This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

OLE: Orthogonal Low-rank Embedding,
A Plug and Play Geometric Loss for Deep Learning

José Lezama'* Qiang Qiu?

IE, Universidad de la Republica, Uruguay

Abstract

Deep neural networks trained using a softmax layer at
the top and the cross-entropy loss are ubiquitous tools for
image classification. Yet, this does not naturally enforce
intra-class similarity nor inter-class margin of the learned
deep representations. To simultaneously achieve these two
goals, different solutions have been proposed in the litera-
ture, such as the pairwise or triplet losses. However, these
carry the extra task of selecting pairs or triplets, and the
extra computational burden of computing and learning for
many combinations of them. In this paper, we propose a
plug-and-play loss term for deep networks that explicitly
reduces intra-class variance and enforces inter-class mar-
gin simultaneously, in a simple and elegant geometric man-
ner. For each class, the deep features are collapsed into a
learned linear subspace, or union of them, and inter-class
subspaces are pushed to be as orthogonal as possible. Our
proposed Orthogonal Low-rank Embedding (OLE) does not
require carefully crafting pairs or triplets of samples for
training, and works standalone as a classification loss, be-
ing the first reported deep metric learning framework of its
kind. Because of the improved margin between features of
different classes, the resulting deep networks generalize bet-
ter, are more discriminative, and more robust. We demon-
strate improved classification performance in general ob-
Jject recognition, plugging the proposed loss term into exist-
ing off-the-shelf architectures. In particular, we show the
advantage of the proposed loss in the small data/model sce-
nario, and we significantly advance the state-of-the-art on
the Stanford STL-10 benchmark.

1. Introduction

In the last few years the representational power of Deep
Neural Networks (DNNs) has been thoroughly demon-
strated, with impressive results in learning useful repre-
sentations for difficult tasks such as object classification

*Corresponding author jlezama@fing.edu.uy

Pablo Musé! Guillermo Sapiro?

2ECE, Duke University, USA

and detection [9, 11, 14, 18, 32] and face identification
and verification [25, 31, 38], to name just a few exam-
ples. DNNSs typically consist of a sequence of convolu-
tional and/or fully-connected layers with non-linear acti-
vation functions, which produce a “deep” feature vector,
which is then classified in the last layer with a linear clas-
sifier [11, 14, 18, 32]. This linear classifier typically uses
the softmax function with the cross-entropy loss. The com-
bination of these two will be referred to as softmax loss in
the rest of this article. The layer previous to the last linear
classifier will be referred to as the deep feature layer.

Training a DNN with the standard softmax loss does not
explicitly enforce an embedding of the learned deep fea-
tures where samples of the same class are closer together
and further away from other classes. To improve the dis-
crimination power of deep neural networks, previous ap-
proaches have tried to enforce such an embedding via auxil-
iary supervisory loss functions [19] acting on the Euclidean
distances between the deep features [1, 8, 13, 31, 33, 38].
Such metric learning techniques are particularly popular in
the face identification domain, with its two most represen-
tative examples being the pairwise loss [8] and the triplet
loss [31]. The drawback with these approaches is that they
require the careful selection of pairs or triplets of samples,
as well as extra data processing. More recently, methods
have been proposed to overcome this limitation by enforc-
ing intra-class compactness of the representations inside
each random training minibatch, [20, 21, 38].

In this work we propose to improve the discriminability
of a neural network by a simple and elegant plug-and-play
loss term that, acting on the deep feature layer, encourages
the learned deep features of the same class to lie in a lin-
ear subspace (or union of them), and at the same time that
inter-class subspaces are orthogonal, see Figs. 1, 2. To the
best of our knowledge, this is the first time a deep learning
framework is proposed that simultaneously reduces intra-
class variance and increases inter-class margin, without re-
quiring pair or triplet selection.

Our intuition is based on the following observations.
First, that the decision boundary for the softmax loss is de-

8109

Figure 1. Barnes-Hut-SNE [

()

] visualization of the deep feature embedding learned for the validation set of CIFAR10, using VGG-16. (a)

With softmax loss and OLE . (b) With softmax loss only. The separation between classes is increased, and a low-rank structure is recovered
for each class. (¢) Angle between the features of the 10,000 validation samples, ordered by class, with OLE. (d) Without OLE. With OLE
the angle between features is collapsed inside each class and inter-class features are orthogonal. Best viewed in electronic format.

(a) OLE: 78.38% accuracy
CIFAR 3 classes

(b) Softmax: 76.69% accuracy

(c) OLE: 100.0% accuracy

(d) Softmax: 96.47% accuracy

Facescrub 3 classes

Figure 2. Ilustrative comparison between OLE loss (standalone) and softmax loss. We show the actual 3D deep feature vectors for the
validation images in two 3-class classification problems with scarce training data. OLE produces intra-class compactness and inter-class
orthogonality, and is able to achieve better classification performance than the softmax loss. (a) & (b) 3 classes of CIFAR10, trained with
1,000 images per class. A 4 layer, 100 hidden units MLP was used. (¢) & (d) 3 subjects of Facescrub dataset, trained with 110 images per
class on average. A 3 layer, 10 hidden units MLP was used. See text for more details. Best viewed in electronic format.

termined by the angle between the feature vector and the
vectors corresponding to each class in the last linear clas-
sifier [21]. Since the weights are initialized randomly, the
class vectors are, with high probability, orthogonal at initial-
ization, and typically remain so after training. Moreover, if
a rectified linear unit (ReLU) is the last activation function,
the deep features will live in the positive orthant. There-
fore, one way to improve the margin between deep features
is to embed them into orthogonal, low-dimensional linear
subspaces, aligned with the classifier vector of each class.

