11], [2]).

Zhang et al. [27] propose a timing contract that enables
a software-hardware co-design for mitigating cache-based
side channels. Based on the contract, they show that full-
system security can be enforced by a sound type system
as well as contract-aware hardware. Their system requires
specialized hardware, while our analysis identifies potential
side channels on commodity hardware.

Detecting other kinds of timing channels: Prior work
also uses static analysis to detect information leakage via
program execution time. However, they are largely orthog-
onal to this paper: their timing model ignores the effects of
cache, the root cause of cache-based side channel attacks.

For example, recent work [16], [17] applies symbolic
execution to synthesize concrete public inputs that lead
to maximum leakage via timing channels. However, their
analyses do not model the effects of cache; execution time
is modeled as the number of instructions being executed.

Chen et al. [19] prove e-bounded noninterference for a
program with regard to observable attributes such as execu-
tion time, memory usage, and response size. Blazer [18] has
a similar goal, but it uses a novel decomposition technique
to break a program up into partitions. However, these works
only handle side channels whose effects can be modeled as
a constant “cost” for each instruction. But an accurate mod-
eling of cache requires more expressive power in program
analysis.

OS- and architecture-level techniques: To mitigate
cache-based side channels, one direction is to either physi-
cally or logically partition the data cache. At the OS level,
Raj et al. [28] statically partition the last level cache into
regions and allow VMs to use different regions by parti-
tioning physical memory pages accordingly. Shi et al. [29]

Fixed

Localize & Fix

Code

Vulnerabilities
Satisfiable

Source Clan LLVM Cache
Code 9 IR Analysis

Cache) No Cache-Based
Formula (Solver Side Channel

Unsatisfiable

Figure 2: System flow of CaSym.

show that dynamic page coloring helps to establish strong
isolation between different applications in terms of cache
usage. StealthMem [30], [31] manages a set of locked cache
lines per core, which are never evicted from the cache, and
efficiently multiplexes them so that each VM can load its
own sensitive data into the locked cache lines. Cache par-
titioning has also been explored at the hardware level [20],
[32], [33], [34]. Some other previous work explores injecting
noises to the timing signal, such as Diippel [35] at the system
level, as well as RPCache [32], Newcache [36], and random
fill cache [37] at the hardware level.

IV. SYSTEM OVERVIEW

Fig. 2 depicts the system flow of CaSym. It takes the
source code of the input program and uses LLVM’s front
end, Clang, to convert the program into LLVM IR code.
CaSym then performs cache analysis on the IR code to build
a cache formula (verification condition) that represents how
the program manipulates the cache state. The formula is fed
to an SMT solver. A satisfiable answer of the formula means
a side channel. In this case, CaSym uses the solution from
the solver to localize the error and report it; this information
can then be used for mitigation. An unsatisfiable cache
formula means no cache-based side channel exists in the
input program.

CaSym’s cache analysis is based on symbolic execution.
At a high level, the symbolic execution takes an input
program and outputs a symbolic state that models how the
program relates the program’s initial program and cache
states to its final program and cache states.

To discuss the process more formally, we introduce some
notation used throughout this paper. Assume the input
program has n program variables, X; to X,, as well as
some arrays with statically known sizes (e.g., A[16] and
B[1024]). We use small-case letters x; to x, for logical
variables that represent the symbolic initial values of X;
to X,,.* Therefore, at the beginning of the program, we
have X1 = z1 A ... A X,, = x,. At the end of the
program, the final values in X; to X,, may have changed and
are represented as symbolic expressions that may contain

“4For scalability, CaSym does not track symbolic values in arrays; more
discussion on this later.

occurrences of x1 to x,,. As an abbreviation, we write T for
x1,...,%, and X for Xq,..., X,,.

We use ¢ to represent symbolically the initial cache
state and C' for an implicit variable that tracks the current
symbolic cache state; initially, C' = ¢ and at the end of the
program the cache state C' is a symbolic expression that may
contain occurrences of ¢ and x; to x,,.

According to the input program’s semantics, CaSym’s
symbolic execution then builds a formula that represents the
final program and cache states, using the initial program and
cache states (T, c):

o(Z,c, X,C)

Assume at the beginning of the program, K is a set of
secret variables whose values should be protected from side-
channel attacks.> A variable not in K is considered a public
input whose value does not need protection. Informally, a
program is free of side channels if Ky has no influence
on the final cache state C. Following the definition of
noninterference [38], we formalize the verification condition
for cache-based side channels as follows.

Given formula o and Ky, CaSym issues the following
verification condition to an SMT solver:

VC(o, Ko) = 37,2/, X, X", ¢c,c,C, C,
(VX € Ko,z =2') AN(VX &€ Ko,z = 2)
Ne=c No(T,e,X,C)No(z!,d, X, C")
/\ﬁeqC(Ca C/)

(D

For the special case when Ky = {X7}, the formula requires
X1 # 2y ANz = b A Az, =) de., two different
values for X and the same value for other variables. When
equation (1) is satisfiable, then it is possible to run the
program twice with two different secrets, the same public
inputs, and the same initial cache state, and get two different
final cache states C' and C’. That is, by observing the final
cache state, an attacker can learn information about the
secret.

Compared with previous work based on abstract inter-
pretation [12], [13], a benefit of checking the verification
condition above is that a solution of equation (1) leads to
two program executions that exhibit the existence of side

SNote that our implementation also allows marking a fixed-size array as
the secret (e.g., the key array in the example of Fig. 1).

channels: in this case, the SMT solver produces two different
secret values, which serve as the witness of the identified
side channel(s). CaSym then uses an error localization algo-
rithm to diagnose the witness (i.e., two program executions)
to pinpoint the problematic program points that cause the
side channel(s) in the source code.

On the other hand, when the formula is unsatisfiable,
we are assured that there is no cache-based side channel
in the given environment: regardless of which secret values
are chosen, the cache state does not change. We note that
this property is essentially a cache-aware variant of nonin-
terference [38], which states that confidential data cannot
influence public outputs (i.e., cache states).

V. TRACKING CACHE STATES

In this section, we discuss how CaSym performs symbolic
execution to go from the input program to the formula
o(Z,c, X, C) that relates the initial program and cache states
to the final program and cache states. As in all symbolic-
execution systems, CaSym’s symbolic execution is based on
program paths. For each path, CaSym computes a symbolic
state (including cache state) at the end of the path. For
a loop-free program, CaSym considers every path in the
program and combines the symbolic states of all paths into a
single formula. Moreover, for programs with loops, CaSym
uses novel language statements and a transformation that
soundly converts the loops into loop-free counterparts before
performing symbolic execution.

Note that since CaSym considers all paths, its symbolic
execution is similar to strongest postcondition calculation in
Hoare Logic [39]. However, since CaSym soundly converts
loops into loop-free counterparts before symbolic execu-
tion, verification in CaSym does not require explicit loop
invariants, which is required in traditional postcondition
calculation in Hoare logic.

A. Loop-free programs

A loop-free program has a finite number of paths. For
a path ¢, symbolic execution computes a symbolic state
0i(T,c, X, C) at the end of the path. For a finite number of
paths, CaSym could combine the symbolic states of all paths
through disjunction; however, this would not be scalable.
Therefore, after discussing how CaSym performs symbolic
execution on a single path, we present how CaSym shares
parts among paths to get compact formulas through path
merging.

Symbolic states: A symbolic state contains (1) the
symbolic values of program variables, (2) a symbolic cache
state, and (3) a path condition, which is a conjunction of
boolean tests performed on the path. Specifically, a symbolic
state (T, ¢, X, C) is of the following form:

X1:€1/\.../\Xni6"/\C:CE/\1,[}

where e; is a symbolic expression that represents the value
in X; and it may contain occurrences of x; to x,, (the initial
symbolic values for X; to X,,). Similarly, ce is a symbolic
cache state that represents the current cache state; ce may
contain occurrences of ¢ as well as z; to z,,. Path condition
1 may contain occurrences of x; to x,,. As an abbreviation,
we write X =€ for X; =e; A...AX,, = e,. The initial
symbolic state is

initial(Z,c, X,C) 2 X =T AC =cATrue (2)

We note that even though our goal is to track cache states,
for precision it is important to also track program states
(path conditions and symbolic values of variables). Since a
program has many paths and each path can lead to a different
cache state, the path condition in a symbolic state tells under
what condition the program produces the associated cache
state. Furthermore, tracking symbolic values of variables is
important for computing accurate cache states. For instance,
when the program accesses A[X], knowing variable X’s
symbolic value is important to model what element of the
array is being accessed.

