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Abstract
Filters in a Convolutional Neural Network (CNN)
contain model parameters learned from enormous
amounts of data. In this paper, we suggest to
decompose convolutional filters in CNN as a trun-
cated expansion with pre-fixed bases, namely
the Decomposed Convolutional Filters network
(DCFNet), where the expansion coefficients re-
main learned from data. Such a structure not only
reduces the number of trainable parameters and
computation, but also imposes filter regularity by
bases truncation. Through extensive experiments,
we consistently observe that DCFNet maintains
accuracy for image classification tasks with a sig-
nificant reduction of model parameters, particu-
larly with Fourier-Bessel (FB) bases, and even
with random bases. Theoretically, we analyze the
representation stability of DCFNet with respect to
input variations, and prove representation stabil-
ity under generic assumptions on the expansion
coefficients. The analysis is consistent with the
empirical observations.

1. Introduction
Convolutional Neural Network (CNN) has become one of
the most successful computational models in machine learn-
ing and artificial intelligence. Remarkable progress has been
achieved in the design of successful CNN network struc-
tures, such as the VGG-Net (Simonyan & Zisserman, 2014),
ResNet (He et al., 2016), and DenseNet (Huang et al., 2016).
Less attention has been paid to the design of filter structures
in CNNs. Filters, namely the weights in the convolutional
layers, are one of the most important ingredients of a CNN
model, as filters contain the actual model parameters learned
from enormous amounts of data. Filters in CNNs are typi-
cally randomly initialized, and then updated using variants
and extensions of gradient descent (“back-propagation”).
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Figure 1. In a DCFNet, an L× L×M ′ ×M convolutional layer
is decomposed into the product of K bases of size L × L (Ψ)
and KM ′ ×M coefficients (a), where Ψ is pre-fixed, and a is
learned from data. The basis can carry prior (explainable) structure
if available.

As a result, trained CNN filters have no specific structures,
which often leads to significant redundancy in the learned
model (Denton et al., 2014; Han et al., 2015; Iandola et al.,
2016). Filters with improved properties will have a direct
impact on the accuracy and efficiency of CNN, and the theo-
retical analysis of filters is also of central importance to the
mathematical understanding of deep networks.

This paper suggests to decompose convolutional filters in
CNN into a truncated expansion with pre-fixed bases in
the spatial domain, namely the Decomposed Convolutional
Filters network (DCFNet), where the expansion coefficients
remain learned from data. By representing the filters in
terms of functional bases, which can come from prior data
or task knowledge, rather than as pixel values, the number of
trainable parameters is reduced to the expansion coefficients;
and furthermore, regularity conditions can be imposed on
the filters via the truncated expansion. For image classifi-
cation tasks, we empirically observe that DCFNet is able
to maintain the accuracy with a significant reduction in the
number of parameters. Such observation holds even when
random bases are used.

In particular, we adopt in DCFNet the leading Fourier-
Bessel (FB) bases (Abramowitz & Stegun, 1964), which
correspond to the low-frequency components in the input.
We experimentally observe the superior performance of
DCFNet with FB bases (DCF-FB) in both image classifi-
cation and denoising tasks. DCF-FB network reduces the
response to the high-frequency components in the input,
which are least stable under image variations such as de-
formation and often do not affect recognition after being
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suppressed. Such an intuition is further supported by a
mathematical analysis of the CNN representation, where we
firstly develop a general result for the CNN representation
stability when the input image undergoes a deformation,
under proper boundedness conditions of the convolutional
filters (Propositions 3.1, 3.3, 3.4). After imposing the DCF
structure, we show that as long as the trainable expansion
coefficients at each layer of a DCF-FB network satisfy a
boundedness condition, the L-th-layer output is stable with
respect to input deformation and the difference is bounded
by the magnitude of the distortion (Theorems 3.7, 3.8).

Apart from FB bases, the DCFNet structure studied in this
paper is compatible with general choices of bases, such
as standard Fourier bases, wavelet bases, random bases
and PCA bases. We numerically test several options in
Section 4. The stability analysis for DCF-FB networks can
be extended to other bases choices as well, based upon the
general theory developed for CNN representation and using
similar techniques.

Our work is related to recent results on the topics of the
usage of bases in deep networks, the model reduction of
CNN, as well as the stability analysis of the deep represen-
tation. We review these connections in Section 1.1. Finally,
though the current paper focuses on supervised networks
for classification and recognition applications in image data,
the introduced DCF layers are a generic concept and can
potentially be used in reconstruction and generative models
as well. We discuss possible extensions in the last section.

1.1. Related works

Deep network with bases and representation stability.
The usage of bases in deep networks has been previously
studied, including wavelet bases, PCA bases, learned dic-
tionary atoms, etc. Wavelets are a powerful tool in signal
processing (Mallat, 2008) and have been shown to be the
optimal basis for data representation under generic settings
(Donoho & Johnstone, 1994). As a pioneering mathemati-
cal model of CNN, the scattering transform (Mallat, 2012;
Bruna & Mallat, 2013; Sifre & Mallat, 2013) used pre-fixed
weights in the network which are wavelet filters, and showed
that the representation produced by a scattering network is
stable with respect to certain variations in the input. The
extension of the scattering transform has been studied in
(Wiatowski & Bölcskei, 2015; 2017) which includes a larger
class of bases used in the network. Apart from wavelet, deep
network with PCA bases has been studied in (Chan et al.,
2015). Making a connection to dictionary learning (Aharon
et al., 2006), (Papyan et al., 2016) studied deep networks
in form of a cascade of convolutional sparse coding lay-
ers with theoretical analysis. Deep networks with random
weights have been studied in (Giryes et al., 2016), with
proved representation stability. The DCFNet studied in this

paper incorporates structured pre-fixed bases combined by
adapted expansion coefficients learned from data in a super-
vised way, and demonstrates comparable and even improved
classification accuracy on image datasets. While the com-
bination of fixed bases and learned coefficients has been
studied in classical signal processing (Freeman et al., 1991;
Mahalanobis et al., 1987), dictionary learning (Rubinstein
et al., 2010) and computer vision (Henriques et al., 2013;
Bertinetto et al., 2016), they were not designed with deep
architectures in mind. Meanwhile, the representation sta-
bility of DCFNet is inherited thanks to the filter regularity
imposed by the truncated bases decomposition.

