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Abstract

To address the challenge of backpropagating
the gradient through categorical variables, we
propose the augment-REINFORCE-swap-merge
(ARSM) gradient estimator that is unbiased
and has low variance. ARSM first uses vari-
able augmentation, REINFORCE, and Rao-
Blackwellization to re-express the gradient as an
expectation under the Dirichlet distribution, then
uses variable swapping to construct differently
expressed but equivalent expectations, and finally
shares common random numbers between these
expectations to achieve significant variance reduc-
tion. Experimental results show ARSM closely
resembles the performance of the true gradient for
optimization in univariate settings; outperforms
existing estimators by a large margin when ap-
plied to categorical variational auto-encoders; and
provides a “try-and-see self-critic” variance reduc-
tion method for discrete-action policy gradient,
which removes the need of estimating baselines
by generating a random number of pseudo actions
and estimating their action-value functions.

1. Introduction

The need to maximize an objective function, expressed
as the expectation over categorical variables, arises in a
wide variety of settings, such as discrete latent variable
models (Zhou, 2014; Jang et al., 2017; Maddison et al.,
2017) and policy optimization for reinforcement learning
(RL) with discrete actions (Sutton & Barto, 1998; Weaver
& Tao, 2001; Schulman et al., 2015; Mnih et al., 2016;
Grathwohl et al., 2018). More specifically, let us denote
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2 € {1,2,...,C} as a univariate C-way categorical vari-
able, and z = (z1,...,25) € {1,2,...,0}¥ as a K-

dimensional C'-way multivariate categorical vector. In dis-
crete latent variable models, K will be the dimension of
the discrete latent space, each dimension of which can be
further represented as a C-dimensional one-hot vector. In
RL, C represents the size of the discrete action space and
z is a sequence of discrete actions from that space. In even
more challenging settings, one may have a sequence of K-
dimensional C'-way multivariate categorical vectors, which
appear both in categorical latent variable models with mul-
tiple stochastic layers, and in RL with a high dimensional
discrete action space or multiple agents, which may consist
of as many as C’¥ unique combinations at each time step.

With f(z) and g4 (2) denoted as the reward function and dis-
tribution for categorical z, respectively, we need to optimize
parameter ¢ to maximize the expected reward as

E(@) = [f(2)ag(z)dz = Ezngy»)[f(2)]. (D)

Here we consider both categorical latent variable models
and policy optimization for discrete actions, which arise in a
wide array of real-world applications. A number of unbiased
estimators for backpropagating the gradient through discrete
latent variables have been recently proposed (Tucker et al.,
2017; Grathwohl et al., 2018; Yin & Zhou, 2019; Andriyash
et al., 2018). However, they all mainly, if not exclusively,
focus on the binary case (i.e., C' = 2). The categorical case
(i.e., C' > 2) is more widely applicable but generally much
more challenging. In this paper, to optimize the objective in
(1), inspired by the augment-REINFORCE-merge (ARM)
gradient estimator restricted for binary variables (Yin &
Zhou, 2019), we introduce the augment-REINFORCE-swap-
merge (ARSM) estimator that is unbiased and well controls
its variance for categorical variables.

The proposed ARSM estimator combines variable augmen-
tation (Tanner & Wong, 1987; Van Dyk & Meng, 2001),
REINFORCE (Williams, 1992) in an augmented space, Rao-
Blackwellization (Casella & Robert, 1996), and a merge step
that shares common random numbers between different but
equivalent gradient expectations to achieve significant vari-
ance reduction. While ARSM with C' = 2 reduces to the
ARM estimator (Yin & Zhou, 2019), whose merge step can
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be realized by applying antithetic sampling (Owen, 2013)
in the augmented space, the merge step of ARSM with
C' > 2 cannot be realized in this manner. Instead, ARSM
requires distinct variable-swapping operations to construct
differently expressed but equivalent expectations under the
Dirichlet distribution before performing its merge step.

Experimental results on both synthetic data and several rep-
resentative tasks involving categorical variables are used
to illustrate the distinct working mechanism of ARSM. In
particular, our experimental results on latent variable mod-
els with one or multiple categorical stochastic hidden lay-
ers show that ARSM provides state-of-the-art training and
out-of-sample prediction performance. Our experiments
on RL with discrete action spaces show that ARSM pro-
vides a “try-and-see self-critic” method to produce unbi-
ased and low-variance policy gradient estimates, removing
the need of constructing baselines by generating a random
number of pseudo actions at a given state and estimating
their action-value functions. These results demonstrate the
effectiveness and versatility of the ARSM estimator for
gradient backpropagation through categorical stochastic lay-
ers. Python code for reproducible research is available at
https://github.com/ARM-gradient/ ARSM.