Interface to cache models: To track how the input
program affects the cache state, CaSym needs a cache
model that specifies how the cache is affected by memory
accesses. A cache implementation makes various choices
about cache capacity, cache block size, associativity, and the
cache-replacement policy. To accommodate cache diversity,
CaSym’s symbolic execution is parameterized over a cache
model so that different cache models can be plugged into
the system. This set up also enables abstract cache models,
which abstract away certain cache-implementation details
and provide generality (we introduce two abstract cache
models in Section VI).

CaSym’ symbolic execution interacts with a cache model
through a well-defined interface. We postpone the discussion
of how CaSym’s cache models implement the interface to
Section VI. For now, it is sufficient to understand a cache
model’s interface, listed as follows:

(i) An empty cache state, written as emptyc.

(ii) A cache-update function updc(l, ce), which takes a
symbolic memory location [(discussed soon) and a
symbolic cache state ce and returns a new symbolic
cache state for the result of accessing [under ce.

(iii) An equality test eqo(ceq, cea). It holds if and only if
the two symbolic cache states ce; and ces are equal
according to the cache model.

Two kinds of symbolic memory locations are used. The
symbolic memory location for variable X is written as M X.
The symbolic location for array A at symbolic expression e
is written as M Ale]. As an example, for the program “X, =
X1&0xFF; X5 = A[X5]”, the symbolic memory location for
the array access in the second statement is MA[z &O0xFF].

E:=n|X|AX]| E®F
EG®GE|-B|Bi1ABy| By V B

Expr
BExpr B :

Stmt S == 51;5 |SKIP | X :=FE|AX|:=FE|B— S

nif E=n
e;,if £ = X; and o contains X; = ¢;

[E], =

[E1], ® [E2],,if E=FE, ® E,

Stmt S ‘ Symbolic execution result SE(S, o), assuming o is X =€ A C = ce A).
S1;.52 | SE(S2,SE(S1,0))
SKIP | o
X;=E |Xi=er Ao AXi=[E],A...AXp=en
C =updc(locs(E, o) + [MX,], ce) Ay
‘ X =eAC =updc(locs(E, o) + [MX;] + [MA[e;]], ce) A
B—S ‘ SE(S, X:é/\C:updc(locs(B,U),ce)/\(w/\[[B]]U))

Figure 3: Syntax for a path language and symbolic execution over a path.

Symbolic execution over a path: To formally present
symbolic execution over a program path, we introduce a
small path language in Fig. 3. A statement in the lan-
guage represents a list of commands in a program path.
In the language, we use n for constant numbers, X for
program variables, A for fixed-size arrays, ® for a bi-
nary arithmetic operator, and ® for a binary comparison
operator. We use “A[X] := E” for an array assignment.
“B — S” is a statement guarded by boolean condition
B; it is the single-guard variant of guarded commands in
Dijkstra’s guarded command language [40]. An if-statement
“IF B THEN S; ELSE S5” can be split into two paths:
one has “B — S;” and the other has “—B — S5”.

Fig. 3 formalizes CaSym’s symbolic execution over the
path language. Its way of tracking program states (variables’
symbolic values and path conditions) is standard in symbolic
execution. It uses auxiliary functions [E]_ and [B], to
compute the symbolic values of arithmetic expressions and
boolean expressions, respectively; we omit the standard
definition of [B],.

In addition, cache states are also tracked during symbolic
execution. We use the following notation in Fig. 3 for
tracking cache states. The cache-update function is lifted to
a list of symbolic memory locations: updc (L, ce) returns
the new cache state after accessing the list of locations
in L. We use locs(F, o) for the list of symbolic memory
locations in program expression E under symbolic state o,
and similarly locs(B, o) for the list of symbolic memory
locations in boolean expression B. We omit their straight-
forward definitions. As an example, if in o we have X = 2z,
then locs(X + A[X],0) = [MX,MA[2z]]. Fig. 3 presents
how cache states are tracked for each kind of statements.
As an example, showing how cache states are tracked, take
X,; = E, which accesses the memory locations in £ and the
memory location of X;; therefore, it updates the symbolic

cache state with those locations. Other cases are similar.

We next present symbolic execution for a toy example
“Xy = X1&0xFF; X3 = A[X5]”, starting from the initial
symbolic state.

{Xl =21 AN X9 =29 N X3 :3?3/\C:CATI‘U.6}
X2 =)(1850)(1:1:‘7
{Xl =x1 A X9 = 21&0XxFFA X3 = 23
AC = updc([MX1, MX5], ¢) A True}
X5 = A[X)]
{Xl =21 N X9 = 21&0xFFAX3 = u

ANC = updc([MA[xl&OxFF], MXg], updc([MXl, 1\/1)(2}7

ATrue}

The end symbolic cache state ¢ contains a symbolic memory
location M A[z1&0xFF]. Feeding VC(o,{X;}) to an SMT
solver would produce two different values for i, resulting
in two different cache states. This is a side channel caused
by key-dependent memory accesses.

As a note, for scalability CaSym’s symbolic execution
does not track array contents symbolically. This is why
[A[X]], produces a fresh unconstrained variable, which
implements an approximation (reading from an array returns
arbitrary values). On the other hand, when accessing A[X],
CaSym uses X’s symbolic value to capture which location
of the array is accessed and uses that knowledge to update
the symbolic cache state accurately.

CaSym employs a coarse-grained taint tracking for arrays.
This means we can use the arbitrary values stored in the
arrays and treat them as public values (when not tainted)
or sensitive values (when tainted). Therefore, two symbolic
execution traces use the same arbitrary value from a public
array (i.e. these values cannot contribute to a difference in
the cache state). This helps reduce false positives which
would occur if we considered all array values to be sensitive.

Path merging: Simply performing symbolic execution
over every path and combining the symbolic states of all

u,if E = A[X] and u is a fresh variable

c))

{X1 =21 AN Xy =29 ANC = c A True}
if (X7 >0){
{X1 =21 AN Xy =29 AC =upde([MX4],¢c) Azy > 0}
Xo = Xo +1;
{Xlazaj‘l/\Xga:xg—Fl/\Ca zupdc([MXl,MXg],c)
} /\(@ba =T > 0) A 7/)a}

else {
{X1 =21 A Xy =29 ANC =updc(MXy],¢) Ay <0}
Xo = X9 +2;
{lele ANXogp=a0+2NCpy = updc([MXl,MXQLC)
} Ay = z1 < 0) Athyp}

{((a A X1e = X1a A Xoe = Xog NCe=Cy) V
(0 A X1 = X1p A Xoe = Xop ACe = Cy)) A
(Ve = Ya V Ve =) Nbe}

Figure 4: Sample program illustrating how path merging is
handled using the infinite cache model.

paths through disjunction at the end is not scalable as it
would generate large formulas. As an optimization, CaSym
performs path merging to generate formulas that share parts
among program paths. In particular, when multiple paths
converge at a point, it merges their symbolic states by
introducing new logical variables and equations as illustrated
by the example in Fig. 4. Consider two paths with path
conditions 1, and v, the symbolic values of variables X,
and X, and the symbolic cache states C, and Cj. At the
merge point, CaSym introduces new logical variables v, X,
and C, and adds the following equalities:

V=1, V =1y 3)
(Yo AX = X AC =Cy) V (hpAX = XpNC = Cy) (4)

All equations reflect that either one of the paths could be
taken, but each case in equation (4) is further guarded by the
corresponding path condition for precision. The equation at
the end of Fig. 4 follows equations (3) and (4).