Network redundancy. Various approaches have been stud-
ied to suppress redundancy in the weights of trained CNNs,
including model compression and sparse connections. In
model compression, network pruning has been studied in
(Han et al., 2015) and combined with quantization and Huff-
man encoding in (Han et al., 2016). (Chen et al., 2015) used
hash functions to reduce model size without sacrificing gen-
eralization performance. Low-rank compression of filters
in CNN has been studied in (Denton et al., 2014; Ioannou
et al., 2015). (Iandola et al., 2016; Lin et al., 2014) ex-
plored model compression with specific CNN architectures,
e.g., replacing regular filters with 1× 1 filters. Sparse con-
nections in CNNs have been recently studied in (Ioannou
et al., 2016; Anwar et al., 2017; Changpinyo et al., 2017).
On the theoretical side, (Bölcskei et al., 2017) showed that
a sparsely-connected network can achieve certain asymp-
totic statistical optimality. The proposed DCFNet relates
model redundancy compression to the regularity conditions
imposed on the filters. In DCF-FB network, redundancy
reduction is achieved by suppressing network response to
the high-frequency components in the inputs.

2. Decomposed Convolutional Filters
2.1. Notations of CNN

The output at the l-th layer of a convolutional neural net-
work (CNN) can be written as {x(l)(u, λ)}u∈R2,λ∈[Ml],
where Ml is the number of channels in that layer
and [M ] = {1, · · · ,M} for any integer M . A
CNN with L layers can be written as a mapping from
{x(0)(u, λ)}u∈R2,λ∈[M0] to {x(L)(u, λ)}u∈R2,λ∈[ML], re-
cursively defined via x(l)(u, λ) = σ(x

(l)
1
2

(u, λ) + b(l)(λ)),
σ being the nonlinear mapping, e.g., ReLU, and

x
(l)
1
2

(u, λ) =

Ml−1∑
λ′=1

∫
W

(l)
λ′,λ(v′)x(l−1)(u+ v′, λ′)dv′. (1)

The filtersW (l)
λ′,λ(u) and the biases b(l) are the parameters of

the CNN. In practice, both x(l)(u, λ) and W (l)
λ′,λ(u) are dis-

cretized on a Cartesian grid, and the continuous convolution
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Figure 2. (Left) Multi-scale convolutional filters and Fourier-Bessel bases in various scales, j0 ≤ · · · ≤ jl · · · ≤ J . (Right) L× L Gabor
filters in 8 directions in size of, L = 11, and the approximation by K leading FB bases with a reduction rate of K

L2 = 1
3

. The truncation
incurs almost no change to the filters. The leading FB bases are shown in the middle panel. Images rescaled for illustration purpose.

in (1) is approximated by its discrete analogue. Through-
out the paper we use the continuous spatial variable u for
simplicity. Very importantly, the filters W (l)

λ′,λ(u) are locally
supported, e.g., on 3× 3 or 5× 5 image patches.

2.2. Decomposition of convolutional filters

CNNs typically represent and store filters as vectors of the
size of the local patches, which is equivalent to expanding
the filters under the delta bases. Delta bases are not opti-
mal for representing smooth functions. For example, regu-
lar functions have fast decaying coefficients under Fourier
bases, and natural images have sparse representation under
wavelet bases. DCF layers represent the convolutional fil-
ters as a truncated expansion under basis functions which
are non-adapted through the training process, while adap-
tion comes via the combination of such bases. Specifically,
suppose that the convolutional filters Wλ′,λ(u) at certain
layer, after a proper rescaling of the spatial variable (de-
tailed in Section 3), are supported on the unit disk D in R2.
Given a bases {ψk}k of the space L2(D), the filters can be
represented as

Wλ′,λ(u) =
K∑
k=1

(aλ′,λ)kψk(u), (2)

where K is the truncation. The decomposition (2) is illus-
trated in Figure 1, and conceptually, it can be viewed as a
two-step scheme of a convolutional layer:

1. (Ψ-step) the input is convolved with each of the basis
ψk, k = 1, · · · ,K, which are pre-fixed. The convolu-
tion for each input channel is independent from other
channels, adding computational efficiency.

2. (a-step) the intermediate output is linearly trans-
formed by an effectively fully-connected weight ma-
trix (aλ′,λ)k mapping from index (λ′, k) to λ, which
is adapted to data.

In (2), ψk can be any bases, and we numerically test on
different choices in Section 4, including data-adapted bases
and random bases. All experiments consistently show that
the convolutional layers can be drastically decomposed and
compressed with almost no reduction on the classification
accuracy, and sometimes even using random bases gives
strong performance. In particular, motivated by classical
results of harmonic analysis, we use FB bases in DCFNet,
with which the regularity of the filters Wλ′,λ can be im-
posed though constraining the magnitude the coefficients
{(aλ′,λ)k}k (Proposition 3.6). As an example, Gabor filters
approximated using the leading FB bases are plotted in the
right of Figure 2. In experiments, DCFNet with FB bases
shows superior performance in image classification and de-
noising tasks compared to original CNN and other bases
being tested (Section 4). Theoretically, Section 3 analyzes
the representation stability of DCFNet with respect to input
variations, which provides a theoretical explanation of the
advantage of FB bases.

2.3. Parameter and computation reduction

Suppose that the original convolutional layer is of size L×
L×M ′ ×M , as shown in Figure 1, where typically L = 3,
5 and usually less than 11, M ′ and M grow from 3 (number
of input channels) to a few hundreds in the deep layers in
CNN. After switching to the DCFNet as in (2), there are
M ′×M×K tunable parameters (aλ′,λ)k. Thus the number
of parameters in that layer is a factor K

L2 smaller, which can
be significant if K is allowed to be small, particularly when
M ′ and M are large.

The theoretical computational complexity can be calculated
directly. Suppose that the input and output activation is
W × W in spatial size, the original convolutional layer
needs M ′W 2 ·M(1 + 2L2) flops (the number of convolu-
tion operations is M ′M , each take 2L2W 2 flops, and the
summation over channels take an extra W 2M ′M ). In con-
tract, a DCF layer takesM ′W 2 ·2K(L2 +M) flops, (M ′K
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many convolutions in the Ψ step, and 2KM ′MW 2 flops in
the a step). Thus when M � L2, the leading computation
cost is K

L2 of that of a regular CNN layer.