To this end, we adapt a shallow feature orthogonalization
technique [28] to deep networks. Through novel theoret-
ical insight, we improve the objective formulation in [28]
and its optimization. The outcome is a new loss function
that can be plugged into any existing deep architecture at
the deep feature layer'. We demonstrate via thorough ex-
perimentation that this approach produces orthogonal deep
representations that lead to better generalization, not only
in face identification but also in general object recognition.
We illustrate this on different datasets and using four of the
most popular CNN architectures: VGG [32], ResNets [1],
PreResNets [12] and DenseNets [14].

We demonstrate that our proposed technique is particu-
larly successful in the small data scenario. We significantly

ISource code available at https://github.com/jlezama/
OrthogonalLowrankEmbedding.

advance the state-of-the-art in the STL-10 standard bench-
mark [4] when training with only 500 images per class, and
show that the advantage of OLE over the standard softmax
loss increases as fewer training samples are used. We also
show through a face recognition application that because of
the improved discriminability, the network is better at de-
tecting novel classes (outside the training set).

2. Related Work

The first attempts to reduce the intra-class similarity of
deep features and increase their inter-class separation are
metric learning based approaches [I, 8, 13, 31, 33, 38].
Their goal is to minimize the Euclidean distance between
the deep features of the same class, while keeping the other
classes apart. The pioneering contrastive loss [8] imposes
such constraint using a siamese network architecture [3].
This pairwise strategy was particularly popular in the face
identification community [8, 33, 13], and was later extended
to a triplet loss [31, 1]. With the triplet loss, an image rep-
resentation is simultaneously enforced to be close to a posi-
tive example of the same class and far away from a negative
example of a different class. The main drawback of these
approaches is that they require carefully mining for pairs or
triplets that effectively enforce the constraints.

In [38], a centroid for the feature vectors of each class is
updated in each training iteration, and Euclidean distances

8110

https://github.com/jlezama/OrthogonalLowrankEmbedding
https://github.com/jlezama/OrthogonalLowrankEmbedding

to the centroids are penalized. This simple strategy pro-
duces compact clusters for each class, although a large mar-
gin between clusters is not explicitly enforced. Contrary to
our method, the center loss cannot be used standalone as a
classification loss, since all the centroids tend to collapse to
zero [38]. A related approach in [30] estimates a distribu-
tion for the representation of each class and penalizes class
distribution overlap.

Based on the observation that the softmax loss is a func-
tion of the angles between deep features and classifier vec-
tors, [20, 21] operate on such angles instead of Euclidean
distances. These works propose custom versions of the soft-
max loss that encourage the features of one class to have a
smaller angle with their corresponding classification vector
than in the standard softmax loss. The improved margin
produces notorious performance boosting with respect to a
standard network [20, 21].

Other works seek orthogonalization by decorrelating
network activations. [2] uses a covariance loss on parts of
an autoencoder latent code to learn disentangled represen-
tations. [5] decorrelates the network activations to reduce
co-adaptation and improve generalization and [0] aims at
whitening the mini-batches.

In the unsupervised learning domain, [16, 26] enforce a
locally linear structure in the deep representations, such that
Subspace Clustering [36] can be later applied to the deep
representations. These properties will arise naturally in the
deep representations learned with OLE, although imposed
in a supervised manner.

Our work is related to [20, 21, 38], in that we enforce
intra-class compactness inside each minibatch. However,
for the first time, our objective function also simultaneously
encourages inter-class orthogonality, without the need to
carefully craft pairs or triplets.

This work stems from an orthogonalization technique
used for shallow learning proposed in [28]. The orthogo-
nalization is achieved via a linear transformation enforcing
a low-rank constraint on the features of the same class, and a
high-rank constraint on the matrix of features of all classes.
More precisely, consider amatrix Y = [y1 | y2 | ... |y~
where each column y; € R?i = 1,..., N is a data point
from one of the C classes, and | denotes horizontal concate-
nation. Let Y. denote the submatrix formed by the columns
of Y that lie in the c-th class. In [28], a linear transform
T : RY — R? is learned to minimize

C
SITYll — [TY|L, stlTle =1, (1)

c=1

where ||-]|. denotes the matrix nuclear norm, i.e., the sum
of the singular values of a matrix. The nuclear norm acts
as a relaxation of the non-differentiable rank function (it
is the convex envelope of the rank function over the unit
ball of matrices [29]). The first term minimizes the rank

of each class feature submatrix (samples of the same class
are pushed to be aligned in a low-rank linear subspace).
The second term maximizes the rank of the matrix of all
features, so the intra-class subspaces are pushed to be lin-
early independent (orthogonal). An additional condition
[|T|]2 = 1 is originally adopted to prevent the trivial so-
lution T = 0.

Here we adapt the loss in (1) to the deep learning frame-
work and reformulate the loss and its optimization in a man-
ner that is suitable for training by backpropagation.