The benefit of path merging is that further symbolic
execution beyond the merge point can just use the newly
introduced logical variables (1), X, and C in the equations
above); so all the paths beyond the merge point share the
logical variables and equations, resulting in compact logical
formulas. We also note that CaSym’s implementation takes
a control-flow graph as an input and treats every node with
more than one adjacent predecessor in the graph as a merge
point; as a result, new logical variables are introduced and
path merging is performed before every node in the graph
with this characteristic.

We note that our path mering is similar to those proposed
in [41], [42] (though they do not consider merging cache
states). We could further optimize the formulas by applying

techniques in [43], [44], which selectively use path merging
when it is adventurous to do so; but we leave that as future
work.

B. Compositional reasoning

The cache-aware symbolic execution sketched above only
handles programs with a finite number of execution paths.
However, practical software usually have an unbounded or a
large number of execution paths, making symbolic execution
infeasible or inefficient. To tackle such a challenge, we
introduce two novel statements to enable compositional
reasoning

Stmt S = ...|reset | check K

The “reset” statement resets the current symbolic state to an
arbitrary initial symbolic state; “check K™ directs CaSym
to issue a verification condition to a solver based on the
current symbolic state, assuming only the secret-variable set
K carries confidential data at the last reset. The rules for
performing symbolic execution over them are shown below:

SE(reset, o) = initial(z/, ¢/, X, C)
SE(check K, 0) = o, and issue condition VC(o, K)

The definitions of initial(z/, ¢/, X, C) and VC(o, K) were
given earlier in equations (1) and (2). Note that we use 2’
and ¢’ to distinguish them from the initial state of symbolic
execution.

The introduced “reset” and “check K statements have
several benefits:

Flexibility: The check and reset statements allow
CaSym to flexibly decide where to reset to the initial
state and where to check for cache-based side channels.
For example, by turning S into “reset;S;check K,”, we
tell CaSym to perform symbolic execution from the initial
symbolic state and perform the side-channel check at the
end, assuming that the initial secret variables are in K|
and an attacker observes the cache state only at the end
of the program. As another example, when “S = S7;.55”
and the attacker can observe the cache state in the middle
and at the end, we can perform symbolic execution over
“reset; S1; check Kj; So;check Ky, which triggers two
side-channel checks. In the most extreme case, a check
can be inserted at every control-flow point in the program,
corresponding to what a trace-based attacker can observe
(discussed in Section II-B).

Scalability: The new statements also enable compo-
sitional, scalable reasoning. Suppose performing symbolic
execution over the entire program S produces a large for-
mula at the end. Feeding the formula to an SMT solver may
not be feasible given the amount of time that is needed to
solve the formula. One way of reducing the time pressure
is to break S into two parts and check them individually.
Suppose S = S1;.S2, we can then turn it into

reset; S1; check Ky;reset; So; check Ky

The first check verifies that S; is free of cache-based side
channels; that is, running S; twice with two different secrets
and the same initial cache states results in the same cache
states. After this check, we can reset the symbolic state and
perform symbolic execution on S, and the check after S5
verifies that running So twice with different secrets and the
same initial cache states results in the same cache states.
This is a rely-guarantee reasoning since, when checking Ss,
it relies on the assumption that the initial cache states are the
same and the assumption is discharged by the verification
on S;. The compositional reasoning is more scalable than
checking S7; 52 as a whole, since the reset in the middle
throws away the symbolic state. However, it may cause false
positives when checking S5 due to the loss of information.

One complication in the above process is that the two
check statements are with respect to two separate secret-
variable sets: the first check assumes K is the secret-
variable set at the beginning, while the second check as-
sumes K7 is the secret-variable set at the point between
S1 and S;. The two sets might be different; for instance,
Ky might be {X;}, and, if S; copies X; to X, then
the set of secret variables after S; becomes {Xi, Xs}.
In general, the set of secret variables may change due to
secret propagation in a program. To soundly estimate the
set of secret variables, CaSym has a static taint tracking
component, which takes initial secret variables and outputs
the set of secret variables at each program location. This was
implemented by a standard flow-sensitive dataflow analysis
in LLVM. With the result of this analysis, CaSym knows
the secret-variable set at each location, including K.

C. Transforming loops

Symbolic-execution systems for bug finding only explore
a limited number of paths. Hence, they do not guarantee a
coverage of all paths for programs with loops. With the help
of the new statements introduced in Section V-B, CaSym
transforms programs with loops into loop-free programs.
Specifically, the transformation works as follows:

Sy; (WHILE B DO S); So
=
S1; check Ky;reset;
(IF B THEN (S;check K;) ELSE SKIP);
reset;
-B — SQ

This transformation is sound (i.e., the original program
is side-channel free whenever the transformed one is) since
the loop-free program enforces the following invariant in
the original program: any two executions of .S starting from
the same initial cache state results in the same final cache
state. From the Hoare logic point of view, this is the cache-
state loop invariant checked by CaSym. Note that this is
performed with respect to K, the set of secret variables right
before the loop body S (this is determined by tracking how

values of secret variables propagate in the original program,
as discussed before).

To see why the invariant is enforced, the first check makes
sure that the initial cache states are identical before the loop
(i.e., S7 is side-channel free). After that, the symbolic state
is reset. Hence, statement (check K) ensures that there is
no side channel for the loop body starting from any memory
and cache state. After checking the loop body, the symbolic
state is reset again so that the verification of Sy assumes
nothing after the if statement, which semantically represents
the memory and cache state after zero or one loop iteration.
After that, =B can be assumed when checking Ss.

In theory, the transformation may cause some false pos-
itives. For example, the transformation assumes nothing on
the initial memory and cache state before each iteration,
which may cause false positives. But in practice, we have
found only one false positive due to the transformation in
database systems (Section IX). Moreover, when a loop has
a constant number of iterations, we can also unroll it for
better precision.

VI. CACHE MODELS

CaSym takes a cache model and identifies potential side
channels based on it. In principal, it can take any cache
model with sufficient abstractions in place: the empty cache
state, the cache-update function, and the equality-testing
function. In this section, we introduce two novel abstract
cache models: the infinite cache model and the age model.
We also discuss how to support more concrete models, such
as the LRU model, used in previous work.

A. Abstract vs. concrete cache models

Concrete cache models (e.g., LRU, FIFO, PLRU models
used in [12]) accurately model details such as the replace-
ment policy of the expected architecture that a program will
be executed on. While such detailed models allow accurate
reasoning about the cache state (i.e., existence or absence of
data in the cache), one downside is that the verified programs
are secure only on those expected architectures. For example,
a crypto implementation that is side-channel-free on cache
with LRU might have side channel on cache with FIFO.
Moreover, reasoning over a concrete model likely will cause
scalability issues for static program analysis.

Another approach is to use a higher-level abstraction, such
as the entire trace of memory accesses [13], [11]. Doing
so is architecture-independent and sufficient since in all
realistic architectures, cache state is determined by the trace
of memory accesses. However, this approach may be too
conservative, since the footprint of secret dependent memory
accesses might be erased by later accesses before an attacker
probes the cache.

We propose two novel cache models that offer good
balance between precision and generality. The infinite cache
model represents an optimistic view of the cache: if there

is a side channel under this model, then the side channel
likely will exist in realistic cache models (i.e., they are
high-priority side channels that may show up on most
architectures); the age model represents a pessimistic view
of the cache: if there is a side channel under the this model,
then the side channel likely will exist in some realistic cache
model (i.e., they are low-priority side channels that may
show up on some architectures). Empirical results suggest
that the infinite cache model and the age model achieves
a good balance between analysis scalability and precision
(Section IX).

B. Infinite cache model

This is an idealized cache model with an infinite size
and associativity, so that it never evicts any data that is
already being cached. This is clearly idealized, but it is also
interesting since it represents an optimistic view of cache:
if there is a side channel under the infinite cache model,
the side channel likely will exist in other more realistic
cache models. Moreover, it is the (conceptual) model that
cryptography software writers have in mind when they apply
software countermeasures to cache-based side channels. One
example is preloading in cryptography software, which we
detail in Section VII-B1. Furthermore, empirical results
suggest that the infinite cache model offers a significant
speedup with few false negatives on both crypto systems
and database systems, compared with more conservative and
realistic cache models.