The reduction rate of K
L2 in both model complexity and theo-

retical computational flops is confirmed on actual networks
used in experiments, c.f. Table 3.

3. Analysis of Representation Stability
The analysis in this section is firstly done for regular CNN
and then the conditions on filters are reduced to generic
conditions on learnt coefficients in a DCF Net. In the latter,
the proof is for the Fourier-Bessel (FB) bases, and can be
extended to other bases using similar techniques.

3.1. Stable representation by CNN

We consider the spatial deformation operator denoted by
Dτ , where τ : R2 → R2 and is C2, ρ(u) = u− τ(u), and

Dτx(u, λ) = x(ρ(u), λ), ∀u, λ.

We assume that the distortion is controlled, and specifically,

(A0) |∇τ |∞ = supu ‖∇τ(u)‖ < 1
5 , ‖ · ‖ being the

operator norm.

The choice of the constant 1
5 is purely technical. Thus

ρ−1 exists, at least locally. Our goal is to control
‖x(L)[Dτx

(0)]− x(L)[x(0)]‖, namely when the input under-
goes a deformation the output at L-the layer is not severely
changed. We achieve this in two steps: (1) We show that
‖Dτx

(L)[x(0)] − x(L)[Dτx
(0)]‖ is bounded by the magni-

tude of deformation up to a constant proportional to the
norm of the signal, c.f. Proposition 3.3. (2) We show that
x(L) is stable under Dτ when L is large, c.f. Proposition
3.4. To proceed, define the L2 norm of x(u, λ) to be

‖x‖2 =
1

M

∑
λ∈[M ]

1

|Ω|

∫
R2

|x(u, λ)|2du, (3)

where |Ω|2 = (2 · 2J)2 is the area of the image-support
domain, c.f. Figure 2. We assume that

(A1) σ : R→ R is non-expansive,

which holds for ReLU. We also define the constants

Bl := max{sup
λ

Ml−1∑
λ′=1

‖W (l)
λ′,λ‖1, sup

λ′

Ml−1

Ml

Ml∑
λ=1

‖W (l)
λ′,λ‖1},

Cl := max{sup
λ

Ml−1∑
λ′=1

‖|v||∇W (l)
λ′,λ(v)|‖1,

sup
λ′

Ml−1

Ml

Ml∑
λ=1

‖|v||∇W (l)
λ′,λ(v)|‖1}, (4)

where ‖|v||∇W (v)|‖1 denotes
∫
R2 |v||∇W (v)|dv.

Firstly, the following proposition shows that the layer-wise
mapping is non-expansive whenever Bl ≤ 1, the proof of
which is left to Supplementary Material (S.M.).

Proposition 3.1. In a CNN, under (A1), if Bl ≤ 1 for all l,

(a) The mapping of the l-th convolutional layer (including σ),
denoted as x(l)[x(l−1)], is non-expansive, i.e., ‖x(l)[x1] −
x(l)[x2]‖ ≤ ‖x1 − x2‖ for arbitrary x1 and x2.

(b) ‖x(l)c ‖ ≤ ‖x(l−1)c ‖ for all l, where x
(l)
c (u, λ) =

x(l)(u, λ)−x(l)0 (λ) is the centered version of x(l), x(l)0 being
the output at the l-th layer from a zero input at the bottom
layer. As a result, ‖x(l)c ‖ ≤ ‖x(0)c ‖ = ‖x(0)‖.

To switch the operator Dτ with the L-layer mapping
x(L)[x(0)], the idea is to control the residual of the switching
at each layer, which is the following lemma proved in S.M..

Lemma 3.2. In a CNN, under (A0) (A1), Bl, Cl as in (4),

‖Dτx
(l)[x(l−1)]− x(l)[Dτx

(l−1)]‖
≤ 4(Bl + Cl) · |∇τ |∞‖x(l−1)c ‖,

where x(l)c is as in Proposition 3.1.

We thus impose the assumption on the filters to be

(A2) For all l, Bl and Cl as in (4) are less than 1.

The assumption (A2) corresponds to a proper scaling of
the convolutional filters so that the mapping in each con-
volutional layer is non-expansive (Proposition 3.1), and in
practice, this can be qualitatively maintained by the standard
normalization layers in CNN.

Now we can bound the residual of a L-layer switching to be
additive as L increases:

Proposition 3.3. In a CNN, under (A0), (A1), (A2),

‖Dτx
(L)[x(0)]− x(L)[Dτx

(0)]‖ ≤ 8L|∇τ |∞‖x(0)‖. (5)

Proof is left to S.M. We remark that it is possible to derive a
more technical bound in terms of the constants Bl, Cl with-
out assuming (A2), using the same technique. We present
the simplified result here.

In the later analysis of DCF Net, (A2) will be implied by
a single condition on the bases expansion coefficients, c.f.
(A2’).

To be able to control ‖Dτx
(L) − x(L)‖, we have the follow-

ing proposition, proved in S.M.

Proposition 3.4. In a CNN, under (A1),

‖Dτx
(l) − x(l)‖ ≤ 2|τ |∞Dl‖x(l−1)c ‖,
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where x
(l)
c is as in Proposition 3.1, and Dl :=

max{supλ
∑Ml−1

λ′=1 ‖∇W
(l)
λ′,λ‖1, supλ′

Ml−1

Ml

∑Ml

λ=1 ‖∇W
(l)
λ′,λ‖1}.

One may notice that |τ |∞ is not proportional to |∇τ |∞ when
the deformation happens on a large domain, e.g., a rotation.
It turns out that the multi-scale architecture of CNN induces
a decrease of the quantity Dl proportional to the inverse
of the domain diameter, which compensate the increase
of |τ |∞ as scale grows, as long as the rescaled filters are
properly bounded in integral. Thus a unified deformation
theory can be derived for DCFNets, see next section.

