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Abstract

Germs of real-valued functions, surreal numbers, and transseries are three ways
to enrich the real continuum by infinitesimal and infinite quantities. Each of these
comes with naturally interacting notions of ordering and derivative. The category
of H -fields provides a common framework for the relevant algebraic structures.
We give an exposition of our results on the model theory ofH -fields, and we report
on recent progress in unifying germs, surreal numbers, and transseries from the
point of view of asymptotic differential algebra.

Contemporaneous with Cantor’s work in the 1870s but less well-known, P. du Bois-
Reymond [1871, 1872, 1873, 1875, 1877, 1882] had original ideas concerning non-
Cantorian infinitely large and small quantities (see Ehrlich [2006]). He developed a
“calculus of infinities” to deal with the growth rates of functions of one real variable,
representing their “potential infinity” by an “actual infinite” quantity. The reciprocal
of a function tending to infinity is one which tends to zero, hence represents an “actual
infinitesimal”.

These ideas were unwelcome to Cantor (see Fisher [1981]) and misunderstood by
him, but were made rigorous by F. Hausdorff [1906a,b, 1909] and G. H. Hardy [1910,
1912a,b, 1913]. Hausdorff firmly grounded du Bois-Reymond’s “orders of infinity”
in Cantor’s set-theoretic universe (see Felgner [2002]), while Hardy focused on their
differential aspects and introduced the logarithmico-exponential functions (short: LE-
functions). This led to the concept of aHardy field (Bourbaki [1951]), developed further
mainly by Rosenlicht [1983a,b, 1984, 1987, 1995] and Boshernitzan [1981, 1982, 1986,
1987]. For the role of Hardy fields in o-minimality see Miller [2012].

Surreal numberswere discovered (or created?) in the 1970s by J. H. Conway [1976]
and popularized by M. Gardner, and by D. E. Knuth [1974] who coined the term “sur-
real number”. The surreal numbers form a proper class containing all reals as well as
Cantor’s ordinals, and come equipped with a natural ordering and arithmetic operations
turning them into an ordered field. Thus with ! the first infinite ordinal, ! � � , 1/!,
p

! make sense as surreal numbers. In contrast to non-standard real numbers, their con-
struction is completely canonical, naturally generalizing both Dedekind cuts and von
Neumann’s construction of the ordinals. (In the words of their creator Conway [1994,
p. 102], the surreals are “the only correct extension of the notion of real number to the
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infinitely large and the infinitesimally small.”) The surreal universe is very rich, yet
shares many properties with the real world. For example, the ordered field of surreals
is real closed and hence, by Tarski [1951], an elementary extension of its ordered sub-
field of real numbers. (In fact, every set-sized real closed field embeds into the field
of surreal numbers.) M. Kruskal anticipated the use of surreal numbers in asymptotics,
and based on his ideas Gonshor [1986] extended the exponential function on the reals
to one on the surreals, with the same first-order logical properties; see van den Dries
and Ehrlich [2001a,b]. Rudiments of analysis for functions on the surreal numbers
have also been developed by Alling [1987], Costin, Ehrlich, and Friedman [2015], and
Rubinstein-Salzedo and Swaminathan [2014].

Transseries generalize LE-functions in a similar way that surreals generalize reals
and ordinals. Transseries have a precursor in the generalized power series of Levi-
Civita [1892–93, 1898] and Hahn [1907], but were only systematically considered in
the 1980s, independently by Écalle [1992] and Dahn and Göring [1987]. Écalle in-
troduced transseries as formal counterparts to his “analyzable functions”, which were
central to his work on Dulac’s Problem (related to Hilbert’s 16th Problem on poly-
nomial vector fields). Dahn and Göring were motivated by Tarski’s Problem on the
model theory of the real field with exponentiation. Transseries have since been used
in various parts of mathematics and physics; their formal nature also makes them suit-
able for calculations in computer algebra systems. Key examples of transseries are the
logarithmic-exponential series (LE-series for short), see van den Dries, Macintyre, and
Marker [1997, 2001]; more general notions of transseries have been introduced by van
der Hoeven [1997] and Schmeling [2001]. A transseries can represent a function of a
real variable using exponential and logarithmic terms, going beyond the more prevalent
asymptotic expansions in terms of powers of the independent variable. Transseries can
be manipulated algebraically—added, subtracted, multiplied, divided—and like power
series, can be differentiated term-wise: they comprise a differential field. However,
they carry much more structure: for example, by virtue of its construction, the field of
LE-series comes with an exponential function; there is a natural notion of composition
for transseries; and differential-compositional equations in transseries are sometimes
amenable to functional-analytic techniques van der Hoeven [2001].

The logical properties of the exponential field of LE-series have been well-under-
stood since the 1990s: by Wilkie [1996] and van den Dries, Macintyre, and Marker
[1997] it is model-complete and o-minimal. In our book Aschenbrenner, van den Dries,
and van der Hoeven [2017a] we focused instead on the differential field of LE-series,
denoted below by T , and obtained some decisive results about its model theory. Fol-
lowing A. Robinson’s general ideas we placed T into a suitable category of H -fields
and, by developing the extension theory of H -fields, showed that T is existentially
closed as an H -field: each system of algebraic differential equations and inequalities
over T which has a solution in an H -field extension of T already has one in T itself.
In Aschenbrenner, van den Dries, and van der Hoeven [ibid.] we also prove the related
fact that T is model-complete; indeed, we obtain a quantifier elimination (in a natural
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language) forT . As a consequence, the elementary theory ofT is decidable, andmodel-
theoretically “tame” in various ways: for example, it has Shelah’s non-independence
property (NIP).

Results from Aschenbrenner, van den Dries, and van der Hoeven [ibid.] about exis-
tential closedness, model completeness, and quantifier elimination substantiate the intu-
ition, expressed already in Écalle [1992], thatT plays the role of a universal domain for
the part of asymptotic differential algebra that steers clear of oscillations. How far does
this intuition lead us? Hardy’s field of LE-functions embeds into T , as an ordered dif-
ferential field, but this fails for other Hardy fields. The natural question here is: Are all
maximal Hardy fields elementarily equivalent to T? It would mean that any maximal
Hardy field instantiates Hardy’s vision of a maximally inclusive and well-behaved al-
gebra of oscillation-free real functions. Related is the issue of embedding Hardy fields
into more general differential fields of transseries. Positive answers to these questions
would tighten the link between germs of functions (living in Hardy fields) and their
transseries expansions. We may also ask how surreal numbers fit into the picture: Is
there a natural isomorphism between the field of surreal numbers and some field of gen-
eralized transseries? This would make it possible to differentiate and compose surreal
numbers as if they were functions, and confirm Kruskal’s premonition of a connection
between surreals and the asymptotics of functions.