In the infinite cache model, a cache state is represented as
a set of symbolic memory addresses for program variables
and array elements.

o The empty cache is the empty set: emptyc = {}.

o The cache-update function is implemented as set union:

updc(l, ce) = {1} U ce.

« The cache-equality testing becomes set equality:

eqc(cer, cea) =Vl € ceq > 1 € cey

To see why this model is more optimistic than other more
realistic models, we note that ce; and ce, are different only
if there is some address [that is accessed in one execution
but not in the other, starting with different confidential data.
Except for a fully-associative cache, that implies if the com-
piler maps [to some cache set and maps all other addresses
to other cache sets, most cache replacement policies will
result in a difference in the cache set that [gets mapped to.
Hence, this model gives a “lower bound” on side channels
among various cache models.

C. Age model

Unlike the optimistic infinite model, the age model is on
the pessimistic end: for each symbolic memory location,
it tracks the distance to its most recent access, called the
age. The recently accessed location has age zero, while the
second recently accessed location has age one, and so on. In

this model, a cache state is a map from symbolic memory
locations to their ages:

o The empty cache maps all memory locations to infinity:
emptyc = Al. oo.

o The cache-update function marks the current location’s
age to be zero and increments other locations’ ages by
one: updg(l, ce) = X', if I’ =1 then O else ce(l’) +1

e The cache-equality tests equality of ages:
eqe(cer, cea) = Vi, cer(l) = cea(l).

The age model is the opposite of the infinite cache model:
while the infinite cache model may miss (less crucial) side
channels that only manifest themselves for some particular
caches, the age model captures all potential side channels
for most caches.

Property 1. If there is no cache-based side channel on the
age model, then there is no cache-based side channel for any
cache replacement policy that replaces cache lines based on
the most recent accesses, such as LRU.

To see why, we note that the final cache expression ce
tracks the sequence of the last access to each memory
address. For any cache replacement policy that depends only
on the latest usage of memory addresses, such as LRU,
it implies that the final cache state can be expressed as a
function of ages. Hence, eqc(ceq, ces) implies the same
cache state under those policies.

For a trace-based attacker, a stronger result holds:

Property 2. For a trace-based attacker, no cache-based
side channel on the age model implies no cache-based side
channel for any deterministic cache replacement policy (i.e.,
a replacement policy that can be expressed as a function of
memory address traces), such as FIFO and LRU.

The reason is that there is a one-to-one mapping between a
sequence of ages (for all symbolic locations), and a sequence
of memory locations being accessed. Consider a sequence
of ages A = {cey,cea,...,cen} as well as a sequence of
memory locations being accessed, say T = {t1,ta,...,tn}-
Then, we can construct A from 7" as follows:

ce; = Al. if t; =1 then O else ce;—1(1) + 1

Also, we construct 7" from A as follows: t; = L iff ce;(1) =0
(note that exactly one [in ce is O at any program point).

D. More concrete models

While our infinite cache and age models are capable of
detecting side channels, we show how to enrich a cache
model in CaSym if more cache details (such as cache line
size, associativity and replacement policy) are needed for
precision reasons.

Cache line size: To model cache lines, we simply
take the index into the array and compute the cache-
line-granularity location being accessed. More specifically,
suppose that an integer array A is aligned and location

A[X] is being accessed and x is the symbolic value of
X. We simply use (z/LINESIZE) as the location [in
the updc(l, ce) interface to the cache models above, where
LINESIZE = 64/4 = 16 assuming 4-bytes integer and
64-bytes cache line.® Note that cache line size only affects
array accesses, since the memory layout for other variables
are unknown at the IR level.

Cache associativity: To model cache associativity, we
model the cache state ce as a collection of non-overlapping
cache sets (i.e., ce = [¢1, o, . . ., cw]). The empty cache and
equality test on ce is simply the lifted definition of those
on each cache state. For the update function, let way be a
function that maps an array index to the corresponding cache
set (the definition of way depends on cache configuration),
then the following formula illustrates how the new cache
state would be computed when an array is accessed.

updc(MA[X], ce) = upde(M A[X], ce[way(X)])

LRU replacement: In the LRU model, the cache state is
still modeled as a map from symbolic memory locations to
their ages. The empty cache and the cache-update function
remain the same as the age model. The cache-equality test,
however, is changed to

eqc(cer, ces) =V, cer(l) < n + cea(l) < n.

to reflect the fact that if [is in the final cache state or not.
Here we assume n is the cache size.

VII. LOCALIZING AND MITIGATING SIDE CHANNELS

As discussed so far, satisfiable constraints at a certain
program point suggest potential side channels. Although
such a binary decision helps to some extent, one novel
feature of CaSym is the ability to help programmers localize
the cause of the identified side channels as well as to mitigate
them.

A. Localizing side channels

To localize and explain the causes of the identified side
channels, we leverage the key information generated by the
SMT solver: a model of constraints. A model consists
of the concrete values for each constraint variable in the
inequality test ~(eqc(cer, cea)). According to the way that
the formulas are built, a model consists of two sets of values
(one used by ce; and one used by ces) that will lead to
different cache states. We refer to those two value sets as My
and M5 respectively. Our localization algorithm proceeds in
two steps.

5The computation assumes row-major layout for arrays. Column-major
layout can be handled in similar way.

Compute shared path: We first use M; and M to
reconstruct two execution paths taken according to the model
reported by the solver. This is possible since CaSym keeps
track of the path condition for each basic block. Given
M and M,, we can tell which basic block is in a path
by checking the validity of its path condition. Based on
that, we compute the shared blocks between them. Finally,
we traverse the control flow graph in topological order to
recover a path of those shared blocks. We call the path the
shared path, denoted by SP.

Discover divergence: In the second step, we first find
all symbolic addresses which are different in the final cache
states. That is, we use M; and M5 to find addresses such
that they make a difference between ce; and ces. Intuitively,
these are the problematic memory addresses that we need to
localize the error cause for each of them.

For each problematic memory address [, the localization
algorithm reports the first point in S P, say an instruction c,
so that the abstract cache states of [are different for the next
point in S'P, but are identical for the previous point in SP.
Such an instruction is reported as the root cause of the side
channel at [. Note that when multiple addresses may cause
side channels, our algorithm reports multiple instructions in
a program, following the same procedure for each [that
causes a difference between ce; and ces.

Example: Fig. 1 shows a simple example with two side
channels. For the final cache state, an SMT solver reports
a model where RK[3] = 256, key[0] = 255 in value set
My and RK[3] = 0, key[0] = 0 in value set M. Based on
the model and tracked path conditions in the control flow
graph, the localization algorithm constructs a shared path
consisting of the blocks in grey, shown in Fig. 5.

In this example, the final cache state differs for several
symbolic addresses, including Sbox [0], base and so on.
For the address Sbox[0], the first point in the shared
path that ce differs between the two execution paths is
after the assignment RK[4]=RK[0] "Sbox [(RK[3] >>
8) & OxFF, which is the correct location to blame for
the cache difference of address Sbox [0]. For the address
base, the first point in the shared path that ce differs
between the two execution paths is after the branch con-
dition bit_set_at_i (key[0], i). This is the correct
location to blame as well, since the secret dependent branch
caused cache difference. For other problematic addresses,
the localization algorithm points to those two problematic
instructions as well in this example.

B. Fixing side channels

The localized causes of side channels enable a program-
mer or a compiler to fix the identified side channels. We
explore two commonly used techniques for cache-based
side channel mitigation in this section and show how the
localized error causes facilitate error fixing.

RK[4]=RKI(] ...;
res = res * res
res = res % mod

bit_set_at_i

True

False

res = base * res;
res = res % mod

exit

Figure 5: Shared path computed from the model generated
by the SMT solver for the code in Fig. 1.

1) Preloading: Preloading eliminates cache-based side
channels by loading certain memory addresses before the
vulnerable instructions [2], [45]. It is typically used in AES
implementations, where all SBox tables fit in cache. In
AES, those tables only contain public data, but indexes
used to access the tables are key-dependent, which enables
an attacker to infer the key based on the footprints of the
AES implementation on cache [14], [2], [15]. This is similar
to the code in Example 1. To mitigate such attacks, AES
implementations preload the entire lookup tables into the
data cache before the actual encryption/decryption. That is,
they insert code that accesses every table entry to ensure
all table data are in the cache before encryption/decryption
starts. Hence, even if there are key-dependent table look-
ups, they will not affect the cache state as long as all table
entries are already in the cache initially and they are not
evicted during encryption/decryption.