3.2. Multi-scale filters and Fourier Bessel (FB) bases

Due to the downsampling (“pooling”) in CNN, the sup-
port of the l-th layer filters W (l)

λ′,λ enlarges as l increases.
Suppose that the input is supported on Ω which is a
(2 · 2J) × (2 · 2J) domain, and the CNN has L layers. In
accordance with the 2× 2 pooling, we assume that W (l)

λ′,λ is
supported on D(jl), vanishing on the boundary, where D(j)
is a disk of radius 2j , j0 ≤ · · · ≤ jL ≤ J , and D(j0) is of
size of patches at the smallest scale. Let {ψk}k be a set of
bases supported on the unit disk D(0), and we introduce the
rescaled bases

ψj,k(u) = 2−2jψk(2−ju), u ∈ D(j),

where the normalization 2−2j is introduced so that
‖ψj,k‖1 = ‖ψk‖1, where ‖f‖1 :=

∫
R2 |f(u)|du. The mul-

tiscale filters and bases are illustrated in the left of Figure 2.
By (2), we have that

W
(l)
λ′,λ(u) =

∑
k

(a
(l)
λ′,λ)kψjl,k(u), u ∈ D(jl). (6)

While DCFNet is compatible with general choices of bases,
we focus on the FB bases in this section as an example.
FB bases ψk are indexed by k = (m, q) where m and q
are the angular and radial frequencies respectively. They
are supported on the unit disk D = D(0), and in polar
coordinates,

ψm,q(r, θ) = cm,qJm(Rm,qr)e
imθ, r ∈ [0, 1], θ ∈ [0, 2π],

where Jm is the Bessel function of the first kind, m are
integers, q = 1, 2, · · · , Rm,q is the q-th root of Jm, and
cm,q is the normalizing constant s.t. 〈ψm,q, ψm′,q′〉 =∫
D
ψm,q(u)ψ∗m′,q′(u)du = πδm,m′δq,q′ . Furthermore, FB

bases are eigenfunctions of the Dirichlet Laplacian on D,
i.e., −4ψk = µkψk, where µm,q = R2

m,q . The eigenvalue
µk grows as k increases (Weyl’s law). Thus FB bases can be
ordered by k so that µk increases, of which the leading few
are shown in Table 1 and illustrated in Fig. 2. In principle,
the frequency q and m should be truncated according to
the Nyquist sampling rate. This truncation turned out to be

k 1 2,3 4,5 6 7,8 9,10 11,12 13,14
m 0 1 2 0 3 1 4 2
q 1 1 1 2 1 2 1 2
µk 5.78 14.68 26.37 30.47 40.71 49.22 57.58 70.85

Table 1. The angular frequency m, radial frequency q and Dirich-
let eigenvalue µk of the first 14 Fourier-Bessel bases. Two k
corresponds to one pair of (m, q) when m 6= 0 due to that both
real and complex parts of the bases are used as real-valued bases.

not often used in our setting, due to the significant bases
truncation in DCFNet.

The key technical quantities in the stability analysis of CNN
are ‖W (l)

λ′,λ‖1 and ‖|v||∇W (l)
λ′,λ(v)|‖1, and with FB bases,

these integrals are bounded by a µk-weighted L2-norm of
a
(l)
λ′,λ defined as ‖a‖FB = (

∑
k µka

2
k)1/2 for all l. The

following lemma and proposition are proved in S.M.
Lemma 3.5. Suppose that {ψk} are FB bases, the function
F (u) =

∑
k akψk(u) is smooth on the unit disk. Then

1√
π
‖∇F‖2 = ‖a‖FB , where µk are the eigenvalues of ψk

as eigenfunctions of the negative Dirichlet laplacian on the
unit disk. As a result, ‖∇F‖1 ≤ π‖a‖FB .

Proposition 3.6. Using FB bases, ‖|v||∇W (l)
λ′,λ(v)|‖1 and

‖W (l)
λ′,λ‖1 are bounded by π‖a(l)λ′,λ‖FB for all λ′, λ and l.

Notice that the boundedness of ‖a‖FB implies a decay of
|ak| at least as fast as µ−1/2k . This justifies the truncation of
the FB expansion to the leading few bases, which correspond
to the low-frequency modes.

Proposition 3.6 implies that Bl and Cl are all bounded by
Al defined as

Al := πmax{sup
λ

Ml−1∑
λ′=1

‖a(l)λ′,λ‖FB ,

sup
λ′

Ml−1

Ml

Ml∑
λ=1

‖a(l)λ′,λ‖FB}.

Then we introduce

(A2’) For all l, Al ≤ 1,

and the result of Proposition 3.3 extends to DCFNet:
Theorem 3.7. In a DCFNet with FB bases, under (A0),(A1),
(A2’), then

‖Dτx
(L)[x(0)]− x(L)[Dτx

(0)]‖ ≤ 8L|∇τ |∞‖x(0)‖.

Combined with Proposition 3.4, we have the following de-
formation stability bound, proved in S.M.:
Theorem 3.8. In a DCFNet with FB bases, under (A0),(A1),
(A2’),

‖x(L)[x(0)]− x(L)[Dτx
(0)]‖

≤ (8L|∇τ |∞ + 2 · 2−jL |τ |∞)‖x(0)‖.
(7)
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Figure 3. Example convolutional filters (upper) and network outputs (bottom) in the second layer of a Conv-2 net trained on MNIST (left)
and the corresponding DCFNet using 3 FB bases (right). The filters in DCFNet are visibly smoother than those in the CNN, so are the
network outputs. Classification accuracy of the two networks is comparable, c.f. Table 3.

4. Experiments
In this section, we experimentally demonstrate that convo-
lutional filters in CNN can be decomposed as a truncated
expansion with pre-fixed bases, where the expansion coef-
ficients remain learned from data. Though the number of
trainable parameters are significantly reduced, the accuracy
in tasks such as image classification and face verification
is still maintained. Such empirical observations hold for
data-independent Fourier-Bessel (FB) and random bases,
and data-dependent PCA bases.

4.1. Datasets

We perform an experimental evaluation on DCFNets using
the following public datasets:

MNIST. 28 × 28 grayscale images of digits from 0 to 9,
with 60,000 training and 10,000 testing samples.

SVHN. The Street View House Numbers (SVHN) dataset
(Netzer et al., 2011) contains 32× 32 colored images of dig-
its 0 to 9, with 73,257 training and 26,032 testing samples.
The additional training images were not used.