1.1. Related Work

For optimizing (1) for categorical z, the difficulty lies in
developing a low-variance and preferably unbiased estima-
tor for its gradient with respect to ¢, expressed as V4E(¢).
An unbiased but high-variance gradient estimator that is uni-
versally applicable to (1) is REINFORCE (Williams, 1992).
Using the score function Vg log g4 (2) = Vgae(2)/qs(2),
REINFORCE expresses the gradient as an expectation as

V(@) = Erng,(x)[f(2)Vglogae(2)], (2

and approximates it with Monte Carlo integration (Owen,
2013). However, the estimation variance with a limited
number of Monte Carlo samples is often too high to make
vanilla REINFORCE a sound choice for categorical z.

To address the high-estimation-variance issue for categori-
cal z, one often resorts to a biased gradient estimator. For
example, Maddison et al. (2017) and Jang et al. (2017) re-
lax the categorical variables with continuous ones and then
apply the reparameterization trick to estimate the gradients,
reducing variance but introducing bias. Other biased estima-
tors for backpropagating through binary variables include
the straight-through estimator (Hinton, 2012; Bengio et al.,
2013) and the ones of Gregor et al. (2014); Raiko et al.
(2014); Cheng et al. (2018). With biased gradient estimates,
however, a gradient ascent algorithm may not be guaranteed
to work, or may converge to unintended solutions.

To keep REINFORCE unbiased while sufficiently reducing
its variance, a usual strategy is to introduce appropriate con-

trol variates, also known as baselines (Williams, 1992), into
the expectation in (2) before performing Monte Carlo inte-
gration (Paisley et al., 2012; Ranganath et al., 2014; Mnih &
Gregor, 2014; Gu et al., 2016; Mnih & Rezende, 2016; Ruiz
et al., 2016; Kucukelbir et al., 2017; Naesseth et al., 2017).
For discrete z, Tucker et al. (2017) and Grathwohl et al.
(2018) improve REINFORCE by introducing continuous
relaxation based baselines, whose parameters are optimized
by minimizing the sample variance of gradient estimates.

2. ARSM Gradient For Categorical Variables

Let us denote 2 ~ Cat(c(¢)) as a categorical variable such
that P(z = ¢| @) = o). = e? /37| e?, where ¢ =

(¢1,...,0c)and o () := (e?1,...,e?¢)/ S, e isthe
softmax function. For the expectated reward defined as

S(¢) = Ez~Cat(o(¢))[f(Z)] - Zf:l f(Z)O'((b)“

the gradient can be expressed analytically as

V. E(@) = 0(P)cf(c) — o(@)cL(P) 3)
or expressed with REINFORCE as

Vd)cg(d)) = Eszat(a(d))) [f(z)“-[z:(} - J(d))c)] , @)

where 1, is an indicator function that is equal to one if the
argument is true and zero otherwise. However, the analytic
expression quickly becomes intractable for a multivariate
setting, and the REINFORCE estimator often comes with
significant estimation variance. While the ARM estimator
of Yin & Zhou (2019) is unbiased and provides significant
variance reduction for binary variables, it is restricted to
C = 2 and hence has limited applicability.

Below we introduce the augment-REINFORCE (AR), AR-
swap (ARS), and ARS-merge (ARSM) estimators for a
univariate C-way categorical variable, and later generalize
them to multivariate, hierarchical, and sequential settings.

2.1. AR: Augment-REINFORCE

Let us denote 7 := (71, ...,7¢) ~ Dir(1¢) as a Dirichlet
distribution whose C' parameters are all ones. We first state
three statistical properties that can directly lead to the pro-
posed AR estimator. We describe in detail in Appendix A
how we actually arrive at the AR estimator, with these prop-
erties obtained as by-products, by performing variable aug-
mentation, REINFORCE, and Rao-Blackwellization. Thus
we are in fact reverse-engineering our original derivation of
the AR estimator to help concisely present our findings.

Property I. The categorical variable z ~ Cat(o(¢)) can be
equivalently generated as

z = argmineq oy mie~ %, m ~ Dir(1c).
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Property II. £(¢) = Erpir(10)[f (arg min; e =%7)].
PropertyIlIl.  E, _pix1.)[f(arg min; mie”%)Cr,) =
E(P) +a(¢)cE(P) —a(P)cf(c).

These three properties, Property III in particular, are pre-
viously unknown to the best of our knowledge. They are
directly linked to the AR estimator shown below.