We believe that answers to these questions are within grasp due to advances in our
understanding during the last decade as represented in our bookAschenbrenner, van den
Dries, and van der Hoeven [2017a]. We discuss these questions with more details in
Sections 3, 4, 5. In Section 1 we set the stage by describing Hardy fields and transseries
as two competing approaches to the asymptotic behavior of non-oscillatory real-valued
functions. (Section 5 includes a brief synopsis of the remarkable surreal number sys-
tem.) In Section 2 we define H -fields and state the main results of Aschenbrenner, van
den Dries, and van der Hoeven [ibid.].

We let m, n range over N = f0; 1; 2; : : : g. Given an (additive) abelian group A we
let A¤ := A n f0g. In some places below we assume familiarity with very basic model
theory, for example, on the level of Aschenbrenner, van den Dries, and van der Hoeven
[ibid., Appendix B]. “Definable” will mean “definable with parameters”.

1 Orders of Infinity and Transseries

Germs of continuous functions. Consider continuous real-valued functions whose
domain is a subset of R containing an interval (a;+1), a 2 R. Two such functions
have the same germ (at +1) if they agree on an interval (a;+1), a 2 R, contained
in both their domains; this defines an equivalence relation on the set of such functions,
whose equivalence classes are called germs. Addition and multiplication of germs is
defined pointwise, giving rise to a commutative ring C. For a germ g of such a function
we also let g denote that function if the resulting ambiguity is harmless. With this
convention, given a property P of real numbers and g 2 C we say that P

�
g(t)

�
holds

eventually if P
�
g(t)

�
holds for all sufficiently large real t in the domain of g. We
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identify each real number r with the germ of the constant function R ! R with value r .
This makes the field R into a subring of C.

Following Hardy we define for f; g 2 C,

f 4 g : () for some c 2 R>0 we have jf (t)j 6 cjg(t)j eventually;

f � g : () for every c 2 R>0 we have jf (t)j < cjg(t)j eventually:

The reflexive and transitive relation 4 yields an equivalence relation � on C by setting
f � g :() f 4 g and g 4 f , and 4 induces a partial ordering on the set of
equivalence classes of �; these equivalence classes are essentially du Bois-Reymond’s
“orders of infinity”. Thus with x the germ of the identity function on R:

0 � 1 � log log x � log x �
p

x � x � �2x + x sin x � x2
� ex :

Oneway to create interesting subrings ofC is via expansions of the field of real numbers:
any such expansion R̃ gives rise to the subring H (R̃) of C consisting of the germs of
the continuous functions R ! R that are definable in R̃.

Hausdorff fields. A Hausdorff field is by definition a subfield of C. Simple examples
are

(1) Q; R; R(x); R(
p

x); R(x; ex ; log x):

ThatR(x; ex ; log x) is a Hausdorff field, for instance, follows from two easy facts: first,
an element f ofC is a unit iff f (t) ¤ 0 eventually (and then either f (t) > 0 eventually
or f (t) < 0 eventually), and if f ¤ 0 is an element of the subring R[x; ex ; log x] of C,
then f � xk elx(log x)m for some k; l; m 2 N. Alternatively, one can use the fact
that an expansion R̃ of the field of reals is o-minimal iff H (R̃) is a Hausdorff field, and
note that the examples above are subfields of H (Rexp) where Rexp is the exponential
field of real numbers, which is well-known to be o-minimal by Wilkie [1996].

Let H be a Hausdorff field. Then H becomes an ordered field with (total) ordering
given by: f > 0 iff f (t) > 0 eventually. Moreover, the set of orders of infinity in H

is totally ordered by 4: for f; g 2 H we have f 4 g or g 4 f . In his landmark
paper, Hausdorff [1909] essentially proved that H has a unique algebraic Hausdorff
field extension that is real closed. (Writing before Artin and Schreier [1927], of course
he doesn’t use this terminology.) He was particularly interested in “maximal” objects
and their order type. By Hausdorff’s Maximality Principle (a form of Zorn’s Lemma)
every Hausdorff field is contained in one that is maximal with respect to inclusion.
By the above, maximal Hausdorff fields are real closed. Hausdorff also observed that
maximal Hausdorff fields have uncountable cofinality; indeed, he proved the stronger
result that the underlying ordered set of a maximal Hausdorff field H is �1: if A; B are
countable subsets of H and A < B , then A < h < B for some h 2 H . A real closed
ordered field is @1-saturated iff its underlying ordered set is �1. Standard facts from
model theory (or Erdős, Gillman, and Henriksen [1955]) now yield an observation that
could have been made by Hausdorff himself in the wake of Artin and Schreier [1927]:
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Corollary 1.1. AssumingCH (the ContinuumHypothesis), all maximalHausdorff fields
are isomorphic.

This observation was in fact made by Ehrlich [2012] in the more specific form that
under CH any maximal Hausdorff field is isomorphic to the field of surreal numbers
of countable length; see Section 5 below for basic facts on surreals. We don’t know
whether here the assumption of CH can be omitted. (By Esterle [1977], the negation of
CH implies the existence of non-isomorphic real closed �1-fields of size 2@0 .) It may
also be worth mentioning that the intersection of all maximal Hausdorff fields is quite
small: it is just the field of real algebraic numbers.