CIFAR10. The dataset (Krizhevsky, 2009) contains 32×32
colored images from 10 object classes, with 50,000 training

Conv-2 Conv-3
c5x5x1x16 ReLu mp3x3 c5x5x3x64 ReLu mp3x3
c5x5x16x64 ReLu mp3x3 c5x5x64x128 ReLu mp3x3
fc128 ReLu fc10 c5x5x128x256 ReLu mp3x3

fc512 ReLu fc10

Table 2. CNN network architectures used in MNIST, SVHN,
and CIFAR10 experiments. cLxLxM ′xM stands for a convo-
lutional layer of patch size LxL and input (output) channel M ′

(M ). mpLxL stands for LxL max-pooling. For the correspond-
ing DCFNets, each LxLxM ′xM CNN conv layer is expended
over K L × L bases for trainable coefficients implemented as a
1× 1×M ′K ×M conv layer.

and 10,000 testing samples.

VGG-Face. A large-scale face dataset, which contains
about 2.6M face images from over 2.6K people (Parkhi
et al., 2015). 1

4.2. Object classification

In our object classification experiments, we evaluate the
DCFNet with three types of predefined bases: Fourier-
Bessel bases (DCF-FB), random bases which are gener-
ated by Gaussian vectors (DCF-RB), and PCA bases which
are principal components of the convolutional filters in a
pre-trained corresponding CNN model (DCF-PCA).

Three CNN network architectures are used for classifica-
tion, Conv-2 and Conv-3 shown in Table 2, and VGG-16
(Simonyan & Zisserman, 2014). To generate the correspond-
ing DCFNet structure from CNN, each CNN conv layer is
expended over a set of pre-defined bases, and the obtained
trainable expansion coefficients are implemented as a 1× 1
conv layer. For example, a 5× 5×M ′ ×M conv layer is
expended over K 5 × 5 bases for trainable coefficients in
a 1 × 1 ×M ′K ×M convolutional layer. K denotes the
number of basis used, and we evaluate multiple K for differ-
ent levels of parameter reduction. In order to be compatible
with existing deep learning frameworks, pre-fixed bases are
currently implemented as regular convolutional layers with
zero learning rate. The additional memory cost incurred in
such convenient implementation can be eliminated with a
more careful implementation, as bases are pre-fixed and the
addition across channels can be computed on the fly.

The classification accuracy using DCFNets on various
datasets are shown in Table 3. We observe that, by us-
ing only 3 Fourier-Bessel (FB) bases, we already obtain
comparable accuracy as the original full CNN models on all

1The software is publicly available at https://github.
com/xycheng/DCFNet.

https://github.com/xycheng/DCFNet
https://github.com/xycheng/DCFNet
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39.26 dB       32.97 dB      40.51 dB

Original         CNN         DCF-rb       DCF-fb

44.54 dB       29.67 dB       39.56 dB

51.03 dB       35.54 dB       44.50 dB

46.46 dB       29.51 dB       38.79 dB

44.33 dB       28.47 dB       39.20 dB

43.15 dB       26.01 dB       37.95 dB

(a) Original

  

Noisy           CNN         DCF-rb       DCF-fb

23.67 dB       30.11 dB       24.71 dB       32.07 dB

23.60 dB       30.15 dB       23.67 dB       31.99 dB

23.58 dB       30.27 dB       24.65 dB       32.39 dB

23.76 dB       30.13 dB       23.79 dB       31.48 dB

23.61 dB       30.25 dB       23.77 dB       32.14 dB

23.60 dB       30.03 dB       22.51 dB       31.52 dB

(b) Gaussian noise

  

Noisy           CNN         DCF-rb      DCF-fb

22.80 dB       31.34 dB       24.77 dB       32.71 dB

18.32 dB       25.97 dB       19.30 dB       28.55 dB

21.78 dB       29.14 dB       22.92 dB       32.05 dB

22.79 dB       30.03 dB      22.71 dB       32.49 dB

18.21 dB      25.78 dB       19.38 dB       28.16 dB

19.04 dB       26.34 dB       19.14 dB       28.51 dB

(c) Speckle noise

Figure 4. Examples (randomly selected) of image denoising on the SVHN dataset with PSNR values shown. The average PSNR over the
entire test set including 26,032 samples: with Gaussian noise, 30.01 for CNN, 31.24 for DCF-fb; with Speckle noise, 28.15 for CNN,
29.84 for DCF-fb.

datasets, while using 12% parameters for 5×5 filters. When
more FB bases are used, DCFNets outperform correspond-
ing CNN models, still with significantly less parameters.
As FB bases correspond to the low-frequency components
in the inputs, DCF-FB network responds less to the high-
frequency nuance details, which are often irrelevant for
classification tasks. The superiority of DCF-FB network is
further shown with less training data. For SVHN with 500
training samples, the testing accuracy (on a 50,000 testing
set) of regular CNN and DCF-FB are 63.88% and 66.79%
respectively. With 1000 training samples, the test accuracy
are 73.53% v.s. 75.45%. Surprisingly, we observe that DCF
with random bases also report acceptable performance.

Both the FB and random bases are data independent. For
comparison purposes, we also evaluate DCFNets with data
dependent PCA bases, which are principal components of
corresponding convolutional filters in pre-trained CNN mod-
els. When the CNN model is pre-trained with all training
data, PCA bases (pca-f) shows comparable performance as
FB bases. However, the quality of the PCA bases (pca-s)
degenerates, when only a randomly selected subset of the
training set is used for the pre-training.

4.3. Image denoising

To gain intuitions behind the superior classification perfor-
mance of DCFNet, we conduct a set of “toy” image de-
noising experiments on the SVHN image dataset. We take
the first three 5 × 5 convolution blocks from the Conv-3
CNN network in Table 2, which is used in our SVHN object

classification experiments. We remove all pooling layers,
and append at the end an FC-256 followed with a Euclidean
loss layer. We then decompose each 5 × 5 conv layer in
this CNN network over 3 random bases and 3 FB bases
respectively, to produce DCF-RB and DCF-FB networks.

We use SVHN training images with their gray-scale ver-
sion as labels to train all three networks to simply recon-
struct an input image (in gray-scale). Figure 4 shows how
three trained networks behave while reconstructing exam-
ples from the SVHN testing images. Without noise added
to input images, Figure 4a, all three networks report de-
cent reconstruction, while DCF-RB shows inferior to both
CNN and DCF-FB. PSNR values indicate CNN often pro-
duces more precise reconstructions; however, those missing
high-frequency components in DCF-FB reconstructions are
mostly nuance details. With noise added as in figures 4b
and 4c, DCF-FB produces significantly superior reconstruc-
tion over both CNN and DCF-RB, with about one tenth of
the parameter number of CNN.