Theorem 1 (AR estimator). The gradient of £(¢) =
E.~ca(o(e) [f(2)], as shown in (3), can be re-expressed
as an expectation under a Dirichlet distribution as

v¢cg(¢) = E‘l\'NDir(lc) [gAR(ﬂ-)c]a

gar(m)e - = f(2)(1 = Cme), (5)

Zi=argmineg oy mie .
Distinct from REINFORCE in (4), the AR estimator in (5)
now expresses the gradient as an expectation under a Dirich-
let distributed random noise. From this point of view, it is
somewhat related to the reparameterization trick (Kingma &
Welling, 2013; Rezende et al., 2014), which is widely used
to express the gradient of an expectation under reparame-
terizable random variables as an expectation under random
noises. Thus one may consider AR as a special type of repa-
rameterization gradient, which, however, requires neither z

to be reparameterizable nor f(-) to be differentiable.

2.2. ARS: Augment-REINFORCE-Swap

Let us swap the mth and jth elements of 7r to define vector

== (L w s T,
where 7™ = mj, M = m, and ¥V ¢ & {m, j},
w¢~’ = m.. Another property to be repeatedly used is:

Property IV. If w ~ Dir(1¢), then =7 ~ Dir(1¢).

This leads to a key observation for the AR estimator in (5):
swapping any two variables of the probability vector 7r in-
side the expectation does not change the expected value.
Using the idea of sharing common random numbers be-
tween different expectations to potentially significantly re-
duce Monte Carlo integration variance (Owen, 2013), we
propose to swap 7. and 7; in (5), where j € {1,...,C} is
a reference category chosen independently of 7 and ¢. This
variable-swapping operation changes the AR estimator to

V4.£(P) = Erpir(1o)[9ar(me=7) ]
gar (=) 2 = f(z=9)(1 = Cmy), (6)
2670 L= argminge gy oy TeTem %,
where we have applied identity 72~ = 7; and Property IV.
We refer to z defined in (5) as the “true action,” and z<=7
defined in (6) as the cth “pseudo action” given j as the refer-
ence category. Note the pseudo actions satisfy the following

properties: z¢=7 = zi=c and z¢=i = z if ¢ = j, and the
number of unique values in {z=7 } . ; that are different from
the true action z is between 0 and C' — 1.

With (3), we have another useful property as
Property V. Zle V.E(¢p) =0.

Combining it with the estimator in (6) leads to
c .
Errbir(1c) [ & 2ooet 9AR(Te7)c] = 0. 7

Thus we can utilize % Zle gar(me=7), as a baseline func-
tion that is nonzero in general but has zero expectation under
7 ~ Dir(1¢). Subtracting (7) from (6) leads to another un-
biased estimator, with category j as the reference, as

V4.E(P) = Erpir(1o)[9ars (7, 7))
gars (T, §)c == gar(7w=7)c — & me IAR(TT™=7 ), (8)

= [f(ze=9) = & S0y fzm=1)] (1 = Cy),

which is referred to as the AR-swap (ARS) estimator, due
to the use of variable-swapping in its derivation from AR.

2.3. ARSM: Augment-REINFORCE-Swap-Merge

For ARS in (8), when the reference category j is randomly
chosen from {1,...,C} and hence is independent of 7
and ¢, it is unbiased. Furthermore, we find that it can be
further improved, especially when C'is large, by adding a
merge step to construct the ARS-merge (ARSM) estimator:

Theorem 2 (ARSM estimator). The gradient of £(¢) =
E. ~ca(o(s)) [f (2)] with respect to ¢., can be expressed as

Vqﬁcg((ls) = E-n-wDir(lc) [QARSM(W)C] )
garsm(T)e = & Ele gars(™, j)e ©))
= X5 [f=) = & et fe=)] (& = )

Note ARSM requires C'(C' — 1) /2 swaps to generate pseudo
actions, the unique number of which that differ from z is be-
tween 0 and C' — 1; a naive implementation requires O(C?)
arg min operations, which, however, is totally unnecessary,
as in general it can at least be made below O(2C') and hence
is scalable even C' is very large (e.g., C = 10, 000); please
see Appendix B and the provided code for more details.
Note if all pseudo actions z°=J are the same as the true
action z, then the gradient estimates will be zeros for all ¢...

Corollary 3. When C = 2, both the ARS estimator in (8)
and ARSM estimator in (9) reduce to the unbiased binary
ARM estimator introduced in Yin & Zhou (2019).

Detailed derivations and proofs are provided in Appendix A.
Note for C' = 2, Proposition 4 of Yin & Zhou (2019) shows
that the ARM estimator is the AR estimator combined with
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an optimal baseline that is subject to an anti-symmetric con-
straint. When C' > 2, however, such type of theoretical
analysis becomes very challenging for both the ARS and
ARSM estimators. For example, it is even unclear how to
define anti-symmetry for categorical variables. Thus in what
follows we will focus on empirically evaluating the effec-
tiveness of both ARS and ARSM for variance reduction.