3. Orthogonalization Loss
3.1. Motivation

Consider a neural network whose last fully connected
layeris W € RE*P, where D is the dimension of the deep
features and C' the number of classes. Each row w, € R”
of W represents a linear classifier for class c. If W is ini-
tialized randomly, then such rows are (with high probabil-
ity) orthogonal. Now consider x as the deep representation
of an image (or any other data being classified). If the acti-
vation function in the deep feature layer is the element-wise
maximum between x and 0 (ReLU), then x always lives in
the positive orthant. From these two observations it can be
deduced that at the end of a successful training of the net-
work the classifier vectors x. should remain orthogonal to
have the most separation between classes. Therefore, one
strategy to learn large-margin deep features is to make the
intra-class features fall in a linear subspace aligned with the
corresponding classification vector, while features of differ-
ent classes should be orthogonal to each other. This natu-
ral geometry of learned features is not imposed by standard
last-layer classifiers in today’s leading architectures.

3.2. Definition

We propose to enforce the aforementioned orthogonal-
ization by adapting (1) to the deep learning setting. Namely,
suppose for a given training minibatch Y of N samples,
X = ®(Y;0)is the N x D deep embedding P of the data,
parameterized by 6.

Let Y., X, be the data and the sub-matrix of deep fea-
tures belonging to class c, respectively, and X the matrix of
deep features for the entire minibatch Y. We propose the
following OLE loss:

C
Lo(X) := Y max(A, |[X[[.) — [|X]]. @
c=1
c
= max(A,||B(Y;0)]].) = [|2(Y;:0)][. 3)
c=1

With respect to (1), we drop the linear transformation 7T’
(the network is already transforming the data) and its nor-
malization restriction, and we add a bound A € IR on the

8111

intra-class nuclear loss, so that after a certain point the intra-
class norm reduction is no longer enforced, thus avoiding
the collapse of the features to zero (and therefore no need-
ing the normalization). We will always use A = 1 for the
experiments in this paper.

The global minimum of (2) is reached when each of the
X, matrices are orthogonal to each other [28]. We next
describe a simple descent direction for optimizing 6 (2) via
backpropagation, and show that this direction vanishes only
when the orthogonalization is achieved.

3.3. Optimization

In order to optimize (2) via backpropagation, we need
to compute a subgradient of the nuclear norm of a matrix.
Let A = UXVT be the SVD decomposition of the m x n
matrix A. Let ¢ be a small threshold value, and s the num-
ber of singular values of A larger than §. Let U; be the
first s columns of U and V; be the first s columns of V
(corresponding to those larger than § eigenvalues). Corre-
spondingly, let U be the remaining columns of U and Vo
the remaining columns of V. Then, a subdifferential of the
nuclear norm is ([29, 37])

IA|l. = Uy V] + U, WV, 4)

with [[W]| < 1.

Here we propose to use W = 0, obtaining the follow-
ing projected subgradient for the nuclear norm minimiza-
tion problem:

gall.(A) = UL V7. 5)

Intuitively, to avoid numerical issues, we are dropping
the directions of the subgradient onto which the data matrix
has no or very low energy already (i.e., their corresponding
singular values are already close to 0). This improves upon
the formulation in [28], where all the directions were used.

Suppose X = [X; | Xa | ... | X(] is the deep feature
matrix of one minibatch. For X, the feature submatrix of
each class ¢ € {1,...,C}, let U;. and V. be its princi-
pal left and right singular vectors. Let U; and V; be the
principal left and right singular vectors of X, the deep fea-
ture matrix of all the classes combined. (By principal we
mean those whose corresponding singular value is greater
than the threshold §.) Then, we propose the following de-
scent direction for (2):

C
gr,(X) =3 [20 | UaVE | 20] ~ VT ©)

c=1

Here, zi” and Zgr) are fill matrices of zeros to complete
the dimensions of X. The first term in (6) reduces the vari-
ance of the principal components of the per-class features.
The second term increases the variance of all the features

together, projecting the feature matrix onto its closest or-
thogonal form.

Next we prove that this direction vanishes only when the
objective reaches the global minimum of zero.

Proposition 1. If g (X) = 0 and || X||. > A, then
L,(X)=0.

Proof. We give the proof for two classes, its extension
to multiple classes is straightforward. Let X = [A | B]
with A and B corresponding to the feature matrices of
two classes. Let A = Ug1241 Va1 + UgaX 42V 49,
B =Up 331 Vp1+UpX¥psVps,and X = U3,V +
U,325 V5 be their SVD decomposition, where the subscript
1 corresponds to the singular values larger than the thresh-
old ¢ and the subscript 2 to the remaining singular values.
Let O be a generic matrix of zeroes, whose size is deter-
mined by context, for simplicity. Then,

Lo(X) = [[A[l« + [|BI[. = [I[A | B[l)
gLO(X) = [UA1V£1 ‘ 0] + [0 ‘ UBlVgl } —U1V1T.
®)

Then, gz, (X) = 0 implies
U, Vi =[UV |0]+[0|UnVE] 9

T
[UAlUm][VAl o } (10)
B1

0
Since U; and V; are orthogonal matrices, and the right-
most matrix in (10) is also orthogonal, then [U4; | Up4]
must be orthogonal. Since U 4; and Up; are orthogonal
submatrices, this implies that their columns must be orthog-
onal to each other. Then, A and B are orthogonal to each
other and thus L,(X) = 0 ([28], Theorem 2).