The above empirical observations clearly indicate that
Fourier-Bessel bases, which correspond to the low-
frequency components in the inputs, enable DCF to ignore
the high-frequency nuance details, which are often less sta-
ble under input variations, and mostly irrelevant for tasks
such as classification. Such empirical observation provides
good intuitions behind the superior classification perfor-
mance of DCF, and is also consistent with the theoretical
analysis on representation stability in Section 3.
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MNIST conv-2, 5x5
fb rb pca-s pca-f # param. # MFlops

CNN 99.40 2.61×104 3.37
K=14 99.47 99.35 99.38 99.41 1.46×104 2.40
K=8 99.48 99.26 99.28 99.45 8.40×103 1.37
K=5 99.39 99.28 99.28 99.43 5.28×103 0.86
K=3 99.40 98.69 99.19 99.35 3.20×103 0.51

SVHN conv-3, 5x5
fb rb pca-s pca-f # param. # MFlops

CNN 94.22 1.03×106 201.64
K=14 94.63 93.75 94.52 94.42 5.74×105 121.91
K=8 94.39 92.05 93.85 94.30 3.30×105 69.67
K=5 93.93 91.28 92.34 94.03 2.06×105 43.55
K=3 92.84 88.47 91.88 93.10 1.24×105 26.13

Cifar10 conv-3, 5x5
fb rb pca-s pca-f # param. # MFlops

CNN 85.66
K=14 85.88 84.76 85.27 85.34
K=8 85.30 81.27 84.70 85.09 (same as above)
K=5 84.35 77.96 83.12 83.94
K=3 83.12 74.05 80.94 82.91

Cifar10 vgg-16, 3x3
fb rb pca-s pca-f # param. # MFlops

CNN 87.02 1.47×107 547.20
K=5 87.79 84.16 87.98 87.60 8.18×106 311.68
K=3 88.21 78.46 87.45 87.54 4.91×106 187.02

Table 3. Classification accuracy using DCFNets on various image
benchmarks with different number of basesK. “fb” and “rb” stand
for Fourier-Bessel bases and random bases respectively. “pca-
s” and “pca-f” stand for PCA bases computed from a network
pre-trained on a small subset of training images (1,000 random
samples) and the full training set respectively. “# param.” is number
of parameters in all convolutional layers, and MFlops is the number
of flops in all convolutional layers (including ReLU).

4.4. Face verification

We present a further evaluation of DCFNet on face verifica-
tion tasks using “very deep” network architectures, which
comprise a long sequence of convolutional layers. In order
to train such complex networks, we adopt a very large scale
VGG-face (Parkhi et al., 2015) dataset, which contains about
2.6M face images from over 2.6K people.

As shown in Table 4, we adopt the VGG-Very-Deep-16
CNN architecture as detailed in (Parkhi et al., 2015) by
modifying layer 32 and 35 to change output features from
4,096 dimension to 512. Such CNN network comprises 16
weight layers, and all except the last Fully-Connected (FC)
layer utilize 3× 3 or 5× 5 filters.

The input to both CNN and DCFNet are face images of
size 224 × 224 (with the average face image subtracted).
As shown in Table 5, with FB bases, even only using 1

3
parameters at weight layers (K = 3 for 3 × 3, K = 8
for 5× 5), the DCFNet shows similar verification accuracy
as the CNN structure on the challenging LFW benchmark.
Note that our CNN model outperforms the VGG-face model
in (Parkhi et al., 2015), and such improvement is mostly due
to the smaller output dimension we adopted, as both models
share similar architecture and are trained on the same face
dataset.

Layer CNN DCFNet

1 conv 3× 3× 3× 64
3 3× 3 basis

conv 1× 1× 9× 64
2 ReLu

3 conv 3× 3× 64× 64
3 3× 3 basis

conv 1× 1× 192× 64
4-5 ReLu, maxPool 2× 2

6 conv 3× 3× 64× 128
3 3× 3 basis

conv 1× 1× 192× 128
7 ReLu

8 conv 3× 3× 128× 128
3 3× 3 basis

conv 1× 1× 384× 128
9-10 ReLu, maxPool 2× 2
(1-31 CNN layers are identical to vgg-face model in (Parkhi et al., 2015).)

32 conv 5× 5× 512× 512
8 5× 5 basis

conv 1× 1× 4096× 512
33-34 ReLu, dropout

35 conv 3× 3× 512× 512
3 3× 3 basis

conv 1× 1× 1536× 512
36-39 ReLu, dropout, FC, softmax

Table 4. Network architecture for face experiments. For the cor-
responding DCFNet, each LxLxM ′xM CNN conv layer is ex-
pended overK L×L bases for trainable coefficients implemented
as a 1× 1×M ′K ×M conv layer (K = 3 for 3× 3, K = 8 for
5× 5).

Accuracy # param. # GFlops
VGG-face 97.27 % - -

CNN 97.65 % 21.26 ×106 30.05
DCFNet 97.32 % 7.01 ×106 10.09

Table 5. Face verification accuracy on the LFW benchmark.

5. Conclusion and Discussion
The paper studies CNNs where the convolutional filters are
represented as a truncated expansion under pre-fixed bases
and the expansion coefficients are learned from labeled data.
Experimentally, we observe that on various object recog-
nition datasets the classification accuracy are maintained
with a significant reduction of the number of parameters,
and the performance of Fourier-Bessel (FB) bases is con-
stantly superior. The truncated FB expansion in DCFNet
can be viewed as a regularization of the filters. In other
words, DCF-FB is less susceptible to the high-frequency
components in the input, which are least stable under ex-
pected input variations and often do not affect recognition
when suppressed. This interpretation is supported by image
denoising experiments, where DCF-FB performs preferably
over the original CNN and other basis options on noisy in-
puts. The stability of DCFNet representation is also proved
theoretically, showing that the perturbation of the deep fea-
tures with respect to input variations can be bounded under
generic conditions on the decomposed filters.

To extend the work, firstly, DCF layers can be incorporated
in networks for unsupervised learning, for which the denois-
ing experiment serves as a first step. The stability analysis
can be extended by testing the resilience to adversarial noise.
Finally, more structures may be imposed across the channels,
concurrently with the structures of the filters in space.
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A. Proofs
In the proofs, some technical details are omitted for brevity and readability. The full proofs are left to the long version of the
work.