3. ARSM Estimator for Multivariate,
Hierarchical, and Sequential Settings

This section shows how the proposed univariate ARS and
ARSM estimators can be generalized into multivariate, hier-
archical, and sequential settings. We summarize ARS and
ARSM (stochastic) gradient ascent for various types of cate-
gorical latent variables in Algorithms 1-3 of the Appendix.

3.1. ARSM for Multivariate Categorical Variables and
Stochastic Categorical Network

We generalize the univariate AR/ARS/ARSM estimators
to multivariate ones, which can backpropagate the gradi-
ent through a K dimensional vector of C'-way categorical
variables as z = (z1,...,2K), where 2z, € {1,...,C}.
We further generalize them to backpropagate the gradient
through multiple stochastic categorical layers, the tth layer
of which consists of a K;-dimensional C'-way categorical
vector as z; = (21, ..., zx,) € {1,..., O} We defer
all the details to Appendix C due to space constraint.

Note for categorical variables, especially in multivariate
and/or hierarchical settings, the ARS/ARSM estimators may
appear fairly complicated due to their variable-swapping
operations. Their implementations, however, are actually
relatively straightforward, as shown in Algorithms 1 and 2
of the Appendix, and the provided Python code.

3.2. ARSM for Discrete-Action Policy Optimization

In RL with a discrete action space with C' possible ac-
tions, at time ¢, the agent with state s; chooses action
a; € {1,...,C} according to policy

mo(ar | 81) = Cat(ar; 0(¢y)), ¢y = To(st),

where Tg(-) denotes a neural network parameterized by 6;
the agent receives award r(sy, a;) at time ¢, and state s;
transits to state s;41 according to P(s;41 | s¢, a). With
discount parameter v € (0, 1], policy gradient methods
optimize @ to maximize the expected reward J(0) =
Ep re[> o0 V7 (8, a:)] (Sutton & Barto, 1998; Sutton
et al., 2000; Peters & Schaal, 2008; Schulman et al.,
2015). With Q(ss,a;) = Ep o [So,v" ~r(se,an)]
denoted as the action-value functions, Q(s;,a;) :=
S0 A tr(sy,ar) as their sample estimates, and
pr(8) =D ey V'P(st = 8|80, 7e) as the unnormalized

discounted state visitation frequency, the policy gradient via
REINFORCE (Williams, 1992) can be expressed as

vsj(o) :EatNTrg(at\st), st~pr(s) [vg lnﬂe(at|3t)Q(3t7 le;)]~

For variance reduction, one often subtracts state-dependent
baselines b(s;) from Q(st7 at) (Williams, 1992; Greensmith
et al., 2004). In addition, several different action-dependent
baselines b(s;, a;) have been recently proposed (Gu et al.,
2017; Grathwohl et al., 2018; Wu et al., 2018; Liu et al.,
2018), though their promise in appreciable variance reduc-
tion without introducing bias for policy gradient has been
questioned by Tucker et al. (2018).

Distinct from all previous baseline-based variance reduction
methods, in this paper, we develop both the ARS and ARSM
policy gradient estimators, which use the action-value func-
tions Q(st, a;) themselves combined with pseudo actions
to achieve variance reduction:

Proposition 4 (ARS/ARSM policy gradient). The policy
gradient Vo J(0) can be expressed as

VoJ(0) = B, mbie(10), simpr(s) (VO Doy Giedre],  (10)

where w; = (w1, . .. ,@c) and Py is the cth element of
¢, = To(s:) € RE, under the ARS estimator; we have

Gtc - = ftFA:“ (wt)(l - thjt)?

=j =j C =j
tCAJt (wt) = Q(St’a; “) - % Zmzl Q(Stva? “)’

c=Jt

- ; =it o —Pti
ay PEArgmiley oy Wy € )

Y

where j; € {1,...,C} is a randomly selected reference
category for time step t; under the ARSM estimator, we have

Gre = Y5y i (@) (& — my). (12)

m=j

Note as the number of unique actions among a;" "’ is as
few as one, in which case the ARS/ARSM gradient is zero
and there is no need at all to estimate the @) function, and
as many as C, in which case one needs to estimate the )
function C' times. Thus if the computation of estimating
@ once is O(1), then the worst computation for an episode
that lasts 7" time steps before termination is O(T'C). Usu-
ally the number of distinct pseudo actions will decrease
dramatically as the training progresses. We illustrate this
in Figure 7, where we show the trace of categorical vari-
able’s entropy and number of distinct pseudo actions that
differ from the true action. Examining (11) and (12) shows
that the ARS/ARSM policy gradient estimator can be in-
tuitively understood as a “try-and-see self-critic” method,
which eliminates the need of constructing baselines and es-
timating their parameters for variance reduction. To decide
the gradient direction of whether increasing the probability
of action c at a given state, it compares the pseudo-action



