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Figure 2: Comparison of prediction error of different transfer learning techniques (GS, DM, LMS, and NLMS) for performance
models of DNN systems (Regression Tree and Neural Net) for inference time (top) and energy consumption (bottom). We
consider 15 different target environments and show error bars for values aggregated over 10 predictions on a log scale.

model that increases the coefficient of determination, while
BE removes an interaction term if its significance is below a
threshold. We study the interaction terms of the final regres-
sion model; in particular, we exclude terms with coefficients
that are less than 10−12. These terms guide the sampling
towards important configuration options and avoid wasting
resources on evaluations that effect no change when building
performance models in new environments. The DM transfer
learning approach reuses a performance model built for one
environment directly in a different environment. The LMS
and NMLS transfer learning techniques learn a linear regres-
sion model and a non-linear random forest regression model,
respectively, to translate the predictions from a performance
model trained for one environment into predictions for a dif-
ferent environment. These transfer models are based on a
small number of randomly-sampled configurations that are
evaluated in both environments.

In our experiments, we select the TX2 platform with the
InceptionV3 DNN and 600× 600 images as the source en-
vironment to train the performance models for. We transfer
these performance models to each of the remaining 15 target
environments. The source code and data are available in an
online appendix [7].

3 Results and Discussion
We present the results in Figure 2. They demonstrate that
GS outperforms DM, LMS, and NMLS in each environment
for both inference time and energy consumption. Average
Err of the performance models induced using GS are 28.09%
and 22.93% lower than DM, 25.64% and 21.59% lower than
LMS, and 23.47% and 19.76% lower than NLMS for infer-
ence time using NN and RT, respectively. Similarly, they are

42.85% and 39.41% lower than DM, 20.52% and 13.19%
lower than LMS, and 12.70% and 8.33% lower than NLMS
for energy consumption for NN and RT, respectively. All of
GS, LMS, and NLMS incurred the same cost (evaluation of
2.44% of the entire configuration space, ≈ 2.48 hours), while
the cost for DM was zero as the performance model from
the source environment is reused without modification in the
target environment. For the DM and GS transfer learning
techniques, an increase in computational effort of just 2.48
hours (≈ 0.15% of the effort to train the original performance
model) leads to an decrease of Err of 28.09% and 22.93% for
inference time and 42.85% and 39.41% for energy consump-
tion using NN and RT, consecutively.

If the environment change between source and target in-
cludes a hardware change, DM is more effective than LMS
and NLMS for inference time modeling; however, for energy
consumption, NLMS performs better than DM and LMS.

Guided sampling can help practitioners to quickly develop
reliable performance models for new environments based
on information they have obtained in the past to tune and
optimize a system. Such performance models can guide prac-
titioners to avoid invalid configurations and are useful for
design space exploration to quickly find optimal configura-
tions in new environments using influential configurations
which typically practitioners miss. These models are also
useful to learn the performance landscape of a system for
performance debugging, and obtain a better understanding of
how the configuration options affect performance in general.
In future work, we will consider extending the configuration
space with options from all 4 levels of the DNN system stack.
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