O

In practice, we observe empirical convergence in all our
experiments. Fig. 3 shows typical convergence curves for
the OLE loss when used standalone or in combination with
the softmax loss.

3.4. Illustrative Example

In Fig. 2 we show via two simple illustrative examples
the result of applying the OLE loss of (2) as the objective
function of a neural network. We compare with the result
of applying the traditional softmax loss.

For the first experiment, we used 3 classes from CI-
FARI10 (0: plane, 1: car, 2: bird) and trained a Multi-
Layer Perceptron (MLP), with 4 hidden layers of 100 neu-
rons each, and a final layer of dimension 3. The network
was trained for 300 epochs on 1,000 images per class and
evaluated in 100 images per class.

8112

For the second experiment, we used 3 randomly chosen
subject identities from the Facescrub dataset [24]: Al Pa-
cino, Helen Hunt, and Sean Bean. Each identity contains,
on average, 110 images for training and 30 for validation.
We used a 3 layer MLP with 10 neurons in each hidden
layer, and trained for 150 epochs. All the MLPs use ReLU
activation functions, batch normalization and weight decay
and were trained with Adam with learning rate 104,

For the comparison, the architecture and hyperparame-
ters are shared and only the objective function is changed.
For evaluation, we use 1-Nearest-Neighbor with cosine dis-
tance, (this yielded equivalent or better performance than
using the softmax score). We ran the training 50 times for
each architecture and dataset and kept the model giving the
best classification result in the validation set.

In Fig. 2 we plot the actual 3D deep feature vectors ob-
tained by the networks for the validation set. We observe
a successful orthogonalization of the learned features when
using OLE and a better classification performance, in par-
ticular for the Facescrub experiments, where the number of
samples per class is very limited.

In the following section, we will combine the power of
the OLE and the softmax loss to achieve significant perfor-
mance gains, in particular in the small data scenario.

3.5. Discussion

The proposed embedding has several advantages with re-
spect to similar embeddings in the literature:

e It does not require carefully crafting pairs or triplets of
samples, and works simply as a plug-and-play loss that
can be appended to any existing network architecture.

e Compared to the Large-Margin Softmax Loss in [21]
or the A-softmax loss in [20], the OLE loss is not re-
stricted to be used with a softmax classifier and can be
used standalone or as a complement of any other loss,
or to impose orthogonality at any layer of the network.

e Compared to the Center Loss of [38], our deep objec-
tive function encourages intra-class compactness and
inter-class separation simultaneously, whereas [38]
does only the former. Also, the Center Loss cannot
be used standalone.

e OLE collapses the deep features into linear subspaces.
When used in conjunction with the softmax loss, the
linear classifiers of the last layer find a natural form
which is a vector aligned with the linear subspace.

4. Experimental Evaluation

In this section, we demonstrate the improved general-
ization performance obtained when using the OLE loss in

combination with the standard softmax loss for several pop-
ular deep network architectures and different standard vi-
sual classification datasets. We will also further analyze the
effect of the proposed embedding.

In all experiments, we seek to minimize the combination
of the softmax classification loss and the OLE loss:

min Ly(X,y,0) + A+ Lo(X,y,07) + - 0], (A1)

where Lg is the standard softmax loss (softmax layer plus
cross-entropy loss). The second term L, is the proposed
OLE loss (2). The parameter A\ controls the weight of the
OLE loss; A\ = 0 corresponds to standard network training.

Here 6* means every weight in the network except the
weights of the last fully-connected layer, which is the lin-
ear classifier. This is because the OLE loss is applied to the
deep features at the penultimate layer. The third term repre-
sents the standard weight decay. The values used for these
parameters are detailed below.

4.1. Datasets

SVHN. The Street View House Numbers (SVHN)
dataset [23] contains 32 x 32 colored images of digits 0 to
9, with 73,257 images for training and 26,032 for testing.
We did not use the additional unlabeled training images nor
performed any data augmentation.

MNIST. The MNIST database contains 28 x 28
grayscale images of digits from 0 to 9. The training and test-
ing set contain 60,000 and 10,000 examples respectively.
No data augmentation was used.

CIFAR10 and CIFAR100. The two CIFAR datasets
[18] contain 32 x 32 colored images from 10 and 100 ob-
ject classes respectively. Both datasets contain 50,000 im-
ages for training and 10,000 for testing. When using data
augmentation, we append the suffix ’+’ to the dataset name.
We used the standard data augmentation for CIFAR: 4 pixel
padding, 32 x 32 random cropping and horizontal flipping.

STL-10. The Self-Taught Learning 10 (STL-10) dataset
[4] contains 96 x 96 colored images from 10 object cat-
egories. Designed for semi-supervised and unsupervised
learning, there are only 500 training images and 800 test
images with labels per class. Data augmentation consisted
of 12 pixel padding, and random 96 x 96 cropping and hori-
zontal flipping. We add the "+’ suffix when reporting results
using data augmentation.

Facescrub-500. The Facescrub-500 dataset is obtained
by selecting 500 of the 530 identities of the Facescrub
dataset [24]. The remaining 30 classes were used for evalu-
ating out of sample performance. We split the images of the
first 500 subjects into a training and a testing datasets with
on average 91 images for training and 23 images for testing
per class (80%/20% split). We preprocess the images by
aligning facial landmarks using [17] and crop the resulting
aligned face images to 224 x 224, with color.