Hardy fields. A Hardy field is a Hausdorff field whose germs can be differentiated.
This leads to a much richer theory. To define Hardy fields formally we introduce the
subring

Cn := ff 2 C : f is eventually n times continuously differentiableg

of C, with C0 = C. Then each f 2 Cn+1 has derivative f 0 2 Cn. A Hardy field is
a subfield of C1 that is closed under f 7! f 0; Hardy fields are thus not only ordered
fields but also differential fields. The Hausdorff fields listed in (1) are all Hardy fields;
moreover, for each o-minimal expansion R̃ of the field of reals, H (R̃) is a Hardy field.
As with Hausdorff fields, each Hardy field is contained in a maximal one. For an ele-
ment f of a Hardy field we have either f 0 > 0, or f 0 = 0, or f 0 < 0, so f is either
eventually strictly increasing, or eventually constant, or eventually strictly decreasing.
(This may fail for f in a Hausdorff field.) Each element of a Hardy field is contained
in the intersection

T
n Cn, but not necessarily in its subring C1 consisting of those

germs which are eventually infinitely differentiable. In a Hardy field H , the ordering
and derivation interact in a pleasant way: if f 2 H and f > R, then f 0 > 0. Asymp-
totic relations in H can be differentiated and integrated: for 0 ¤ f; g ª 1 in H , we
have f 4 g iff f 0 4 g0.

Extending Hardy fields. Early work on Hardy fields focused on solving algebraic
equations and simple first order differential equations: Borel [1899], Hardy [1912a,b],
Bourbaki [1951], Marić [1972], Sjödin [1971], Robinson [1972], Rosenlicht [1983a].
As a consequence, every Hardy field H has a smallest real closed Hardy field exten-
sion Li(H ) � R that is also closed under integration and exponentiation; call Li(H )

the Hardy-Liouville closure of H . (Hardy’s field of LE-functions mentioned earlier is
contained in Li(R).) Here is a rather general result of this kind, due to Singer [1975]:

Theorem 1.2. If y 2 C1 satisfies a differential equation y0P (y) = Q(y) where P (Y )

and Q(Y ) are polynomials over a Hardy field H and P (y) is a unit in C, then y

generates a Hardy field H hyi = H (y; y0) over H .

Singer’s theorem clearly does not extend to second order differential equations: the
nonzero solutions of y00 +y = 0 in C2 do not belong to any Hardy field. The solutions
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in C2 of the differential equation

y00 + y = ex2

(2)

form a two-dimensional affine space y0+R sin x+R cos x over R, with y0 any partic-
ular solution. Boshernitzan [1987] proved that any of these continuum many solutions
generates a Hardy field. Since no Hardy field can contain more than one solution, there
are at least continuummany different maximal Hardy fields. By the above, each of them
contains R, is real closed, and closed under integration and exponentiation. What more
can we say about maximal Hardy fields? To give an answer to this question, consider
the following conjectures about Hardy fields H :

A. For any differential polynomial P (Y ) 2 H fY g = H [Y; Y 0; Y 00; : : : ] and f < g

in H with P (f ) < 0 < P (g) there exists y in a Hardy field extension of H such
that f < y < g and P (y) = 0.

B. For any countable subsets A < B in H there exists y in a Hardy field extension
of H such that A < y < B .

Conjecture A for P 2 H [Y; Y 0] holds by van den Dries [2000]. Conjecture A implies
that all maximal Hardy fields are elementarily equivalent as we shall see in Section 2.
Conjecture B was first raised as a question by Ehrlich [2012]. The conjectures together
imply that, under CH, all maximal Hardy fields are isomorphic (the analogue of Corol-
lary 1.1). We sketch a program to prove A and B in Section 3.

Transseries. Hardy [1910, p. 35] made the point that the LE-functions seem to cover
all orders of infinity that occur naturally in mathematics. But he also suspected that the
order of infinity of the compositional inverse of (log x)(log log x) differs from that of
any LE-function (see Hardy [1912a]); this suspicion is correct. For a more revealing
view of orders of infinity and a more comprehensive theory we need transseries. For
example, transseries lead to an easy argument to confirm Hardy’s suspicion (see van
den Dries, Macintyre, and Marker [1997] and van der Hoeven [1997]). Here we focus
on the field T of LE-series and in accordance with Aschenbrenner, van den Dries, and
van der Hoeven [2017a], simply call its elements transseries, bearing in mind that many
variants of formal series, such as those appearing in Schmeling [2001] (see Section 4
below), can also rightfully be called “transseries”.

Transseries are formal series f =
P

m fmm where the fm are real coefficients and
the m are “transmonomials” such as

xr (r 2 R); x� logx ; ex2 ex

; ee
x

:

One can get a sense by considering an example like

7 ee
x + ex/2 + ex/4 +���

�3 ex2

+5x
p
2

� (log x)� + 42 + x�1 + x�2 + � � � + e�x :

Here think of x as positive infinite: x > R. The transmonomials in this series are
arranged from left to right in decreasing order. The reversed order type of the set of
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transmonomials that occur in a given transseries can be any countable ordinal. (In the
example above it is!+1 because of the term e�x at the end.) Formally, T is an ordered
subfield of a Hahn field R[[GLE]] where GLE is the ordered group of transmonomials
(or LE-monomials). More generally, letM be any (totally) ordered commutative group,
multiplicatively written, the m 2 M being thought of as monomials, with the ordering
denoted by 4. The Hahn field R[[M]] consists of the formal series f =

P
m fmm

with real coefficients fm whose support supp f := fm 2 M : fm ¤ 0g is well-based,
that is, well-ordered in the reversed ordering < of M. Addition and multiplication of
these Hahn series works just as for ordinary power series, and the ordering of R[[M]] is
determined by declaring a nonzero Hahn series to be positive if its leading coefficient is
positive (so the series above, with leading coefficient 7, is positive). Both R[[GLE]] and
its ordered subfield T are real closed. Informally, each transseries is obtained, starting
with the powers xr (r 2 R), by applying the following operations finitely many times:

1. multiplication with real numbers;

2. infinite summation in R[[GLE]];

3. exponentiation and taking logarithms of positive transseries.