2) Pinning: Pinning prevents cache misses on the data
that is explicitly “pinned” in a program. For instance, this
feature can be implemented in a customized cache, where
a cache entry with the “pin” bit set is never evicted [32];
it can also be implemented on some commodity hardware
with Hardware Transactional Memory (HTM) [46]. Com-
pared with preloading, pinning provides extra assurance
that pinned data will not be evicted until it is explicitly
“unpinned” in the program. Previous work has shown that
pinning can be use to defend against cache-based side
channels [32], [46].

3) Fixing side channels: To support preloading and pin-
ning, CaSym introduces special instructions in the form of
PRELOAD [and PIN [/, which semantically preload/pin the
corresponding symbolic addresses into cache (when [is an
array, the instruction preloads/pins all elements in the array).

The localized root causes of side channels makes it

straightforward to insert needed preloading/pinning instruc-
tions to remove side channels: if the vulnerable point for
memory address ! is an instruction ¢, then preload/pin [
before ¢ will remove the counterexample found by the SMT
solver. For example, preloading/pinning the entire SBox
table right before its vulnerable point at line 3 in Fig. 1
as well as preloading base, res, mod right before their
shared vulnerable point at line 6 in Fig. 1 (found by the
localization algorithm in Section VII-A) will remove the side
channels in this program.

Although fixing side channels seems easy with the help
of CaSym, we emphasize that finding where and what to
preload/pin is nontrivial without CaSym, since identifying
what data to preload can be difficult. For example, the crucial
data in AES is the lookup table, which only stores public
information. Moreover, for preloading, fetching the data too
early may cause the data to be evicted before the vulnerable
instructions, which undermines the effect of preloading.

VIII. IMPLEMENTATION

CaSym is implemented inside LLVM [47] as a compiler
pass that performs cache analysis and error localization. It
analyzes LLVM IR code and performs symbolic execution
to build a cache formula. We use the Z3 SMT solver [48] to
check the satisfiability of the cache formula, but any SMT
solver with theories for bit-vectors and arrays could suffice.

The compiler pass of CaSym sends to the Z3 solver (in
the same process as the compiler pass) the cache formula as
an in-memory object. If the formula is satisfiable (meaning
there is a side channel), the solver generates a model
containing the assignments for the formula’s variables. Us-
ing this model, CaSym localizes the vulnerable LLVM IR
instructions. CaSym then uses the debugging information to
report the corresponding line numbers in the source program
to the user.

IX. EVALUATION

We evaluated CaSym on a set of crypto and database
benchmarks. All experiments were run on Ubuntu 14.04
in a virtual machine with 16 GB of RAM and an Intel
17-5820K CPU at 3.30 GHZ. During evaluation, we were
mostly interested in answering the following questions:

1) how effective is CaSym in identifying cache-based side

channels and how accurate are the results?

2) how efficient is CaSym and whether it can generate

useful results within a reasonable amount of time?

3) how do different cache models compare when identi-

fying side channels?

4) how well does CaSym’s error localization perform?

5) whether CaSym can validate the result after applying

prefetching or pinning to fix a side channel?

For benchmarks, we collected realistic crypto implemen-
tations from popular libraries, including Libgcrypt 1.8.1,
mbed TLS 2.6.0, and glibc 2.26. These benchmarks can be

Access Trace Access Trace

Benchmarks Infinite| Age Infinite Age Benchmarks Infinite| Age Infinite Age

LOC TP |FP|t(s) |TP |FP|t(s) LOC TP|FP| t(s) |TP|FP| t(s)
AES gcry 182|® 0.30|® 0.60 [[64 [0 [8.9 |64 [0 [16.7 advance array keys | 99|® 0.26] ©253 || 5[0 [1.33[5|0 | 9.89
AES mbed 220(® 0.14|® 0.34 [[17 [0 |59 |17 [0 [17.0 binsrch 126|v 0.06| ® 115 || 0] 0]0.46] 1 |0 | 1.90
triple-DES gery 127|® 0.06 |® 28.70([128|0 |62.5/128|0 [189 compare 174|© 1.24| © 584 || 7]/ 0]0.31| 8 | 0| 19.9
triple-DES mbed 111|® 0.12|® 22.9 [[48 [0 [27.0(48 [0 |73.2 find xtreme element| 117|v 0.38] ®2.52 (| 0 [0 [0.62| 1 [0 | 2.33
DES glibc 114|®@ 0.08|® 122.9([2 [0 [0.92]2 [0 [2.65 heap key test 118]/®0.07| ©3.47 (] 3]/0[0.33]3 |0 0.53
UFC glibc 41{v 0.01|v 0.02 ||0 |0 [0.24]0 |0 |1.27 is equal 89(®0.12|®3.80 (| 1]|0[1.68/1]0]| 1.32
sqr-alwys-mul gery| 131(® 0.20(® 0.66 [[3 [0 [18.9[4 [0 [184 mark array keys 34|v 0.01| v 0.13][0| 0]0.08{ 0| 0| 0.27
sqr-mul gery 130|® 0.25(® 0.44 [[4 [0 [82 [4 [0 [125 sort array elements | 144|® 0.81|®@ 544 || 2 |1 [4.17| 4| 1| 6.74
LR-mod-expo gery | 208|® 0.61(® 6.39 [|3 [0 [84.8]3 [0 [2618 start array keys 42(©001]{©2431([2|0043]2]0] 3.27

Table I: Evaluation results for access and trace-based at-
tackers for crypto benchmarks. For access-based results, @
means a side channel identified and v'means no side channel
identified; it also reports the amount of time in seconds for
CaSym to perform side-channel checking. For trace-based
results, the TP column identifies the number of true positives
found. Similarly FP is the number of false positives. The
third column for each models depicts the amount of time
(in seconds) for each test.

roughly divided into two categories: encryption using sym-
metric ciphers and modular exponentiation using asymmetric
ciphers. In order to evaluate CaSym on other less scrutinized
codebases, we also analyzed functions from the PostgreSQL
10.2, which is a popular database back end.

Symmetric cipher benchmarks: We include six bench-
marks: AES gcry, AES mbed (the 128-bit-key AES en-
cryption in Libgcrypt and mbed TLS respectively), triple-
DES gcry, triple-DES mbed (the triple-DES encryption in
Libgcrypt and mbed TLS respectively), DES glibc (the DES
encryption in the glibe library) and UFC glibc (the ultra fast
encryption algorithm in glibc).

Asymmetric cipher benchmarks: Given a base b, an
exponent e, and a modulus m, modular exponentiation com-
putes “b° mod m”. The majority of asymmetric encryption
such as RSA and ElGamal performs modular exponentiation.

Computing modular exponentiation directly would be
rather costly in both time and space. Libgcrypt implemented
three versions of efficient modular exponentiation, which
we call sqr-alwys-mul gcry, sqr-mul gery, and LR-mod-
expo gery. The first two versions implement the square-and-
multiply method; the main difference between the two is
that the square and multiply algorithm only performs the
multiplication when the bit being processed is set, while
the square-and-always-multiply algorithm performs the mul-
tiplication regardless of whether the current bit is set. The
final version implements the left-to-right k-ary method [49].
Following previous analysis on crypto implementations [13],
we did not analyze the code of library implementing multi-
precision integers (MPI).

Database benchmarks: The crypto benchmarks are typ-
ically well scrutinized for side channels. To see how CaSym

Table II: Evaluation results for access and trace based
attackers for the PostgreSQL database.

performs on other codebases, we consider PostgreSQL,
a popular database used by many applications. For this
database system, we treat the primary keys (identifiers for
records in a database) as sensitive, since they are commonly
account numbers, social security numbers, etc.