8113

VGG-11

C64-MP-C123-MP-C256(x2)-MP-C512(x2)-MP-C512(x2)-MP-FC512

VGG-16 C64(x5)-MP-C128(x4)-MP-C256(x4)-MP-FC256

VGG-19 C64(x2)-MP-C128(x2)-MP-C256(x4)-MP-C512(x4)-MP-C5 1 2(x4)-MP-FC512
VGG-FACE C64(x2)-MP-C128(x2)-MP-C256(x3)-MP-C512(x3)-MP-C5 12(x3)-FCD4096(x2)-FC1024
ResNet-110 CI16-R64/16(x18)-R128/32(x18)-R256/64(x18)-AP

Pre-ResNet-110

C16-PR64/16(x18)-PR128/32(x18)-PR256/64(x18)-BN-ReLU-AP

DenseNet-40-12

C024-D168/12-CR168-D312/12-CR312-D456/12-BN456-ReLU

CNN-5 C32-MP-C64-MP-C128-MP-C256-C256-MP

Table 1. Summary of the deep network architectures used in our experiments. The last Fully-Connected layer, whose size depends on the
number of classes used, is not shown. CX: Convolutional block. Kernel size is always is 3x3. MP: Max pooling with kernel size 2x2 and
stride 2. FCX: Fully-Connected layer. RX/Y and PRX/Y: ResNet and PreResNet Blocks Respectively. AP: Global Average Pooling layer.
COX: Plain convolutional layer. DX/G: DenseNet Block. PCX: Pre-BN convolutional block: (BN-conv.-ReLLU). Kernel size is 1x1. For
all the modules, X is the number of output channels. Y is the number of inner channels for R and PR blocks and G is the growth rate for
D blocks. See text for detailed block definitions. The OLE loss is always applied at the output of the last layer shown in this table.

4.2. Network Architectures

Evaluated architectures are summarized in Table 1.

VGG. The VGG architecture [32] consists of blocks of
convolutional layers with ReLU activation functions and
Batch Normalization (BN), linked by Max-Pooling layers
and with one or more fully-connected (FC) layers at the end.
For VGG-11 and VGG-19 we use a publicly available im-
plementationz. For VGG-16, we used the implementation
from [21] to allow for a more direct comparison®.

VGG-FACE. VGG-FACE is a variant of VGG optimized
for face identification [25]. In VGG-FACE, the convolu-
tional blocks do not have BN and the first two FC layers
use Dropout with rate 0.5. We added an FC layer of size
1024, that was not present in [25]. This layer improves per-
formance for all tested models on Facescrub-500. We used
the Caffe implementation of the authors and fine-tune the
weights provided by them*. The novel 1024 FC layer was
initialized using “Xavier” initialization [7].

ResNet and PreResNet. ResNets [11] are composed
of residual blocks. The concatenation of layers inside a
ResNet block is conv.-BN-conv.-BN-conv.-BN-ReLU. The
intermediate convolution layers typically have one fourth
the number of channels than the input and output convo-
lution layers of a block, see Table 1. The output of each
block is added to its input. The PreResNet architecture [12]
is similar to ResNet except that inside the residual blocks
the order of the layers is inverted: BN-conv.-BN-conv.-BN-
conv.-ReLU. No Dropout is used. For both variants we used
a publicly available implementation?.

DenseNet. DenseNets [14] are composed of three
DenseNet blocks. Each of these blocks is itself composed
of multiple pre-BN convolutional blocks (BN-conv.-ReLU)
with a small number of output channels. Inside a DenseNet
block, the input to each pre-BN convolutional block is the
concatenation of the output of all previous pre-BN convo-
lutional blocks. A transition pre-BN convolutional block
is used between DenseNet blocks. In our experiments, no

zhttpsz//qithub.com/bearpaw/bviorch classification

3https://githqb.cem/wyliu/La:geMarg' oftmax_Loss

4ht tp://www.robots.ox.ac.uk/~vgg/software/vgg_~face/

bottleneck layers were used. We used Dropout of 0.2 for
MNIST and SVHN, and no Dropout for CIFAR. We used a
publicly available implementation”.

4.3. Training Details

Except for the Facescrub experiments, we always train
the network from scratch. VGG-16 uses “MSRA” initial-
ization [10]. For the rest of the architectures, “Xavier” ini-
tialization was used [7].

In all the experiments except STL-10 and Facescrub we
used SGD with Nesterov momentum 0.9 for the optimiza-
tion and batch size 64. We started with a learning rate of 0.1
and decreased it ten-fold at 50% and 75% of the total train-
ing epochs. For STL-10/Facescrub experiments, we used
Adam with starting learning rate 1073/10~° and batch size
32/26. We used 164 epochs for all architectures except for
DenseNets, for which we used 300 epochs and Facescrub
where the finetuning is done for 12 epochs. The weight
decay parameter was always set to 4 = 1074, except for
STL-10+ and Facescrub, where ;1 = 1073, Fig. 3 shows
typical convergence curves.

We implemented the OLE loss as a custom layer for
Caffe and PyTorch. The additional computation time is be-
tween 10% and 33% during training, depending on the im-
plementation and hardware, because the SVD runs on the
CPU in the current implementation.