To elaborate on (2), a family (fi )i2I inR[[M]] is said to be summable if for eachm there
are only finitely many i 2 I with m 2 supp fi , and

S
i2I supp fi is well-based; in this

case we define the sum f =
P

i2I fi 2 R[[M]] of this family by fm =
P

i2I (fi )m for
each m. One can develop a “strong” linear algebra for this notion of “strong” (infinite)
summation (see van der Hoeven [2006] and Schmeling [2001]). As to (3), it may be
instructive to see how to exponentiate a transseries f : decompose f as f = g + c + "

where g :=
P

m�1 fmm is the infinite part of f , c := f1 is its constant term, and " its
infinitesimal part (in our example c = 42 and " = x�1 + x�2 + � � � + e�x); then

ef = eg
� ec

�
X

n

"n

n!

where eg 2 M is a transmonomial, and ec 2 R,
P

n
"n

n!
2 R[[GLE]] have their usual

meaning. The story with logarithms is a bit different: taking logarithms may also create
transmonomials, such as log x, log log x, etc.

The formal definition of T is inductive and somewhat lengthy; see van den Dries,
Macintyre, and Marker [2001], Edgar [2010], and van der Hoeven [2006] for detailed
expositions, or Aschenbrenner, van denDries, and van derHoeven [2017a, AppendixA]
for a summary. We only note here that by virtue of the construction of T , series like
1
x
+ 1

ex + 1
eex

+ � � � or 1
x
+ 1

x logx
+ 1

x logx log logx
+ � � � (involving “nested” exponentials or

logarithms of unbounded depth), though they are legitimate elements of R[[GLE]], do
not appear inT ; moreover, the sequence x; ex ; eex

; : : : is cofinal inT , and the sequence
x; log x; log log x; : : : is coinitial in the set ff 2 T : f > Rg. The map f 7! ef is an
isomorphism of the ordered additive group of T onto its multiplicative group of posi-
tive elements, with inverse g 7! logg. As an ordered exponential field, T turns out to
be an elementary extension of Rexp (see van den Dries, Macintyre, and Marker [1997]).
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Transseries can be differentiated termwise; for instance,
�P

n n! ex

xn+1

�0

= ex

x
. We

obtain a derivation f 7! f 0 on the field T with constant field ff 2 T : f 0 = 0g =

R and satisfying (expf )0 = f 0 expf and (logg)0 = g0/g for f; g 2 T , g > 0.
Moreover, each f 2 T has an antiderivative in T , that is, f = g0 for some g 2 T .
As in Hardy fields, f > R ) f 0 > 0, for transseries f . We also have a dominance
relation on T : for f; g 2 T we set

f 4 g :() jf j 6 cjgj for some c 2 R>0

() (leading transmonomial of f ) 4 (leading transmonomial of g),

and as in Hardy fields we declare f � g :() f 4 g and g 4 f , as well as
f � g :() f 4 g and g 64 f . As in Hardy fields we can also differentiate and
integrate asymptotic relations: for 0 ¤ f; g ª 1 in T we have f 4 g iff f 0 4 g0.

Hardy’s ordered exponential field of (germs of) logarithmic-exponential functions
embeds uniquely into T so as to preserve real constants and to send the germ x to the
transseries x; this embedding also preserves the derivation. However, the field of LE-
series enjoys many closure properties that the field of LE-functions lacks. For instance,
T is not only closed under exponentiation and integration, but also comes with a natural
operation of composition: for f; g 2 T with g > R we can substitute g for x in f =

f (x) to obtain f ıg = f (g(x)). The Chain Rule holds: (f ıg)0 = (f 0 ıg) �g0. Every
g > R has a compositional inverse in T : a transseries f > R with f ı g = g ı f = x.
As shown in van der Hoeven [2006], a Newton diagram method can be used to solve
any “feasible” algebraic differential equation in T (where the meaning of feasible can
be made explicit).

Thus it is not surprising that soon after the introduction of T the idea emerged that it
should play the role of a universal domain (akin to Weil’s use of this term in algebraic
geometry) for asymptotic differential algebra: that it is truly the algebra-from-which-
one-can-never-exit and that it marks an almost impassable horizon for “ordered analy-
sis”, as Écalle [1992, p. 148] put it. Model theory provides a language to make such an
intuition precise, as we explain in our survey Aschenbrenner, van den Dries, and van
der Hoeven [2013] where we sketched a program to establish the basic model-theoretic
properties of T , carried out in Aschenbrenner, van den Dries, and van der Hoeven
[2017a]. Next we briefly discuss our main results from Aschenbrenner, van den Dries,
and van der Hoeven [ibid.].

2 H-Fields

We shall consider T as an L-structure where the language L has the primitives 0, 1,
+, �, � , ∂ (derivation), 6 (ordering), 4 (dominance). More generally, let K be any
ordered differential field with constant field C = ff 2 K : f 0 = 0g. This yields a
dominance relation 4 on K by

f 4 g :() jf j 6 cjgj for some positive c 2 C
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and we view K accordingly as an L-structure. The convex hull of C in K is the valua-
tion ring O = ff 2 K : f 4 1g of K, with its maximal ideal O := ff 2 K : f � 1g

of infinitesimals.

Definition 2.1. An H -field is an ordered differential field K such that (with the nota-
tions above), O = C + O, and for all f 2 K we have: f > C ) f 0 > 0.

Examples include all Hardy fields that contain R, and all ordered differential subfields
of T that contain R. In particular, T is an H -field, but T has further basic elementary
properties that do not follow from this: its derivation is small, and it is Liouville closed.
An H -field K is said to have small derivation if it satisfies f � 1 ) f 0 � 1, and to
be Liouville closed if it is real closed and for every f 2 K there are g; h 2 K, h ¤ 0,
such that g0 = f and h0 = hf . Each Hardy field H has small derivation, and Li(H )

is Liouville closed.
Inspired by the familiar characterization of real closed ordered fields via the in-

termediate value property for one-variable polynomial functions, we say that an H -
field K has the Intermediate Value Property (IVP) if for all differential polynomials
P (Y ) 2 KfY g and all f < g in K with P (f ) < 0 < P (g) there is some y 2 K with
f < y < g and P (y) = 0. van der Hoeven showed that a certain variant of T , namely
its H -subfield of gridbased transseries, has IVP; see van der Hoeven [2002].

Theorem 2.2. TheL-theory ofT is completely axiomatized by the requirements: being
an H -field with small derivation; being Liouville closed; and having IVP.