The entire PostgreSQL contains over 1 million lines
of code. We narrowed down the scope to a set of
functions that process likely sensitive data. In particular,
we investigated the binary tree implementation under the
/src/backend/nbtree directory. Under this directory,
there are 16 functions that use the primary key of a record.
Of those 16, 7 pass the key onto other functions without
processing it. Therefore, we evaluate on the remaining 9
functions which actually process the primary keys. The
functions are: advance arrays keys, binsrch, compare, find
xtreme element, heap key test, is equal, mark array keys,
sort array keys, and start array keys.

A. Evaluation for access-based attackers

Recall that an access-based attacker observes only the
final cache state of the victim program. Therefore, CaSym
performs the verification-condition check only at the end of
each benchmark. We evaluated benchmarks based on the two
abstract cache models: the infinite model and the age model
(we will compare the abstract cache models with concrete
cache models in Section IX-D).

Cryptography Benchmarks: Table I presents the results
on cryptography benchmarks. We note that we have removed
preloading that is present in the original AES and triple-DES
code; we will report separately the results when it is present.
UFC and DES in glibc do not use preloading.

From the table, we observe that CaSym can finish side-
channel checking rather quickly for most of the cases: all
checks under the infinite cache model finish under 1 second;
those under the age mode are slower, but all finish in about 2
minutes. Moreover, we note that the optimistic infinite cache
model gives exactly the same result as the more conservative
age model.

The side channels reported for the two AES, two triple-
DES and one DES implementations are due to key-

dependent array accesses (we discuss examples in the
next section). Side channels are also reported for the
three modular-exponentiation algorithms, since they contain
secret-dependent branches (examples in the next subsection).
These are previously known side channels and CaSym
confirms their presence.

We note that DES-glibc contains a side channel that
was newly found by CaSym; it results from key-dependent
memory accesses to a lookup table that was not preloaded
(key is the private key):

t=r"key[i + 1]; .

1"= des_SPtrans[1l][(t)&0x3f]| ...;

UFC-glibc is the only benchmark that is side channel free
with respect to the cache without extra security mechanisms.
This is because it does not use any precomputed table and
is virtually straight line code. It illustrates how different
techniques can avoid side channels.

Database Benchmarks: Table II presents the results on
the 9 functions we analyzed for an access based attacker.
Consistent with the results on cryptography benchmarks,
analysis based on the infinite cache model is more efficient:
on average, the age model takes over 100 times longer. Also,
most of the functions that we test are potentially vulnerable
to side channel attacks (examples in the next subsection).

Interestingly, there are two functions (binsrch & find
xtreme element) in which the infinite cache model missed
two positives reported by the age model. The cause is a key
dependent branch which accesses different locations but they
were previously used, and thus already in the cache. This
example demonstrates the difference of those two abstract
models: the infinite cache model is optimistic (that is, it
optimistically assumes that the loaded memory locations
were not evicted before the sensitive branch), while the
age model is pessimistic (that is, it pessimistically assumes
that the loaded memory locations were evicted before the
sensitive branch).

B. Evaluation for trace-based attackers

Recall that a trace-based attacker can observe the inter-
mediate cache states of the victim program. For each bench-
mark, we ran CaSym to perform a check on the symbolic
state after every statement (following a topological order
of the program’s control-flow graph); CaSym then stopped
at the first point where a side-channel was found. Since
CaSym’s error reporting includes the source line number
where the side channel is, we then went to that line and fixed
the problematic statement, as described in Section VII-B.
Then we applied CaSym on the fixed program to find the
next side channel. Through this iterative process, we were
able to find a set of independent side channels in each
benchmark.

Cryptography Benchmarks: Table I reports the number
of side channels identified on the cryptography benchmarks.
Similar to the results for access-based attacks, we found that

the infinite cache model is more efficient than the age model,
while they provide very close results (we discuss the only
difference in sqr-alwys-mul shortly).

We inspected the error-reporting results and manually
confirmed that for all cases, CaSym localized the side chan-
nels to the right lines and also confirmed that all reported
side channels are true side channels. It was a surprising result
considering that CaSym’s symbolic execution approximates
a program’s behavior, for example, when the program reads
from arrays; also our loop transformation could also intro-
duce false positives.

Next, we take a closer look at the positives. The side
channels CaSym found in symmetric ciphers are due to
the sbox tables being indexed by key-dependent variables
in all AES/DES implementations. Below is a representative
example from the AES Libgcrypt benchmark where encT
is the encryption table and the array index sa [0] is derived
from the key.

sal[0] = sb[0] ~ key[O0][0];
. encT[sa[0] >> (0 = 8)]

The reason why the number of side channels for symmet-
ric ciphers are high is because they contain multiple lines of
code following the same sbox table access pattern as above.

For the three modular exponentiation algorithms imple-
mented in Libgcrypt, CaSym found multiple side channels.
The side channels are due to either array accesses indexed
by the exponent bits or branches whose outcome depends
on a key. A similar situation happens for the left-to-right
algorithm (LR-mod-expo gcry). A simplified code snippet
that depicts the issue can be found in Listing 1.

if (¢ >= W) // ¢ is tainted by the key
cO = 0;

else {
el = (e >> (BITS_PER_MPI_LIMB - c));
jt=c - W}

Listing 1: LR-mod-expo Example

Interestingly, we notice that CacheD [11] reports no
side channels in Libgcrypt 1.7.3. The reason is two fold.
First, two algorithms (sqr-alwys-mul gery and sqr-mul gery)
are not used in the default configuration of Libgcrypt.
Since CacheD [11] only explores side channels exhibited
in an execution trace, side channels in those algorithms
are missed. Second, CacheD [11] does not detect side
channels due to secret-dependent branches (e.g., the side
channels in the code snippet above), since it detects cache
difference only for executions that follow the same control
flow. The example in Listing 1 confirms that CaSym avoids
the coverage issue of CacheD.

To assess false negatives, we treat the trace-based age
model result as the ground truth, since under this model,
no positive implies no cache-based side channel on most
realistic caches (Property 2). Based on the results, the only
case where the infinite cache model had a false negative

was for the square and always multiply implementation. The
relevant code snippet can be found in Listing 2.

res = res * res; res = res % mod;
temp = res * base; temp = temp % mod;
if (((1 << 31) & expo) != 0) {

s = temp;}

(
re

Listing 2: A False Negative of the Infinite Cache Model

Database Benchmarks: The results on database bench-
marks are summarized in Table II on the right. Both of our
models perform well in the trace based attacker analysis.
Again, analysis based on the infinite cache model is more
efficient than the age model, while they provide very close
results. In our evaluation, CaSym identified potential vulner-
abilities in most benchmarks.

Among all positives, we do find one false positive in
a function that sorts array elements. The false positive
presented in Table II is due to an if-statement where one
branch has a reset (due to our loop transformation) and the
other one does not. Due to the information lost from issuing
a reset, CaSym reports a side channel but in fact there is
not one at this point. This causes two different scopes to be
compared at the merge point, which causes a side channel
reported. The false positve reported by CaSym is presented
in Listing 3.
if (nelems <= 1) {

return nelems; }
elemtype = skey->sk_subtype;

if (elemtype == InvalidOid) {
elemtype = rd_opcintype[skey->sk_attno - 1];

}

last_non_dup = 0;
for (i = 1; i1 < nelems; i++) {

} // reset after loop
return last_non_dup + 1;

Listing 3: A False Positive in PostgreSQL

for (i = 1; 1 <= keysz; i++) {
datum = index_getattr (itup, attno, itupdesc,
&isNull);

result = DatumGetInt32 (FunctionCall2Coll (
&scankey->sk_func,
scankey->sk_collation, datum,
scankey—->sk_argument)) ;
if (result != 0) // result is tainted
return false; // early exit
scankey++; }

Listing 4: A True Postive in PostgreSQL

Based on the infinite cache model, our analysis was
able to detect 20 unique newly found locations in the
source code which could leak information to an attacker
about a database key. These 20 reported locations contain
both secret-dependent array accesses and secret-dependent
branches. The former usually happens when a variable is
tainted by the primary key and then used as an index in an
array. The code snippet shown in Listing 4 shows a common

Benchmarks Preloading Pinning
Infinite Age Infinite Age
TP|FP| t(s) | TP |FP| t(s) || TP|FP| t(s) | TP|FP| t(s)
AES gcry 0]0(295/64|0(17.4]| 0|0 [4.02| 0|0 [13.6
AES mbed 0]0]|1.68/17]0|17.4|{ 0|0 |2.00/ 0 |0 [9.60
triple-DES gery | 0 | 0 [84.0(128| 0 [170(| 0 | 0 {0.61] O | 0 |1.53
triple-DES mbed| 0 | 0 [1.53]/48 | 0 [65.5[| 0| 0 {0.03] 0 | 0 [1.70
DES glibc 0[00.56] 2 {0]3.15// 0|0 [0.51| 00179

Table III: Evaluation results for symmetric ciphers with table
preloading and pinning for trace-based attackers.

pattern of a key-dependent branch in PostgreSQL.