We adjusted the parameter A in (11) with a held-out val-
idation set of 10% of the training set. Note that the magni-
tude of the OLE loss depends on the size and norm of the
features matrices. We selected the value of A that produced
the best result in the validation set, averaging over 5 runs,
see Fig 4 for an example. We then retrained the network
with the entire training set and we computed the accuracy
on the test set at the end of the training. To account for the
randomness of the training process, we repeated the training
with the full training set 5 times.

Sht tps://github.com/andreasveit/densenet-pytorch

8114

https://github.com/bearpaw/pytorch-classification
https://github.com/wy1iu/LargeMargin_Softmax_Loss
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
https://github.com/andreasveit/densenet-pytorch

[Dataset [Architecture [A [% Error (L, + X - L) [% Error (L s only) [Ref. Error (%)]
SVHN DenseNet-40-12 [14] 1/2 3.62 £+ 0.04 3.93 £+ 0.08 1.79[14]
MNIST DenseNet-40-12 1/2 0.78 £ 0.04 0.88 £ 0.03 -

CIFAR10+ DenseNet-40-12 1/8 5.30 £ 0.26 5.54 +0.13 5.24 [14]
CIFAR10+ ResNet-110[11] 1/4 5.39 £ 0.25 6.05 £ 0.8 6.43[11]
CIFAR10+ VGG-19 [32] 1/4 7.13+0.2 7.37 £ 0.11 -
CIFAR10+ VGG-11 1/2 7.73+£0.14 8.06 + 0.22 -
CIFARIO VGG-16 [21] 1/2 7.22+0.14 8.23+0.13 7.58 [21]
CIFAR100+ PreResNet-110 [12] 1/20 22.8 +0.34 23.01 £ 0.19 22.68 + 0.22[12]
CIFAR100+ VGG-19 1/10 27.54 +0.11 28.04 4+ 0.42 -
CIFAR100 VGG-19 1/10 37.25 +0.33 38.15 + 0.28
FaceScrub-500 VGG-FACE [25] 250 1.55 + 0.02 2.49 + 0.01
STL-10 CNN-5 1/16 25.42 4+ 0.20 28.68 + 0.67 -
STL-10+ CNN-5 1/4 16.68 £ 0.24 18.22 £+ 0.27 21.34 [34]

Table 2. Visual classification results. L, is the proposed OLE loss, L is the standard softmax loss. The rightmost column shows published
performance for the corresponding architecture and dataset. Note that the implementations we used were not the same as the referenced
papers (except for [21]), so variations in the results can occur. When using OLE, networks generalize better than with softmax loss alone.

o :
59 [—training o [—training
m\v validation validation|| e 4

OLE loss
‘Accuracy

[—training
validation

150

0 200 250 300 50
poch

£ 00 E 700
Epoch Epoch

(a) (b) (©)

Figure 3. Learning curves. (a) OLE loss when used standalone.
Data and model from Fig 2c. (b) & (¢) OLE loss and accuracy
when used in combination with softmax loss for a ResNet-110 on
CIFAR10+. Learning rate drops by 0.1 at 81 and 122 epochs.

Figure 4. Validation of A (11) for the STL-10+ experiment. Based
on this graph, we chose A = 0.25 for the final training. The dotted
line is the average score obtained with the standard softmax loss.

4.4. Visual Classification Results

Table 2 shows the resulting classification performance,
with and without OLE. In all the experiments, we found a
value of \ through validation such that the generalization of
the network is improved. For reference, we include in the
last column the performance published in articles present-
ing the corresponding architecture for the same datasets.
Note that there could be implementation differences.

Compared to a state-of-the-art intra-class compactness
method [21] using VGG-16 on CIFAR10, the lowest classi-
fication error we obtained was 7.08%, compared to 7.58%
reported in [21]. Compared to the same network with only
the standard softmax loss, a relative reduction in the error
of more than 12% is obtained when adding the OLE loss.

The improvement in generalization performance is more
important when only scarce training data is available. In the

Facescrub-500 experiment, where less than 100 samples are
available per class on average, the error is reduced by 40%.
Fig. 5 illustrates how the advantage of using OLE is more
significant when fewer training data is available. We fixed
A = 0.25 and trained a CNN-5 (Table 1) on STL-10 without
data augmentation. We varied the number of samples from
just 50 to 500 training samples per class, repeating each
experiment 5 times.

In the STL-10+ experiment, the lowest classification
error rate on the test set we obtain is 16.43%, signifi-
cantly outperforming the reported state-of-the-art error rate
of 21.34% in [34]. Note that [34] uses the same training
data and data augmentation procedure.

4.5. Novelty Detection

In this subsection we further analyze the Facescrub-500
experiment and show that the OLE loss improves the nov-
elty detection capability of the network. The goal of novelty
detection [22, 27] is to identify images in the test set that do
not belong to any of the categories in the training set.

Of the 530 identities in the Facescrub dataset, we took
500 identities to form the Facescrub-500 dataset, and we
left the remaining 30 identities as the novel classes used to
assess novelty detection performance. We use all the images
from the novel classes for testing (3,220 in total).

Ideally, since the novel identities are none of the known

75

B Softmax + OLE
I Softmax

=
&

=
3

Accuracy (%)

50 100 200 300 400 500
Number of training samples per class

Figure 5. Accuracy versus number of samples. The improved gen-
eralization when using OLE is more significant when fewer train-
ing samples are available. For this experiment we used STL-10
without data augmentation and we average over 5 runs.