Actually, IVP is a bit of an afterthought: in Aschenbrenner, van den Dries, and van der
Hoeven [2017a] we use other (but equivalent) axioms that will be detailed below. We
mention the above variant for expository reasons and since it explains whyConjecture A
from Section 1 yields that all maximal Hardy fields are elementarily equivalent. Let us
define an H -closed field to be an H -field that is Liouville closed and has the IVP. All
H -fields embed into H -closed fields, and the latter are exactly the existentially closed
H -fields. Thus:

Theorem 2.3. The theory of H -closed fields is model complete.

Here is an unexpected byproduct of our proof of this theorem:

Corollary 2.4. H -closed fields have no proper differentially algebraic H -field exten-
sions with the same constant field.

IVP refers to the ordering, but the valuation given by 4 is more robust and more useful.
IVP comes from two more fundamental properties: ω-freeness and newtonianity (a
differential version of henselianity). These concepts make sense for any differential
field with a suitable dominance relation 4 in which the equivalence f 4 g () f 0 4
g0 holds for 0 ¤ f; g � 1.

To give an inkling of these somewhat technical notions, let K be an H -field and
assume that for every � 2 K� for which the derivation �∂ is small (that is, �∂O � O),
there exists �1 � � in K� such that �1∂ is small. (This assumption is satisfied for
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Liouville closed H -fields.) Let P (Y ) 2 KfY g¤. We wish to understand how the
function y 7! P (y) behaves for y 4 1. It turns out that this function only reveals its
true colors after rewriting P in terms of a derivation �∂ with suitable � 2 K�.

Indeed, this rewritten P has the form a � (N + R) with a 2 K� and where N (Y ) 2

C fY g¤ is independent of � for sufficiently small � 2 K� with respect to 4, subject
to �∂ being small, and where the coefficients of R(Y ) are infinitesimal. We call N

the Newton polynomial of P . Now K is said to be ω-free if for all P as above its
Newton polynomial has the form A(Y ) � (Y 0)n for some A 2 C [Y ] and some n. We say
that K is newtonian if for all P as above with N (P ) of degree 1 we have P (y) = 0

for some y 2 O. For H -fields, IVP H) ω-free and newtonian; for Liouville closed
H -fields, the converse also holds.

Our main result in Aschenbrenner, van den Dries, and van der Hoeven [2017a] re-
fines Theorem 2.3 by giving quantifier elimination for the theory of H -closed fields
in the language L above augmented by an additional unary function symbol � and two
extra unary predicates Λ and Ω. These have defining axioms in terms of the other prim-
itives. Their interpretations in T are as follows: �(f ) = 1/f if f ¤ 0, �(0) = 0, and
with `0 := x, `n+1 := log `n,

Λ(f ) () f < λn := 1
`0

+ 1
`0`1

+ � � � + 1
`0���`n

for some n,

Ω(f ) () f < ωn := 1
(`0)2

+ 1
(`0`1)2

+ � � � + 1
(`0���`n)2

for some n.

ThusΛ andΩ define downward closed subsets ofT . The sequence (ωn) also appears in
classical non-oscillation theorems for second-order linear differential equations. Theω-
freeness of T reflects the fact that (ωn) has no pseudolimit in the valued field T . Here
are some applications of this quantifier elimination:

Corollary 2.5.

(1) “O-minimality at infinity”: if S � T is definable, then for some f 2 T we
either have g 2 S for all g > f in T or g … S for all g > f in T .

(2) All subsets of Rn definable in T are semialgebraic.

Corollaries 2.4 and 2.5 are the departure point for developing a notion of (differential-
algebraic) dimension for definable sets in T ; see Aschenbrenner, van den Dries, and
van der Hoeven [2017b].

The results reported on above make us confident that the category of H -fields is the
right setting for asymptotic differential algebra. To solidify this impression we return to
the motivating examples—Hardy fields, ordered differential fields of transseries, and
surreal numbers—and consider how they are related. We start with Hardy fields, which
historically came first.

3 H-Field Elements as Germs

After Theorem 1.2 and Boshernitzan [1982, 1987], the first substantial “Hardy field”
result on more general differential equations was obtained by van der Hoeven [2009].
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In what follows we use “d-algebraic” to mean “differentially algebraic” and “d-trans-
cendental” to mean “differentially transcendental”.

Theorem 3.1. The differential subfield T da of T whose elements are the d-algebraic
transseries is isomorphic over R to a Hardy field.

The proof of this theorem is in the spirit of model theory, iteratively extending by a
single d-algebraic transseries. The most difficult case (immediate extensions) is han-
dled through careful construction of suitable solutions as convergent series of iterated
integrals. We are currently trying to generalize Theorem 3.1 to d-algebraic extensions
of arbitrary Hardy fields. Here is our plan:

Theorem 3.2. Every Hardy field has an ω-free Hardy field extension.

Theorem 3.3 (in progress). Every ω-free Hardy field has a newtonian d-algebraic
Hardy field extension.

These two theorems, when established, imply that all maximal Hardy fields are H -
closed. Hence (by Theorem 2.2) they will all be elementarily equivalent to T , and
since H -closed fields have the IVP, Conjecture A from Section 1 will follow.

In order to get an even better grasp on the structure of maximal Hardy fields, we
also need to understand how to adjoin d-transcendental germs to Hardy fields. An
example of this situation is given by d-transcendental series such as

P
n n!!x�n. By an

old result by É. Borel [1895] every formal power series
P

n antn over R is the Taylor
series at 0 of a C1-function f on R; then

P
n anx�n is an asymptotic expansion of the

function f (x�1) at +1, and it is easy to show that if this series is d-transcendental,
then the germ at+1 of this function does generate a Hardy field. Here is a far-reaching
generalization:

Theorem 3.4 (in progress). Every pseudocauchy sequence (yn) in a Hardy field H has
a pseudolimit in some Hardy field extension of H .

The proof of this for H -closed H � R relies heavily on results from Aschenbrenner,
van den Dries, and van der Hoeven [2017a], using also intricate glueing techniques.
For extensions that increase the value group, we need very different constructions. If
succesful, these constructions in combination with Theorem 3.4 will lead to a proof of
Conjecture B from Section 1:

Theorem 3.5 (in progress). For any countable subsets A < B of a Hardy field H there
exists an element y in a Hardy field extension of H with A < y < B .