Proof of Proposition 3.1. To prove (a), omitting (l) in W (l), and let M = Ml, M ′ = Ml−1, Bλ′,λ = ‖Wλ′,λ‖1. By
definition of Bl, we have that ∑

λ′∈[M ′]

Bλ′,λ ≤ Bl, ∀λ

∑
λ∈[M ]

Bλ′,λ ≤ Bl
M

M ′
, ∀λ′.

(A1)

We essentially use Schur’s test, being more careful with the summation over λ′. We derive by Cauchy-Schwarz which is
equivalent to Schur’s test:

‖x(l)[x1]− x(l)[x2]‖2 · |Ω|M

=
∑
λ∈[M ]

∫ ∣∣∣∣∣∣σ(
∑

λ′∈[M ′]

∫
x1(u+ v′, λ′)Wλ′,λ(v′)dv′ + b(λ))− σ(

∑
λ′∈[M ′]

∫
x2(u+ v′, λ′)Wλ′,λ(v′)dv′ + b(λ))

∣∣∣∣∣∣
2

du

≤
∑
λ∈[M ]

∫ ∣∣∣∣∣∣
∑

λ′∈[M ′]

∫
x1(u+ v′, λ′)Wλ′,λ(v′)dv′ −

∑
λ′∈[M ′]

∫
x2(u+ v′, λ′)Wλ′,λ(v′)dv′

∣∣∣∣∣∣
2

du

=
∑
λ∈[M ]

∫ ∣∣∣∣∣∣
∑

λ′∈[M ′]

∫
(x1 − x2)(ṽ, λ′)Wλ′,λ(ṽ − u)dṽ

∣∣∣∣∣∣
2

du

≤
∑
λ∈[M ]

∫  ∑
λ′1∈[M ′]

∫
|(x1 − x2)(v1, λ

′
1)|2

∣∣Wλ′1,λ
(v1 − u)

∣∣ dv1
 ·

 ∑
λ′2∈[M ′]

‖Wλ′2,λ
‖1

 du

≤Bl ·
∑

λ′1∈[M ′]

∫
|(x1 − x2)(v1, λ

′
1)|2

 ∑
λ∈[M ]

‖Wλ′1,λ
‖1

 dv1

≤Bl ·Bl
M

M ′
· ‖x1 − x2‖2|Ω|M ′ = B2

lM‖x1 − x2‖2|Ω|,

which means that
‖x(l)[x1]− x(l)[x2]‖ ≤ Bl‖x1 − x2‖.

Thus Bl ≤ 1 implies (a).

To prove (b), we firstly verify that x(l)0 (λ) indeed is a constant over space for all λ and l. When l = 0, x(0)0 is all zero, so the
claim is true. Suppose that the claim holds for l − 1, then

x
(l)
0 (u, λ) = σ

(∑
λ′

∫
x
(l−1)
0 (λ′)W

(l)
λ′,λ(v′)dv′ + b(l)(λ)

)

which again does not depend on u. So we can write x(l)0 as x(l)0 (λ). Now by (a),

‖x(l)c ‖ = ‖x(l)[x(l−1)]− x(l)[x(l−1)0 ]‖ ≤ ‖x(l−1) − x(l−1)0 ‖ = ‖x(l−1)c ‖,

which proves (b).
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Proof of Lemma 3.2. To illustrate the idea, we first prove the lemma in the one-dimensional case, i.e. u ∈ R instead of R2.
We then extend to the 2D case. In the 1D case, the constant c1 can be improved to be 2, and we only need |τ ′|∞ < 1

2 . In the
2D case, we need c1 = 4 as in the final claim.

To simply notation, we denote the mapping x(l)[x(l−1)] as y[x], x(l−1)c by xc, Ml−1 = M ′, Ml = M , and W (l) by W . Let
Cλ′,λ =

∫
|v|| ddvWλ′,λ(v)|dv, and Bλ′,λ =

∫
|Wλ′,λ(v)|dv, then (A1) holds, and the same relation holds for Cλ′,λ and Cl.

By definition,

Dτy[x](u, λ) = σ

 ∑
λ′∈[M ′]

∫
x(ρ(u) + v′, λ′)Wλ′,λ(v′)dv′ + b(λ)

 ,

y[Dτx](u, λ) = σ

 ∑
λ′∈[M ′]

∫
x(ρ(u+ v′), λ′)Wλ′,λ(v′)dv′ + b(λ)

 .

Relaxing by removing σ as in the proof of Proposition 3.1, one can derive that

‖Dτy[x]− y[Dτx]‖2 · |Ω|M ≤ ‖E1 + E2‖2,

where

E1(u, λ) =
∑

λ′∈[M ′]

∫
xc(v, λ

′)(Wλ′,λ(v − ρ(u))−Wλ′,λ(ρ−1(v)− u))dv,

E2(u, λ) =
∑

λ′∈[M ′]

∫
xc(v, λ

′)Wλ′,λ(ρ−1(v)− u)(|(ρ−1)′(v)| − 1)dv.

Notice that x is replaced by xc due to the fact that x and xc differ by a constant field over space for each channel λ′. We
bound ‖E1‖ and ‖E2‖ respectively.

For E1, we introduce k(1)λ′,λ(v, u) = Wλ′,λ(v − ρ(u))−Wλ′,λ(ρ−1(v)− u), and re-write it as

E1(u, λ) =
∑

λ′∈[M ′]

∫
xc(v, λ

′)k
(1)
λ′,λ(v, u)dv.

Applying Schur’s test as in the proof of Proposition 3.1, one can show that

‖E1‖ ≤ 2|τ ′|∞Cl
√
M |Ω|‖xc‖

as long as for all λ′, λ,

sup
u

∫ ∣∣∣k(1)λ′,λ(v, u)
∣∣∣ dv, sup

v

∫ ∣∣∣k(1)λ′,λ(v, u)
∣∣∣ du ≤ 2Cλ′,λ|τ ′|∞. (A2)

(A2) can be verified by 1D change of variable, and details omitted.