8115

Softmax+O.L.E unknown classes scores Softmax unknown classes scores

T

Accuracy (on known classes)

—Softmax + O.L.E. (AUC: 97.97%)
—Softmax (AUC: 95.85%)

9z 03 o4 05 05 07 08 09
False Positive Ratio

(@) (b) ©

Figure 6. Application to novelty detection. (a) Accuracy on 500
known identities versus ratio of the images of the 30 novel classes
that are wrongly classified as one of the known 500, when varying
a threshold on the class scores. When using the OLE loss, more
false positives can be avoided without losing classification perfor-
mance on the known classes. (b) & (¢) Histogram of the maximum
class scores for samples from the novel classes, with and without
OLE, respectively. In (b), scores are concentrated towards 1,/500,
whereas in (c¢), false high confidence scores are generally obtained.

500 subjects, their 500 class scores should all be low. We
observe that this is the case when using OLE, whereas when
using only the softmax loss, there is typically one class out
of the known 500 that will have a confident softmax score
(close to 1), see Fig. 6. To show this, we varied a thresh-
old t € [0, 1] over the softmax scores and defined the False
Positive Ratio (FPR), as the number of images of the novel
classes whose softmax score is higher than ¢. In Fig. 6(a) we
plot the model accuracy in the 500 known subjects against
the FPR. When using the OLE loss, the model is able to
reject most unknown classes without significant loss of ac-
curacy on the known 500. Fig. 6(b) shows the histogram of
softmax scores for images of the novel classes when using
OLE. Most of the scores are concentrated around 1 /500,
reflecting the low confidence the OLE network gives to the
novel classes. On the other hand, the network trained with
only the softmax loss gives high confidence scores to im-
ages of the novel classes, see Fig. 6(c).

We verified that the OLE deep network did not lose face
representation power in the novel classes by running the
standard verification benchmark on the Labeled Faces in the
Wild (LFW) [15]. We observed similar AUC (99.04% vs
99.12%) and verification performance (96.57% vs 96.64%)
for the models with and without the OLE loss, respectively.

4.6. Visualization of the Obtained Features

We illustrate the geometry of the learned deep features
using OLE in Fig. 1. In (a) and (b) we show a Barnes-Hut-
SNE visualization [35] of the obtained embedding for the
validation set of CIFAR10. The intra-class low-rank mini-
mization reduces the intra-class variance to only one dimen-
sion. The overall rank maximization produces more margin
(orthogonality) between classes.

In Fig. 1 (c) and (d), we show the angle between the deep

~-Softmax+O.L.E.
o9 ~-Softmax

o

Figure 7. Spectral analysis of the deep feature matrix obtained for
CIFAR10 validation data using VGG-16. We plot the normalized
singular values of the feature matrix with and without OLE. When
using OLE, the deep features are concentrated along 10 strong di-
mensions in the embedding space, corresponding to the linear sub-
spaces where the features are compacted. For the standard soft-
max, the energy is distributed more evenly.

features of (a) and (b). The 10,000 validation images are
ordered by class. With OLE, the relative angle is mostly 0
for images of the same class, and 90 for images of different
class. On the other hand, for the standard softmax loss, the
learned deep features have a larger intra-class spread, and
inter-class angles are not always orthogonal.

Finally, we show the spectral decomposition of the deep
feature matrices for CIFAR10 validation set in Fig. 7. With
OLE, the deep features are concentrated along 10 principal
dimensions, corresponding to the learned orthogonal linear
subspaces. For the softmax loss, the deep feature matrix has
its energy distributed along many directions, reflecting the
more spreading of the deep features vectors.

5. Conclusions

We proposed OLE, a novel objective function for deep
networks that simultaneously encourages intra-class com-
pactness and inter-class separation of the deep features. The
former is imposed as a low-rank constraint and the latter
as an orthogonalization constraint. The proposed OLE loss
can be used standalone as a classification loss or in combi-
nation with the standard softmax loss for improved perfor-
mance. We showed that OLE produces more discriminative
deep networks and deep representations whose energy in
the embedding space is concentrated in a few dimensions.
For classification, OLE is particularly effective when train-
ing data is scarce: using OLE, we significantly advance the
state-of-the-art classification performance in the standard
STL-10 benchmark. The proposed loss introduces a new
paradigm to deep metric learning and we believe it will be a
valuable tool in applications where a linear subspace struc-
ture or orthogonality in the deep representations is required.

Acknowledgments

José Lezama was supported by ANII (Uruguay) grant
PD_NAC_2015.1_108550. Work partially supported by
NSF, NIH, ONR, NGA, ARO, AFOSR, and Google.