The case H � C1, B = ¿ was already dealt with by Sjödin [1971]. The various
“theorems in progress” together with results from Aschenbrenner, van den Dries, and
van der Hoeven [2017a] imply that any maximal Hardy fields H1 and H2 are back-and-
forth equivalent, which is considerably stronger than H1 and H2 being elementarily
equivalent. It implies for example

Under CH all maximal Hardy fields are isomorphic.



May 3, 2018 3:48 icm-961x669 main-pr page 12

12 M. ASCHENBRENNER, L. VAN DEN DRIES AND J. VAN DER HOEVEN

This would be the Hardy field analogue of Corollary 1.1. (In contrast to maximal Haus-
dorff fields, however, maximal Hardy fields cannot be @1-saturated, since their con-
stant field is R.) When we submitted this manuscript, we had finished the proof of
Theorem 3.2, and also the proof of Theorem 3.4 in the relevant H -closed case.

Related problems. Some authors (such as Sjödin [1971]) prefer to consider only
Hardy fields contained in C1. Theorem 3.2 and our partial result for Theorem 3.4
go through in the C1-setting. All the above “theorems in progress” are plausible in
that setting.

What about real analytic Hardy fields (Hardy fields contained in the subringC! ofC
consisting of all real analytic germs)? In that setting Theorem 3.2 goes through. Any d-
algebraic Hardy field extension of a real analytic Hardy field is itself real analytic, and
so Theorem 3.3 (in progress) will hold in that setting as well. However, our glueing
technique employed in the proof of Theorem 3.4 doesn’t work there.

Kneser [1949] obtained a real analytic solution E at infinity to the functional equa-
tion E(x + 1) = expE(x). It grows faster than any finite iteration of the exponential
function, and generates a Hardy field. See Boshernitzan [1986] for results of this kind,
and a proof that Theorem 3.5 holds for B = ¿ in the real analytic setting. So in this
context we also have an abundant supply of Hardy fields.

Similar issues arise for germs of quasi-analytic and “cohesive” functions of Écalle
[1992]. These classes of functions are somewhat more flexible than the class of real
analytic functions. For instance, the series x�1+e�x + e� ex

+ � � � converges uniformly
for x > 1 to a cohesive function that is not real analytic.

Accelero-summation. The definition of a Hardy field ensures that the differential field
operations never introduce oscillatory behavior. Does this behavior persist for opera-
tions such as composition or various integral transforms? In this connection we note
that the Hardy field H (R̃) associated to an o-minimal expansion R̃ of the field of reals
is always closed under composition (see Miller [2012]).

To illustrate the problem with composition, let ˛ be a real number > 1 and let y0 2

C2 be a solution to (2). Then z0 := y0(˛x) satisfies the equation

(3) ˛�2z00 + z = e˛2x2

:

It can be shown that fy0+sin x; z0g generates a Hardy field, but it is clear that no Hardy
field containing both y0 + sin x and z0 can be closed under composition.

Adjoining solutions to (2) and (3) “one by one” as in the proof of Theorem 3.1 will
not prevent the resultingHardy fields to contain both y0+sin x and z0. In order to obtain
closure under composition we therefore need an alternative device. Écalle’s theory of
accelero-summation (Écalle [1992]) is much more than that. Vastly extending Borel’s
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summation method for divergent series (Borel [1899]), it associates to each accelero-
summable transseries an analyzable function. In this way many non-oscillating real-
valued functions that arise naturally (e.g., as solutions of algebraic differential equa-
tions) can be represented faithfully by transseries. This leads us to conjecture an im-
provement on Theorem 3.1:

Conjecture 3.6. Consider the real accelero-summation process where we systemati-
cally use the organic average whenever we encounter singularities on the positive real
axis. This yields a composition-preservingH -field isomorphism fromT da onto a Hardy
field contained in C! .

There is little doubt that this holds. The main difficulty here is that a full proof will
involve many tools forged by Écalle in connection with accelero-summation, such as
resurgent functions, well-behaved averages, cohesive functions, etc., with some of these
tools requiring further elaboration; see also Costin [2009] and Menous [1999].

The current theory of accelero-summation only sums transseries with coefficients
in R. Thus it is not clear how to generalize Conjecture 3.6 in the direction of The-
orem 3.3. Such a generalization might require introducing transseries over a Hardy
fieldH with suitable additional structure, as well as a corresponding theory of accelero-
summation overH for such transseries. In particular, elements ofH should be accelero-
summable over H in this theory, by construction.

4 H-Field Elements as Generalized Transseries

Next we discuss when H -fields embed into differential fields of formal series. A clas-
sical embedding theorem of this type is due to Krull [1932]: any valued field has a
spherically complete immediate extension. As a consequence, any real closed field
containing R is isomorphic over R to a subfield of a Hahn field R[[M]] with divisi-
ble monomial group M, such that the subfield contains R(M). We recently proved
an analogue of this theorem for valued differential fields; see Aschenbrenner, van den
Dries, and van der Hoeven [2017c]. Here a valued differential field is a valued field of
equicharacteristic zero equipped with a derivation that is continuous with respect to the
valuation topology.

Theorem 4.1. Every valued differential field has a spherically complete immediate
extension.

For a real closed H -field K with constant field C this theorem gives a Hahn fieldbK = C [[M]] with a derivation ∂ on bK making it an H -field with constant field C such
thatK is isomorphic overC to anH -subfield of K̂ that containsC (M). A shortcoming
of this result is that there is no guarantee that ∂ preserves infinite summation. In contrast,
the derivation ofT is strong (does preserve infinite summation). An abstract framework
for even more general notions of transseries is due to van der Hoeven and his former
student Schmeling [2001].
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Fields of transseries. To explain this, consider an (ordered) Hahn field R[[M]] with
a partially defined function exp obeying the usual rules of exponentiation; see van der
Hoeven [2006, Section 4.1] for details. In particular, exp has a partially defined inverse
function log. We say that R[[M]] is a field of transseries if the following conditions
hold:

(T1) the domain of the function log is R[[M]]>0;

(T2) for each m 2 M and n 2 supp logm we have n � 1;

(T3) log(1 + ") = " �
1
2
"2 + 1

3
"3 + � � � for all " � 1 in R[[M]]; and

(T4) for every sequence (mn) in M with mn+1 2 supp logmn for all n, there exists
an index n0 such that for all n > n0 and all n 2 supp logmn, we have n < mn+1

and (logmn)mn+1
= ˙1.