For E2, we introduce k(2)λ′,λ(v, u) = Wλ′,λ(ρ−1(v)− u)(|(ρ−1)′(v)| − 1), and then we have that∫
|k(2)λ′,λ(v, u)|du ≤ |(ρ−1)′(v)− 1| ·

∫
|Wλ′,λ(u)|du ≤ 2|τ ′|∞Bλ′,λ, ∀v,

where we use 1− (ρ−1)′(t) = −τ ′(ρ−1(t))
1−τ ′(ρ−1(t)) and |τ ′| < 1

2 to obtain the factor 2. Meanwhile,∫
|k(2)λ′,λ(v, u)|dv =

∫
|Wλ′,λ(ṽ − u)||1− |ρ′(ṽ)||dṽ ≤ |τ ′|∞Bλ′,λ, ∀u.

This gives that
‖E2‖ ≤ 2|τ ′|∞Bl

√
M |Ω|‖xc‖.
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Putting together we have that√
M |Ω|‖Dτy[x]− y[Dτx]‖ ≤ ‖E1 + E2‖ ≤ ‖E1‖+ ‖E2‖ ≤ 2|τ ′|∞(Cl +Bl)

√
M |Ω|‖xc‖

which proves the claim in the 1D case.

The extension to the 2D case uses standard elementary techniques. The assumption |∇τ |∞ < 1
5 is used to derive that

||Jρ| − 1|, ||Jρ−1| − 1| ≤ 4|∇τ |∞, and |Jρ|, |Jρ−1| ≤ 2. In all the formula, |(ρ−1)′(v)| is replaced by the Jacobian
determinant |Jρ−1(v)|. The integration in 1D is replaced by that along a segment in the 2D space. Details omitted.

Proof of Prop. 3.3. Under these conditions, Proposition 3.1 applies. Let c1 = 4. Introduce the notation

yl = x(L) ◦ · · · ◦Dτx
(l) ◦ · · · ◦ x(0), l = 0, · · · , L

where y0 = x(L)[Dτx
(0)], and yL = Dτx

(L)[x(0)]. The l.h.s equals ‖y0 − yL‖, and we will bound it by ‖yL − y0‖ ≤∑L
l=1 ‖yl − yl−1‖. For each l = 1, · · · , L,

‖yl − yl−1‖ =‖x(L) ◦ · · · ◦Dτx
(l) ◦ x(l−1)

− x(L) ◦ · · · ◦ x(l) ◦Dτx
(l−1)‖

≤‖Dτx
(l) ◦ x(l−1) − x(l) ◦Dτx

(l−1)‖
≤c1(Cl +Bl)|∇τ |∞‖x(l−1)c ‖
≤2c1|∇τ |∞‖x(l−1)c ‖
≤2c1|∇τ |∞‖x(0)‖,

where the first inequality is by the nonexpansiveness of the (l + 1) to L-th layer, the second by Lemma 3.2, the third by
(A2), and the last by Proposition 3.1 (b). Thus,

∑L
l=1 ‖yl − yl−1‖ ≤ 2c1L|∇τ |∞‖x(0)‖.

Proof of Proposition 3.4. The technique is similar to that in the proof of Lemma 3.2. Let the constant on the r.h.s be denoted
by c2. In the 1D case, the constant c2 can be improved to be 1. In the 2D case, c2 = 2 as in the final claim. Details
omitted.

Proof of Lemma 3.5. The first claim is a classical result, and has a direct proof as
∫
D(0)
|∇F |2 = −

∫
D(0)

F∆F =

〈
∑
k akψk,

∑
k akµkψk〉 = π

∑
k a

2
kµk by the orthogonality of ψk, as stated above in the text. By Cauchy-Schwarz,

‖∇F‖1 ≤
√
π‖∇F‖2. Putting together gives the second claim.

Proof of Proposition 3.6. Omitting λ′, λ, l, and let jl = j, we write W (u) =
∑
k akψj,k(u). Rescaled to D(0), we

consider w(u) =
∑
k akψk(u), and one can verify that ‖|v||∇W (v)|‖1 = ‖|v||∇w(v)|‖1, and ‖W‖1 = ‖w‖1. Meanwhile,∫

D(0)
|v||∇w(v)|dv ≤

∫
D(0)
|∇w(v)|dv by that |v| ≤ 1, and ‖w‖1 ≤ ‖∇w‖1 by Poincaré inequality, using the fact that w

vanishes on the boundary of D(0). Thus ‖|v||∇w|‖1, ‖w‖1 ≤ ‖∇w‖1. The claim of the proposition follows by applying
Lemma 3.5 to w.

Proof of Theorem 3.8. Let c1 = 4, c2 = 2. The l.h.s. is bounded by ‖x(L) −Dτx
(L)‖+ ‖Dτx

(L)[x(0)]− x(L)[Dτx
(0)]‖.

The second term is less than 2c1L|∇τ |∞‖x(0)‖ by Theorem 3.7. To bound the first term, we apply Proposition 3.4, and notice
that for all λ′, λ, ‖∇W (L)

λ′,λ‖1 ≤ 2−jLπ‖a(L)λ,λ‖FB (considerW (L)
λ′,λ(u) = W (u) =

∑
k akψJ,k(u) = 2−2J

∑
k akψk(2−Ju),

J = jL, let w(u) =
∑
k akψk(u), then W (u) = 2−2Jw(2−Ju), and ‖∇W‖1 = 2−J‖∇w‖1, where ‖∇w‖1 ≤

√
π‖a‖FB

by Lemma 3.5), and thus DL ≤ 2−jLAL. By (A2’), this gives that ‖Dτx
(L) − x(L)‖ ≤ c22−jL |τ |∞‖x(L−1)c ‖, and

‖x(L−1)c ‖ ≤ ‖x(0)‖ by Proposition 3.1 (b).
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B. Experimental Details
The training of a Conv-2 DCF-FB network (Table 2) on MNIST dataset:

The network is trained using standard Stochastic Gradient Descent (SGD) with momentum 0.9 and batch size 100 for 100
epochs. L2 regularization (“weightdecay”) of 10−4 is used on the trainable parameters a’s. The learning rate decreases from
10−2 to 10−4 over the 100 epochs. Batch normalization is used after each convolutional layer. The typical evolution of
training and testing losses and errors over epochs are shown in Figure B.1.

Figure B.1. The evolution of training and validation losses (left) and errors (right) over the epochs of a Conv-2 DCF-FB network trained
on 50K MNIST using SGD.