ARSM: Augment-REINFORCE-Swap-Merge Gradient for Categorical Variables

reward Q(s;,a;~’) with the average of all pseudo-action
rewards {Q(s¢, a;" ™) }m=1,c. If the current policy is very
confident on taking action a; at state s;, which means ¢,
dominates the other C' — 1 elements of ¢, = Tg(s;), then it
is very likely that a;"~"* = a, for all m, which will lead to
zero gradient at time ¢. On the contrary, if the current policy
is uncertain about which action to choose, then more pseudo
actions that are different from the true action are likely to be
generated. This mechanism encourages exploration when
the policy is uncertain, and balance the tradeoff of explo-
ration and exploitation intrinsically. It also explains our
empirical observations that ARS/ARSM tends to generate a
large number of unique pseudo actions in the early stages
of training, leading to fast convergence, and significantly re-
duced number once the policy becomes sufficiently certain,

leading to stable performance after convergence.

4. Experimental Results

In this section, we use a toy example for illustration, demon-
strate both multivariate and hierarchical settings with cate-
gorical latent variable models, and demonstrate the sequen-
tial setting with discrete-action policy optimization. Com-
parison of gradient variance between various algorithms can
be found in Figures 1 and 3-6.

4.1. Example Results on Toy Data

To illustrate the working mechanism of the ARSM estimator,
we consider learning ¢ € R® to maximize

]EZNCat(U(¢))[f(Z)]7 f(Z) =05+ Z/(CR)v (13)

where z € {1,...,C}. The optimal solution is o(¢p) =
(0,...,0,1), which leads to the maximum expected reward
of 0.5 + 1/R. The larger the C and/or R are, the more
challenging the optimization becomes. We first set C' =
R = 30 that are small enough to allow existing algorithms
to perform reasonably well. Further increasing C' or R will
often fail existing algorithms and ARS, while ARSM always
performs almost as good as the true gradient when used in
optimization via gradient ascent. We include the results for
C = 1,000 and 10, 000 in Figures 4 and 5 of the Appendix.

We perform an ablation study of the proposed AR, ARS,
and ARSM estimators. We also make comparison to two
representative low-variance estimators, including the bi-
ased Gumbel-Softmax estimator (Jang et al., 2017; Maddi-
son et al., 2017) that applies the reparameterization trick
after continuous relaxation of categorical variables, and
the unbiased RELAX estimator of Grathwohl et al. (2018)
that combines reparameterization and REINFORCE with an
adaptively estimated baseline. We compare them in terms
of the expected reward as ch=1 o(@).f(c), gradients for
¢., probabilities o (¢)., and gradient variance. Note when
C' = 2, both ARS and ARSM reduce to the ARM estimator,

which has been shown in Yin & Zhou (2019) to outperform
a wide variety of estimators for binary variables, including
the REBAR estimator of Tucker et al. (2017). The true
gradient in this example can be computed analytically as
in (3). All estimators in comparison use a single Monte
Carlo sample for gradient estimation. We initialize ¢, = 0
for all ¢ and fix the gradient-ascent stepsize as one.

As shown in Figure 1, without appropriate variance reduc-
tion, both AR and REINFORCE either fail to converge or
converge to a low-reward solution. We notice RELAX for
C = R = 30 is not that stable across different runs; in
this particular run, it manages to obtain a relatively high re-
ward, but its probabilities converge towards a solution that is
different from the optimum o(¢) = (0,...,0,1). By con-
trast, Gumbel-Softmax, ARS, and ARSM all robustly reach
probabilities close to the optimum o(¢) = (0, ...,0, 1) af-
ter 5000 iterations across all random trials. The gradient
variance of ARSM is about one to four magnitudes less
than these of the other estimators, which helps explain why
ARSM is almost identical to the true gradient in moving
o(¢) towards the optimum that maximizes the expected
reward. The advantages of ARSM become even clearer in
more complex settings where analytic gradients become
intractable to compute, as shown below.

4.2. Categorical Variational Auto-Encoders

For optimization involving expectations with respect to mul-
tivariate categorical variables, we consider a variational
auto-encoder (VAE) with a single categorical stochastic
hidden layer. We further consider a categorical VAE with
two categorical stochastic hidden layers to illustrate opti-
mization involving expectations with respect to hierarchical
multivariate categorical variables.