The age model was able to detect even more positives
in the benchmarks, finding 5 new potential vulnerabilities.
This model found more locations since it considers temporal
differences of when memory locations can be placed into the
cache. Even though this model is more conservative, we see
that it does not introduce any new false positives in our
experiments.

C. Fixing side channels

We next discuss our experience of fixing the side channels
that were discovered in the previous experiments. In sym-
metric ciphers, one common strategy to avoid side channels
resulting from key-dependent table lookups is to preload
their sbox tables. To support that, our LLVM implementation
supports a special PRELOAD attribute, which can be used
by programmers to annotate their source code to specify
what variables or arrays should be preloaded at the start
of execution. A preloaded variable/array means that it is
initially in the cache. We used this attribute to annotate our
symmetric-cipher benchmarks and reevaluated them using
CaSym. Table III presents the results of performing preload-
ing in symmetric ciphers for trace-based attackers. We
did not evaluate preloading/pinning for asymmetric cipher
benchmarks since other techniques (e.g. scatter/gather) are
used to secure them [13]. Also, we did not include the UFC
implementation since it is already side channel free.

As expected, Table III shows that preloading is sufficient
to eliminate the side channels in the infinite cache model:
after the sbox tables are preloaded, they always stay in the
cache and the following key-dependent table accesses will
not change the cache state. For the age model, side channels
still exist since the age model tracks the ordering of memory
accesses; the preloading at the beginning will not change the
ordering of memory accesses in the following execution.

As we have discussed, another strategy for fixing side
channels is to pin some data in the cache. We also imple-
mented a special attribute for programmers to specify what
variables/arrays should be pinned into the cache. Table III
presents the results of performing pinning of tables in
symmetric ciphers for trace-based attackers. It shows that
all side channels disappear with this fix, across all cache
models. When cache entries are pinned to the cache, they
are never evicted; therefore, CaSym does not update the ages

Access Trace
Benchmarks LRU LRU
w/o Preloading TP FP | t(s)
AES gcery timeout 64 0 635
AES mbed timeout 17 0 757
triple-DES gcry ® 1654 128 | O 54.3
triple-DES mbed ® 8531 48 0 803
DES glibc ® 1044 2 0 9.20
UFC glibc v 0.09 0 0 5.35
sqr-alwys-mul gery | © 2.64 3 0 180
sqr-mul gery ©2.19 4 0 163
LR-mod-expo gery | © 23.45 3 0 6275

Table IV: Evaluation results using the LRU model; the table
shows results for an access based attacker on the left and a
trace based attacker on the right.

of pinned cache entries. The ages at the beginning are the
ages at the end for the pinned entries, preventing CaSym
from reporting them as causes of side channels.

D. Abstract vs. Concrete Cache Models

In order to show the effectiveness of the infinite cache
model and the age model, we implemented the following
features as described in Section VI-D: the LRU replacement
policy, cache lines, and cache associativity.

LRU replacement policy: Table IV shows the evaluation
results on our cryptography benchmarks, based on the LRU
cache model with 2k cache slots. We note that the LRU
model takes a significant amount of time to finish (the SMT
solver even timed out with a limit of 3 hours for three tests).
Despite the significantly longer execution time, for all tests
that finish, we note that it reports exactly the same results
as the age model, and very similar results as the infinite
cache model. This result demonstrates that our abstract cache
models offer better balance between precision and efficiency,
when compared to more concrete cache models.

Cache line size and cache associativity: We also im-
plemented cache models with various cache line sizes and
cache associativity, as discussed in Section VI-D. We tested
our benchmarks using common cache associativity values
and cache line sizes. The results reported were the same as

without specifying associativity or cache line size’.

X. LIMITATIONS AND FUTURE WORK

As mentioned before, the symbolic execution of CaSym
does not track array contents. That is, reading from an
array returns an arbitrary value. This in theory can cause
false positives, but has not caused problems during our
experiments. The implementation also does not support
dynamic allocation and deallocation of memory. Array sizes
must be statically declared. Our support of pointers is also
limited. We require that a pointer variable must be initialized

TThis does not mean different associativity or cache line sizes will never
impact the result; it just means that typical values for associativity and
cache line sizes have no impact on the benchmarks we evaluated.

to the base address of some array. Pointer arithmetic on
the pointer is allowed, but the pointer can only reference
locations inside the array it was initialized to for the entire
lifetime of the pointer. This reflects how pointers are used in
crypto applications, but it is not the case for general C/C++
applications. Finally, CaSym inlines all functions before
performing symbolic evaluation. We plan to gradually lift
these restrictions so that CaSym can support more general
applications beyond crypto applications.

XI. CONCLUSIONS

In this paper, we present CaSym for identifying and mit-
igating cache-based side channels. We show that CaSym’s
symbolic execution and cache models are effective at iden-
tifying cache-based side channels in realistic benchmarks,
including cryptography implementation and database sys-
tems. CaSym was able to detect new side channels as well as
known ones in multiple functions used to handle confidential
data frequently. The novel abstract cache models are shown
to provide good balance between precision and efficiency.
Furthermore, CaSym produces accurate and helpful error re-
ports when side channels are identified. The reports are used
to strategically place mitigation mechanisms to eliminate the
side channels in programs.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers
for their constructive feedback. This work was partially
supported by NSF grants CCF-1822923, CCF-1439021,
CCF-1629915, CCF-1626251, CCF-1629129, CNS-
1702760, CNS-1816282, CCF-1723571, CNS-1408826,
CNS-1801534, ONR grant N00014-17-1-2539, as well as a
gift from Intel Corporation.

REFERENCES

[1] D. J. Bernstein, “Cache-timing attacks on aes,” cr.yp.to/
papers.html\#cachetiming, 2005.

[2] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of AES,” Topics in Cryptology—
CT-RSA 2006, pp. 1-20, Jan. 2006.

[3] C. Percival, “Cache missing for fun and profit,” in BSDCan,
2005.

[4] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and
R. Schlichting, “An exploration of 12 cache covert channels
in virtualized environments,” in Proceedings of the 3rd ACM
Workshop on Cloud Computing Security Workshop, 2011, pp.
29-40.

[5] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-
space: High-speed covert channel attacks in the cloud,” in
Proceedings of the 21st USENIX Conference on Security
Symposium. Berkeley, CA, USA: USENIX Association,
2012, pp. 9-9. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2362793.2362802

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
you, get off of my cloud: Exploring information leakage
in third-party compute clouds,” in Proceedings of the 16th
ACM Conference on Computer and Communications Security,
2009, pp. 199-212.

Y. Xiao, M. Li, S. Chen, and Y. Zhang, “Stacco: Differ-
entially analyzing side-channel traces for detecting ssl/tls
vulnerabilities in secure enclaves,” in Proceedings of the
ACM Conference on Computer and Communications Security
(CCS), 2017, pp. 859-874.

Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-
vm side channels and their use to extract private keys,” in
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, 2012, pp. 305-316.

Y. Yarom and K. Falkner, “Flush+reload: A high resolution,
low noise, 13 cache side-channel attack,” in Proceedings of
the 23rd USENIX Conference on Security Symposium, 2014,
pp- 719-732.

F Liu, Y. Yarom, Q. Ge, G. Heiser, and R. Lee, “Last-
level cache side-channel attacks are practical,” in Security
and Privacy (S&P), 2015 IEEE Symposium on, May 2015,
pp. 605-622.