The first three axioms record basic facts from the standard construction of transseries.
The fourth axiom is more intricate and puts limits on the kind of “nested transseries”
that are allowed. Nested transseries such as

y =
p

x + e
p
logx+e

p
log logx+e���

(4)

are naturally encountered as solutions of functional equations, in this case

y(x) =
p

x + ey(logx) :(5)

Axiom (T4) does allow nested transseries as in (4), but excludes series like

u =
p

x + e
p
logx+e

p
log logx+e��� + log log logx + log logx + log x;

which solves the functional equation u(x) =
p

x + eu(logx) + log x; in some sense, u

is a perturbation of the solution y in (4) to the equation (5).
In his thesis Schmeling [2001] shows how to extend a given field of transseries

K = R[[M]]with new exponentials and nested transseries like (4), and ifK also comes
with a strong derivation, how to extend this derivation as well. Again, (T4) is crucial
for this task: naive termwise differentiation leads to a huge infinite sum that turns out
to be summable by (T4). A transserial derivation is a strong derivation on K such
that nested transseries are differentiated in this way. Such a transserial derivation is
uniquely determined by its values on the log-atomic elements: those � 2 K for which
�; log�; log log�; : : : are all transmonomials in M.

We can now state a transserial analogue of Krull’s theorem. This analogue is a con-
sequence of Theorem 5.3 below, proved in Aschenbrenner, van den Dries, and van der
Hoeven [2015].

Theorem 4.2. Every H -field with small derivation and constant field R can be embed-
ded over R into a field of transseries with transserial derivation.

For simplicity, we restricted ourselves to transseries over R. The theory naturally gen-
eralizes to transseries over ordered exponential fields (see van der Hoeven [2006] and
Schmeling [2001]) and it should be possible to extend Theorem 4.2 likewise.
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Hyperseries. Besides derivations, one can also define a notion of composition for gen-
eralized transseries (see van der Hoeven [1997] and Schmeling [2001]). Whereas cer-
tain functional equations such as (5) can still be solved using nested transseries, solving
the equation E(x +1) = expE(x) where E(x) is the unknown, requires extending T
to a field of transseries with composition containing an element E(x) = exp! x >

T , called the iterator of exp x. Its compositional inverse log! x should then satisfy
log! log x = (log! x) � 1, providing us with a primitive for (x log x log2 x � � � )�1:

log! x =

Z
dx

x log x log2 x � � �
:

It is convenient to start with iterated logarithms rather than iterated exponentials, and
to introduce transfinite iterators log˛ x recursively using

log˛ x =

Z
dxQ

ˇ<˛ logˇ x
(˛ any ordinal):

By Écalle [1992] the iterators log˛ x with ˛ < !! and their compositional inver-
ses exp˛ x suffice to resolve all pure composition equations of the form

f ık1 ı �1 ı � � � ı f ıkn ı �n = x where �1; : : : ; �n 2 T and k1; : : : ; kn 2 N.

The resolution of more complicated functional equations involving differentiation and
composition requires the introduction of fields of hyperseries: besides exponentials
and logarithms, hyperseries are allowed to contain iterators exp˛ x and log˛ x of any
strength ˛. For ˛ < !! , the necessary constructions were carried out in Schmeling
[2001]. The ultimate objective is to construct a field Hy of hyperseries as a proper
class, similar to the field of surreal numbers, endow it with its canonical derivation and
composition, and establish the following:

Conjecture 4.3. LetΦ be any partial function fromHy into itself, constructed from ele-
ments in Hy, using the field operations, differentiation and composition. Let f < g be
hyperseries inHy such that Φ is defined on the closed interval [f; g] and Φ(f )Φ(g) <

0. Then for some y 2 Hy we have Φ(y) = 0 and f < y < g.

One might then also consider H -fields with an additional composition operator and try
to prove that these structures can always be embedded into Hy.

5 Growth Rates as Numbers

Turning to surreal numbers, how do they fit into asymptotic differential algebra?

The H-field of surreal numbers. The totality No of surreal numbers is not a set but
a proper class: a surreal a 2 No is uniquely represented by a transfinite sign sequence
(a�)�<`(a) 2 f�;+g`(a) where `(a) is an ordinal, called the length of a; a surreal b is
said to be simpler than a (notation: b <s a) if the sign sequence of b is a proper initial
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segment of that of a. Besides the (partial) ordering <s , No also carries a natural (total)
lexicographic ordering <. For any sets L < R of surreals there is a unique simplest
surreal a with L < a < R; this a is denoted by fL j Rg and called the simplest or
earliest surreal between L and R. In particular, a = fLa j Rag for any a 2 No, where
La := fb <s a : b < ag and Ra = fb <s a : b > ag. We let aL range over elements
of La, and aR over elements of Ra.

A rather magical property of surreal numbers is that various operations have natural
inductive definitions. For instance, we have ring operations given by

a + b :=
˚
aL + b; a + bL

ˇ̌
aR + b; a + bR

	
ab :=

˚
aLb + abL

� aLbL; aRb + abR
� aRbR

ˇ̌
aLb + abR

� aLbR; aRb + abL
� aRbL

	
:

Remarkably, these operations make No into a real closed field with < as its field order-
ing and with R uniquely embedded as an initial subfield. (A set A � No is said to be
initial if for all a 2 A all b <s a are also in A.)

Can we use such magical recursions to introduce other reasonable operations? Ex-
ponentiation was dealt with by Gonshor [1986]. But it remained long open how to
define a “good” derivation ∂ onNo such that ∂(!) = 1. (An ordinal ˛ is identified with
the surreal of length ˛ whose sign sequence has just plus signs.) A positive answer
was given recently by Berarducci and Mantova [2018]. Their construction goes in two
parts. They first analyze No as an exponential field, and show that it is basically a field
of transseries in the sense of Section 4. A transserial derivation on No is determined
by its values at log-atomic elements. There is some flexibility here, but Berarducci and
Mantova [ibid.] present a “simplest” way to choose these derivatives. Most important,
that choice indeed leads to a derivation ∂BM on No. In addition:

Theorem 5.1 (Berarducci and Mantova [ibid.]). The derivation ∂BM is transserial and
makes No a Liouville closed H -field with constant field R.