Following Jang et al. (2017), we consider a VAE with a
categorical hidden layer to model D-dimensional binary
observations. The decoder parameterized by 0 is expressed
aspe(x|z) = H£1P0(Ii | z), where z € {1,...,C}¥ is
a K-dimensional C-way categorical vector and pg(x; | 2)
is Bernoulli distributed. The encoder parameterized by ¢
is expressed as g¢(z |x) = HkK:1 q¢ (21 | ). We set the
prior as p(z, = ¢) = 1/C for all ¢ and k. For optimization,
we maximize the evidence lower bound (ELBO) as
L(x)=FE o) [In P& 120P(2)] (14)

zrge (2 qe(z|x)

We also consider a two-categorical-hidden-layer VAE,
whose encoder and decoder are constructed as

g, (21,22 | ) = q¢, (21| ®)ge, (22| z1),
Po... (% | 21, 22) = po, (x| Z1)pe, (21| 22),
where 21,22 € {1,...,C}X. The ELBO is expressed as

L(z) = EQ¢1:2(Z1,Z2 ) [ln Po, (x| 21)pe, (21 \Zz)P(Zz)]' (15)

ap, (21 | 2)ap, (22 ] 21)
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Figure 1. Comparison of a variety of gradient estimators in maximizing (13). The optimal solution is o(¢) = (0, ..

., 1), which means

z = C with probability one. The reward is computed analytically by . ..cu (o (¢)) [f ()] With maximum as 0.533. Rows 1, 2, and 3 show
the trace plots of reward E[f(z)], the gradients with respect to ¢1 and ¢¢, and the probabilities o(¢)1 and o(¢)c, respectively. Row 4
shows the gradient variance estimation with 100 Monte Carlo samples at each iteration, averaged over categories 1 to C.
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Figure 2. Plots of negative ELBOs (nats) on binarized MNIST
against training iterations (analogous ones against times are shown
in Figure 8). The solid and dash lines correspond to the training
and testing respectively (best viewed in color).

For both categorical VAEs, we set K = 20 and C' = 10.
We train them on a binarized MNIST dataset as in van den
Oord et al. (2017) by thresholding each pixel value at 0.5.
Implementations of the VAEs with one and two categori-
cal hidden layers are summarized in Algorithms 1 and 2,
respectively; see the provided code for more details.

‘We consider the AR, ARS, and ARSM estimators, and in-
clude the REINFORCE (Williams, 1992), Gumbel-Softmax
(Jang et al., 2017), and RELAX (Grathwohl et al., 2018)
estimators for comparison. We note that Jang et al. (2017)
has already shown Gumbel-Softmax outperforms a wide
variety of previously proposed estimators; see Jang et al.
(2017) and the references therein for more details.

We present the trace plots of the training and validation neg-
ative ELBOs in Figure 2 and gradient variance in Figure 6.
The numerical values are summarized in Table 1. We use
the Gumbel-Softmax code ' to obtain the results of the VAE

"https://github.com/ericjang/gumbel-softmax

with a single categorical hidden layer, and modify it with our
best effort for the VAE with two categorical hidden layers;
we modify the RELAX code > with our best effort to allow
it to optimize VAE with a single categorical hidden layer.
For the single-hidden-layer VAE, we connect its latent cate-
gorical layer z and observation layer  with two nonlinear
deterministic layers; for the two-hidden-layer VAE, we add
an additional categorical hidden layer z5 that is linearly
connected to the first one. See Table 3 of the Appendix
for detailed network architectures. In our experiments, all
methods use exactly the same network architectures and
data, set the mini-batch size as 200, and are trained by the
Adam optimizer (Kingma & Ba, 2014), whose learning rate
is selected from {5,1,0.5} x 10~* using the validation set.

The results in Table 1 and Figure 2 clearly show that for
optimizing the single-categorical-hidden-layer VAE, both
ARS and ARSM estimators outperform all the other ones in
both training and testing ELBOs. In particular, ARSM out-
performs all the other estimators by a large margin. We also
consider Gumbel-Softmax by computing its gradient with 25
Monte Carlo samples, making it run as fast as the provided
ARSM code does per iteration. In this case, both algorithms
take similar time but ARSM achieves —ELBOs for the train-
ing and testing sets as 94.6 and 100.6, respectively, while
those of Gumbel-Softmax are 102.5 and 103.6, respectively.
The performance gain of ARSM can be explained by both
its unbiasedness and a clearly lower variance exhibited by
its gradient estimates in comparison to all the other estima-
tors, as shown in Figure 6 of the Appendix. The results on
the two-categorical-hidden-layer VAE, which adds a linear
categorical layer on top of the single-categorical-hidden-
layer VAE, also suggest that ARSM can further improve its

Zhttps://github.com/duvenaud/relax
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Table 1. Comparison of training and testing negative ELBOs (nats) on binarized MNIST between ARSM and various gradient estimators.