S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD:
Identifying cache-based timing channels in production soft-
ware,” in Proceedings of the the 26th USENIX Security
Symposium (USENIX Security), 2017, pp. 235-252.

G. Doycheyv, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke,
“Cacheaudit: A tool for the static analysis of cache side
channels,” in Proceedings of the the 22nd USENIX Security
Symposium (USENIX Security), 2013, pp. 431-446.

G. Doychev and B. Kopf, “Rigorous analysis of software
countermeasures against cache attacks,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). ACM, 2017, pp. 406—
421.

D. Gullasch, E. Bangerter, and S. Krenn, “Cache games—
bringing access-based cache attacks on AES to practice,” in
Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2011, pp. 490-505.

E. Tromer, D. Osvik, and A. Shamir, “Efficient cache attacks
on aes, and countermeasures,” Journal of Cryptology, vol. 23,
no. 1, pp. 37-71, 2010.

C. S. Pasareanu, Q.-S. Phan, and P. Malacaria, “Multi-run
side-channel analysis using symbolic execution and max-
smt,” in Proceedings of the IEEE Computer Security Foun-
dations (CSF). 1EEE, 2016, pp. 387—400.

Q.-S. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and
T. Bultan, “Synthesis of adaptive side-channel attacks,” in
Computer Security Foundations Symposium (CSF), 2017
IEEE 30th. 1IEEE, 2017, pp. 328-342.

(18]

[19]

(20]

(21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen,
T. Terauchi, and S. Wei, “Decomposition instead of self-
composition for proving the absence of timing channels,”
in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
ser. PLDI 2017. New York, NY, USA: ACM, 2017,
pp- 362-375. [Online]. Available: http://doi.acm.org/10.1145/
3062341.3062378

J. Chen, Y. Feng, and I. Dillig, “Precise detection of
side-channel vulnerabilities using quantitative cartesian hoare
logic,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: ACM, 2017, pp. 875-890. [Online].
Available: http://doi.acm.org/10.1145/3133956.3134058

D. Page, “Partitioned cache architecture as a side-channel
defense mechanism,” in Cryptology ePrint Archive, Report
2005/280, 2005. [Online]. Available: http://eprint.iacr.org/
2005/280.pdf

J. Bonneau and I. Mironov, “Cache-collision timing attacks
against AES,” in Cryptographic Hardware and Embedded
Systems - CHES 2006, ser. Lecture Notes in Computer
Science, L. Goubin and M. Matsui, Eds. Springer Berlin
Heidelberg, 2006, vol. 4249, pp. 201-215.

A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke,
“Differential cache-collision timing attacks on AES with
applications to embedded cpus,” in Topics in Cryptology—
CT-RSA 2010, ser. Lecture Notes in Computer Science,
J. Pieprzyk, Ed., 2010, vol. 5985, pp. 235-251.

J. Agat, “Transforming out timing leaks,” in Proceedings
of the ACM Symposium on Principles of Programming
Languages (POPL), Jan. 2000, pp. 40-53. [Online].
Available: http://dl.acm.org/citation.cfm?id=325694.325702

D. Hedin and D. Sands, “Timing aware information flow
security for a JavaCard-like bytecode,” Electronic Notes in
Theoretical Computer Science, vol. 141, no. 1, pp. 163-182,
2005.

D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The
program counter security model: automatic detection and
removal of control-flow side channel attacks,” in Proceedings
of the 8" International Conference on Information Security
and Cryptology, 2006, pp. 156-168.

B. Coppens, 1. Verbauwhede, K. D. Bosschere, and B. D.
Sutter, “Practical mitigations for timing-based side-channel
attacks on modern x86 processors,” in Proceedings of the
30™ IEEE Symposium on Security and Privacy (S&P), 2009,
pp- 45-60. [Online]. Available: http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?arnumber=5207636

D. Zhang, A. Askarov, and A. C. Myers, “Language-based
control and mitigation of timing channels,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2012, pp. 99-110.
[Online]. Available: http://www.cs.cornell.edu/andru/papers/
pltiming.html

H. Raj, R. Nathuji, A. Singh, and P. England, “Resource
management for isolation enhanced cloud services,” in Pro-
ceedings of the 2009 ACM Workshop on Cloud Computing
Security, 2009, pp. 77-84.

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

J. Shi, X. Song, H. Chen, and B. Zang, “Limiting cache-
based side-channel in multi-tenant cloud using dynamic page
coloring,” in Proceedings of the 2011 IEEE/IFIP 41st Inter-
national Conference on Dependable Systems and Networks
Workshops, 2011, pp. 194-199.

U. Erlingsson and M. Abadi, “Operating system protection
against side-channel attacks that exploit memory latency,”
Microsoft Research, Tech. Rep. MSR-TR-2007-117, August
2007. [Online]. Available: http://research.microsoft.com/apps/
pubs/default.aspx?id=64367

T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem:
System-level protection against cache-based side channel
attacks in the cloud,” in Proceedings of the 21st USENIX
Conference on Security Symposium, 2012, pp. 189-204.

Z. Wang and R. B. Lee, “New cache designs for thwarting
software cache-based side channel attacks,” in Proceedings
of the Annual International Symposium on Computer
Architecture (ISCA), 2007, pp. 494-505. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1250723

X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathi-
nam, R. Kastner, T. Sherwood, B. Hardekopf, and F. T.
Chong, “Sapper: A language for hardware-level security pol-
icy enforcement,” in Proceedings of the 19" Int’l Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2014, pp. 97-112.

D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A
hardware design language for timing-sensitive information-
flow security,” in Proceedings of the 20™ Int’l Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2015, pp. 503-516.

Y. Zhang and M. K. Reiter, “Diippel: Retrofitting commodity
operating systems to mitigate cache side channels in the
cloud,” in Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2013, pp. 827-838.

Z. Wang and R. B. Lee, “A novel cache architecture with
enhanced performance and security,” in Proceedings of the
41°" Annual IEEE/ACM Int’l Symposium on Microarchitecture
(MICRO), 2008, pp. 83-93.

F. Liu and R. B. Lee, “Random fill cache architecture,” in
Proceedings of the 47" Annual IEEE/ACM Int’l Symposium
on Microarchitecture (MICRO), 2014, pp. 203-215.

J. A. Goguen and J. Meseguer, “Security policies and security
models,” in IEEE Symposium on Security and Privacy (S&P),
Apr. 1982, pp. 11-20.

M. Gordon and H. Collavizza, “Forward with Hoare,” 2010,
pp. 101-121.

E. W. Dijkstra, “Guarded commands, nondeterminacy and
formal derivation of programs,” Commun. ACM, vol. 18,
no. 8, pp. 453457, Aug. 1975.

D. Babic and A. J. Hu, “Calysto: scalable and precise
extended static checking,” in ICSE '08: Proceedings of the
30th international conference on Software engineering. New
York, NY, USA: ACM, 2008, pp. 211-220.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and
I. Finocchi, “A survey of symbolic execution techniques,”
ACM Comput. Surv., vol. 51, no. 3, 2018.

V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient
state merging in symbolic execution,” SIGPLAN Not.,
vol. 47, no. 6, pp. 193-204, Jun. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2345156.2254088

T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley,
“Enhancing symbolic execution with veritesting,” in
Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. New York, NY,
USA: ACM, 2014, pp. 1083-1094. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568293

E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software
mitigations to hedge AES against cache-based software side
channel vulnerabilities.” JACR Cryptology ePrint Archive, vol.
2006, p. 52, 2006.

D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, 1. Haller, and
M. Costa, “Strong and efficient cache side-channel protection
using hardware transactional memory,” in Proceedings of the
26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 217-233.

C. Lattner and V. Adve, “Llvm: A compilation framework for
lifelong program analysis & transformation,” in Proceedings
of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization,
ser. CGO ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 75-. [Online]. Available: http://dl.acm.
org/citation.cfm?id=977395.977673

L. D. Moura and N. Bjgrner, “Z3: An efficient SMT solver,”
in Proceedings of the Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2008.

A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot,
Handbook of Applied Cryptography, 1st ed. Boca Raton,
FL, USA: CRC Press, Inc., 1996.