This result was further strengthened in Aschenbrenner, van den Dries, and van der Ho-
even [2015], using key results from Aschenbrenner, van den Dries, and van der Hoeven
[2017a]:

Theorem 5.2. No with the derivation ∂BM is an H -closed field.

Embedding H-fields into No. In the remainder of this section we consider No as
equipped with the derivation ∂BM, although Theorems 5.1 and 5.2 and much of what
follows hold for other transserial derivations. Returning to our main topic of embedding
H -fields into specific H -fields such as No, we also proved the following in Aschen-
brenner, van den Dries, and van der Hoeven [2015]:

Theorem 5.3. Every H -field with small derivation and constant field R can be embed-
ded as an ordered differential field into No.
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How “nice” can we take the embeddings in Theorem 5.3? For instance, when can we
arrange the image of the embedding to be initial? The image of the natural embed-
ding T ! No is indeed initial, as has been shown by Elliot Kaplan.

For further discussion it is convenient to introduce, given an ordinal ˛, the set

No(˛) :=
˚
a 2 No : `(a) < ˛

	
:

It turns out that for uncountable cardinals �, No(�) is closed under the differential field
operations, and in Aschenbrenner, van den Dries, and van der Hoeven [ibid.] we also
show:

Theorem 5.4. The H -subfield No(�) of No is an elementary submodel of No.

In particular, the H -field No(!1) of surreal numbers of countable length is an ele-
mentary submodel of No. It has the �1-property: for any countable subsets A < B

of No(!1) there exists y 2 No(!1) with A < y < B . This fact and the various
“theorems in progress” from Section 3 imply:

Under CH all maximal Hardy fields are isomorphic to No(!1).

This would be an analogue of Ehrlich’s observation about maximal Hausdorff fields.

Hyperseries as numbers and vice versa. The similarities in the constructions of the
field of hyperseries Hy and the field of surreal numbers No led van der Hoeven [2006,
p. 6] to the following:

Conjecture 5.5. There is a natural isomorphism between Hy and No that associates
to any hyperseries f (x) 2 Hy its value f (!) 2 No.

The problem is to make sense of the value of a hyperseries at !. Thanks to Gonshor’s
exponential function, it is clear how to evaluate ordinary transseries at !. The difficul-
ties start as soon as we wish to represent surreal numbers that are not of the form f (!)

with f (x) an ordinary transseries. That is where the iterators exp! and log! come into
play:

exp! ! := f!; exp!; exp2 !; : : : j g

log! ! := f R j : : : ; log2 !; log!; !g

exp1/2 ! := exp!

�
log!

�
! + 1

2

��
:=

n
!2; exp log2 !; exp2 log

2
2 !; : : :

ˇ̌̌
: : : ; exp2

p
log!; exp

p
!

o
The intuition behind Conjecture 5.5 is that all “holes in No can be filled” using suitable
nested hyperseries and suitable iterators of exp and log. It reconciles two a priori very
different types of infinities: on the one hand, we have growth orders corresponding to
smooth functional behavior; on the other side, we have numbers. Being able to switch
between functions (more precisely: formal series acting as functions) and numbers, we
may also transport any available structure in both directions: we immediately obtain a
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canonical derivation ∂c (with constant field R) and composition ıc on No, as well as a
notion of simplicity on Hy.

Does the derivation ∂BM coincide with the canonical derivation ∂c induced by the
conjectured isomorphism? A key observation is that any derivation ∂ on No with a
distinguished right inverse ∂�1 naturally gives rise to a definition of log! :

log! a := ∂�1(∂a log0
! a) where

log0
! a := 1

� Y
n

logn a (a 2 No; a > R):

(For a family (ai ) of positive surreals,
Q

i ai := exp
P

i log ai if
P

i log ai is defined.)
Since ∂BM is transserial, it does admit a distinguished right inverse ∂�1

BM. According
to Berarducci and Mantova [2018, Remark 6.8], ∂BM� = 1/ log0

! � for log-atomic �

with � > expn ! for all n. For � = exp! ! and setting exp0
!(a) :=

Q
n logn exp! a

for a 2 No>0, this yields ∂BM� = exp0
! !, which is also the value we expect for ∂c�.

However, for � = exp!(exp! !) we get ∂BM� = exp0
!(exp! !) whereas we expect

∂c� = (exp0
! !) � exp0

!(exp! !). Thus the “simplest” derivation ∂BM making No an
H -field probably does not coincide with the ultimately “correct” derivation ∂c on No.
Berarducci and Mantova [2017] use similar considerations to conclude that ∂BM is in-
compatible with any reasonable notion of composition for surreal numbers.

The surreal numbers from a model theoretic perspective. We conclude with spec-
ulations motivated by the fact that various operations defined by “surreal” recursions
have a nice model theory. Examples: (No;6;+; � ) is a model of the theory of real
closed fields; (No;6;+; � ; exp) is a model of the theory ofRexp; and (No;6;+; � ; ∂BM)
is a model of the theory of H -closed fields. Each of these theories is model complete
in a natural language. Is there a model theoretic reason that explains why this works so
well?

Let us look at this in connection with the last example. Our aim is to define a deriva-
tion ∂ onNomaking it an H -field. Let a 2 No be given for which we wish to define ∂a,
and assume that ∂b has been defined for all b 2 La [ Ra. Let∆a be the class of all sur-
reals b for which there exists a derivation ∂ onNowith ∂a = b and taking the prescribed
values on La [ Ra. Assembling all conditions that should be satisfied by ∂a, it is not
hard to see that there exist sets L; R � No such that ∆a = fb 2 No : L < b < Rg.
We are left with two main questions: When do we have L < R, thereby allowing us
to define ∂a = fL j Rg? Does this lead to a global definition of ∂ on No making it an
H -closed field? It might be of interest to isolate reasonable model theoretic conditions
that imply the success of this type of construction. If the above construction does work,
yet another question is whether the resulting derivation coincides with ∂BM.
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