Gradient estimator REINFORCE RELAX ST Gumbel-S.

AR ARS ARSM || Gumbel-S.-2layer ARSM-2layer

—ELBO (Training) 142.4 129.1 112.7

1358 1015 946 || 111.4 92.5

—ELBO (Testing) 141.3 130.3 113.4

136.6 106.7 100.6 || 113.8 99.9

Table 2. Comparison of the test negative log-likelihoods between

ARSM and various gradient estimators in Jang et al. (2017), for

the MNIST conditional distribution estimation benchmark task.
Gradient estimator ~ARSM ST Gumbel-S. MuProp

583+02 618 59.7 63.0

—log p(z: | )

performance by adding more stochastic hidden layers and
clearly outperforms the biased Gumbel-Softmax estimator.

4.3. Maximum Likelihood Estimation for a Stochastic
Categorical Network

Denoting ;, ¢, € R32 as the lower and upper halves
of an MNIST digit, respectively, we consider a standard
benchmark task of estimating the conditional distribution
Do,.. (1 | x,,) (Raiko et al., 2014; Bengio et al., 2013; Gu
et al., 2016; Jang et al., 2017; Tucker et al., 2017). We con-
sider a stochastic categorical network with two stochastic
categorical hidden layers, expressed as

a; ~ Bernoulli(a(7g, (b1))),
by ~ [122, Cat(bie; 0(Ta, (b2)o(e—1)+(1:10))))s
by ~ Hiil Cat(bzc; 0(7792 (mu)[lO(c—l)-i-(l:lO)]))v

where both b; and by are 20-dimensional 10-way
categorical variables, 7g(:) denotes linear transform,
To, (%w)[10(c—1)+(1:10)] is a 10-dimensional vector consist-
ing of elements 10(c — 1) + 1 to 10c of Ty, (x,,) € R,
To, (b2) € R?  and Ty, € R32. Thus we can con-
sider the network structure as 392-200-200-392, making
the results directly comparable with these in Jang et al.
(2017) for stochastic categorical network. We approximate
log pe,., (@ | x,,) with K Monte Carlo samples as

log % Zszl Bernoulli(x;; o (7Te, (bgk)))), (16)

where bgk) ~ Hiil Cat(b(llz); o(Te, (bék))[lo(c—1)+(1;1o)}))’
by ~ T2, Cat(be); o(To, () poe—1)+(1:10y)))- We
perform training with K = 1, which can also be considered
as optimizing on a single-Monte-Carlo-sample estimate of
the lower bound of the log marginal likelihood. We use
Adam (Kingma & Ba, 2014), with the learning rate set as
104, mini-batch size as 100, and number of training epochs
as 2000. Given the inferred point estimate of 6.0, we
evaluate the accuracy of conditional density estimation by
estimating the negative log-likelihood — log pg,, (x| .,)
using (16), averaging over the test set with K = 1000.

As shown in Table 2, optimizing a stochastic categorical
network with the ARSM estimator achieves the lowest test
negative log-likelihood, outperforming all previously pro-
posed gradient estimators on the same structured stochastic
networks, including straight through (ST) (Bengio et al.,
2013) and ST Gumbel-softmax (Jang et al., 2017) that are
biased, and MuProp (Gu et al., 2016) that is unbiased.

4.4. Discrete-Action Policy Optimization

The key of applying the ARSM policy gradient shown
in (12) is to provide, under the current policy mg, the
action-value functions’ sample estimates Q(st7 ay) =
S0, 4 (s, aw) for all unique values in {a;~"}. .
Thus ARSM is somewhat related to the vine method pro-
posed in Schulman et al. (2015), which defines a heuristic
rollout policy that chooses a subset of the states along the
true trajectory as the “rollout set,” samples K pseudo ac-
tions uniformly at random from the discrete-action set at
each state of the rollout set, and performs a single roll-
out for each state-pseudo-action-pair to estimate its action-
value function ). ARSM chooses its rollout set in the same
manner, but is distinct from the vine method in having a
rigorously derived rollout policy: it swaps the elements
of zo; ~ Dir(1¢) to generate pseudo actions if state s; be-
longs to the rollout set; the number of unique pseudo actions
that are different from the true action a; is a random number,
which is positively related to the uncertainty of the policy
and hence often negatively related to its convergence; and
a single rollout is then performed for each of these unique
pseudo actions to estimate its Q.