8116

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang,
and Nanning Zheng. Person re-identification by multi-
channel parts-based CNN with improved triplet loss
function. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
1335-1344, 2016. 1, 2

Brian Cheung, Jesse A Livezey, Arjun K Bansal,
and Bruno A Olshausen. Discovering hidden fac-
tors of variation in deep networks. arXiv preprint
arXiv:1412.6583,2014. 3

Sumit Chopra, Raia Hadsell, and Yann LeCun. Learn-
ing a similarity metric discriminatively, with applica-
tion to face verification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, volume 1, pages 539-546. IEEE, 2005. 2

Adam Coates, Andrew Ng, and Honglak Lee. An anal-
ysis of single-layer networks in unsupervised feature
learning. In Proceedings of the fourteenth Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 215-223, 2011. 2,5

Michael Cogswell, Faruk Ahmed, Ross Girshick,
Larry Zitnick, and Dhruv Batra. Reducing overfit-
ting in deep networks by decorrelating representa-
tions. arXiv preprint arXiv:1511.06068, 2015. 3

Guillaume Desjardins, Karen Simonyan, Razvan Pas-
canu, et al. Natural neural networks. In Advances in
Neural Information Processing Systems, pages 2071—
2079, 2015. 3

Xavier Glorot and Yoshua Bengio. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics,
pages 249-256, 2010. 6

Raia Hadsell, Sumit Chopra, and Yann LeCun. Di-
mensionality reduction by learning an invariant map-
ping. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 2, pages
1735-1742. IEEE, 2006. 1, 2

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross
Girshick. Mask R-CNN. 2017. 1

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1026-1034, 2015. 6

[11]

[12]

[17]

8117

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770-778, 2016.
1,2,6,7

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Identity mappings in deep residual networks.
In European Conference on Computer Vision, pages
630-645. Springer, 2016. 2, 6,7

Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discrimi-
native deep metric learning for face verification in the
wild. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1875—
1882, 2014. 1,2

Gao Huang, Zhuang Liu, Kilian Q Weinberger, and
Laurens van der Maaten. Densely connected convo-
lutional networks. arXiv preprint arXiv:1608.06993,
2016. 1,2,6,7

Gary B Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller. Labeled faces in the wild: A database
for studying face recognition in unconstrained envi-
ronments. Technical report, Technical Report 07-49,
University of Massachusetts, Amherst, 2007. 8

Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann,
and Tan Reid. Deep subspace clustering networks.
arXiv preprint arXiv:1709.02508, 2017. 3

Vahid Kazemi and Josephine Sullivan. One millisec-
ond face alignment with an ensemble of regression
trees. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2014. 5

Alex Krizhevsky and Geoffrey Hinton. Learning mul-
tiple layers of features from tiny images. 2009. 1, 5

Chen-Yu Lee, Saining Xie, Patrick Gallagher,
Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. In Artificial Intelligence and Statis-
tics, pages 562-570, 2015. 1

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li,
Bhiksha Raj, and Le Song. Sphereface: Deep hyper-
sphere embedding for face recognition. arXiv preprint
arXiv:1704.08063,2017. 1,3, 5

Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng
Yang. Large-margin softmax loss for convolutional
neural networks. In International Conference on Ma-
chine Learning, pages 507-516, 2016. 1, 2, 3, 5, 6,
7

(22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

Amit Mandelbaum and Daphna Weinshall. Distance-
based confidence score for neural network classifiers.
arXiv preprint arXiv:1709.09844, 2017. 7

Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning.
In NIPS workshop on deep learning and unsupervised
feature learning, volume 2011, page 5, 2011. 5

Hong-Wei Ng and Stefan Winkler. A data-driven ap-
proach to cleaning large face datasets. In Image Pro-
cessing (ICIP), 2014 IEEE International Conference
on, pages 343-347. IEEE, 2014. 5

O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep
face recognition. In British Machine Vision Confer-
ence,2015. 1,6, 7

Xi Peng, Jiashi Feng, Shijie Xiao, Jiwen Lu, Zhang Yi,
and Shuicheng Yan. Deep sparse subspace clustering.
arXiv preprint arXiv:1709.08374,2017. 3

Marco AF Pimentel, David A Clifton, Lei Clifton, and
Lionel Tarassenko. A review of novelty detection. Sig-
nal Processing, 99:215-249, 2014. 7

Qiang Qiu and Guillermo Sapiro. Learning transfor-
mations for clustering and classification. Journal of
Machine Learning Research, 16(187-225):2, 2015. 2,
3,4

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo.
Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM re-
view, 52(3):471-501, 2010. 3,4

Oren Rippel, Manohar Paluri, Piotr Dollar, and
Lubomir Bourdev. Metric learning with adaptive den-
sity discrimination. arXiv preprint arXiv:1511.05939,
2015. 3

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. Facenet: A unified embedding for face recog-
nition and clustering. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 815-823, 2015. 1,2

Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014. 1, 2, 6,
7

Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou
Tang. Deep learning face representation by joint
identification-verification. In Advances in Neural
Information Processing Systems, pages 1988-1996,
2014. 1,2

[34]

8118

Martin Thoma. Analysis and optimization of convo-
lutional neural network architectures. arXiv preprint
arXiv:1707.09725,2017. 7

Laurens Van Der Maaten. Barnes-Hut-SNE. arXiv
preprint arXiv:1301.3342, 2013. 2, 8

Rene Vidal, Yi Ma, and Shankar Sastry. Generalized
principal component analysis (GPCA). IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
27(12):1945-1959, 2005. 3

G Alistair Watson. Characterization of the subdiffer-
ential of some matrix norms. Linear algebra and its
applications, 170:33-45, 1992. 4

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and
Yu Qiao. A discriminative feature learning approach
for deep face recognition. In European Conference on
Computer Vision, pages 499-515. Springer, 2016. 1,
2,3,5