As ARSM requires the estimation of () function for each
unique state-pseudo-action pair using Monte Carlo rollout, it
could have high computational complexity if (1) the number
of unique pseudo actions is large, and (2) each rollout takes
many expensive steps (interactions with the environments)
before termination. However, there exist ready solutions
and many potential ones. As given a true trajectory, all
the state-pseudo-action rollouts of ARSM can be indepen-
dently simulated and hence all pseudo-action related Q’s
can be estimated in an embarrassingly parallel manner. Fur-
thermore, in addition to Monte Carlo estimation, we can
potentially adapt for ARSM a wide variety of off-the-shelf
action-value function estimation methods (Sutton & Barto,
1998), to either accelerate the estimation of @ or further
reduce the variance (though possibly at the expense of intro-
ducing bias). In our experiment, for simplicity and clarity,
we choose to use Monte Carlo estimation to obtain Q for
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Figure 3. Top row: Moving average reward curves. Bottom row: Log-variance of gradient estimator. In each plot, the solid lines are
the median value of ten independent runs (ten different random seeds for random initializations). The opaque bars are 10th and 90th
percentiles. Dashed straight lines in Cart Pole and Lunar Lander represent task-completion criteria.

both the true trajectory and all state-pseudo-action rollouts.
The results for RELAX and A2C are obtained by running
the code provided by Grathwohl et al. (2018)°.

We apply the ARSM policy gradient to three representative
RL tasks with discrete actions, including the Cart Pole, Ac-
robot, and Lunar Lander environments provided by OpenAl
Gym (Brockman et al., 2016), and compare it with advan-
tage actor-critic algorithm (A2C) (Sutton et al., 2000) and
RELAX (Grathwohl et al., 2018). We report the moving-
average rewards and the estimated log-variance of the gradi-
ent estimator at every episode; for each episode, the reward
score is obtained by running the updated policy on a new
random environment; and the variance is obtained by first
applying exponential moving averages to the first and sec-
ond moments of each neural network parameter with decay
0.99, and then taking the average of the estimated variances
of all neural network parameters.

Shown in Figure 3 are the mean rewards over the last 100
steps; the opaque bar indicates 10th and 90th percentiles
obtained by ten independent runs for each method (using
10 different random seeds for random initializations); the
solid line is the median value of these ten independent runs.
ARSM outperform both baselines in all three tasks in terms
of stability, moving average rewards, and log-variance of
gradient estimator. All methods are cross validated by opti-
mizers { Adam Optimizer, RMSProp Optimizer} and learn-
ing rates {1,3,10,30} x 10~3. Both the policy and critic
networks for A2C and RELAX have two 10-unit hidden lay-
ers with ReLLU activation functions (Nair & Hinton, 2010).
The discount factor v is 0.99 and entropy term is 0.01. The
policy network of ARSM is the same as that of A2C and
RELAX, and the maximum number of allowed state-pseudo-
action rollouts of ARSM is set as 16, 64, and 1024 for Cart
Pole, Acrobot, and Lunar Lander, respectively; see Algo-

3https://github.com/wgrathwohl/BackpropThroughThe VoidRL

rithm 3 and the provided code for more details. Using our
current implementation that has not been optimized to fully
take the advantage of parallel computing, to finish the num-
ber of episodes as in Figure 3, ARSM on average takes
677, 425, and 19050 seconds for CartPole, Acrobot, and
LunarLander, respectively. For comparison, for these three
tasks, RELAX on average takes 139, 172, and 3493 seconds
and A2C on average takes 92, 120, and 2708 seconds.

5. Conclusion

To backpropagate the gradients through categorical stochas-
tic layers, we propose the augment-REINFORCE-swap-
merge (ARSM) estimator that is unbiased and exhibits low
variance. The performance of ARSM is almost identical to
that of the true gradient when used for optimization involv-
ing a C-way categorical variable, even when C'is very large
(such as C' = 10,000). For multiple C-way categorical
variables organized into a single stochastic layer, multiple
stochastic layers, or a sequential setting, the ARSM estima-
tor clearly outperforms state-of-the-art methods, as shown
in our experimental results for both categorical latent vari-
able models and discrete-action policy optimization. We
attribute the outstanding performance of ARSM to both
its unbiasedness and its ability to control variance by sim-
ply combing its reward function with randomly generated
pseudo actions, where the number of unique pseudo actions
is positively related to the uncertainties of categorical dis-
tributions and hence negatively correlated to how well the
optimization algorithm has converged; there is no more need
to construct separate baselines and estimate their parameters,
which also help make the optimization more robust. Some
natural extensions of the proposed ARSM estimator include
applying it to reinforcement learning with high-dimensional
discrete-action spaces or multiple discrete-action agents,
and various tasks in natural language processing such as
sentence generation and machine translation.
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