


101 102
Err

R
T

N
N

R
eg
re
ss
io
n

(h1,m1,s1)

101 102
Err

(h1,m1,s2)

101 102
Err

(h2,m1,s3)

101 102
Err

(h2,m1,s4)

101 102
Err

(h2,m2,s1)

101 102
Err

(h2,m2,s2)

101 102
Err

(h2,m2,s4)

101 102
Err

(h1,m1,s3)

101 102
Err

(h1,m1,s4)

101 102
Err

(h1,m2,s1)

101 102
Err

(h2,m2,s2)

101 102
Err

(h1,m2,s3)

101 102
Err

(h1,m2,s4)

101 102
Err

(h2,m1,s1)

101 102
Err

(h1,m1,s2)

GS DM LMS NLMS

101 102
Err

R
T

N
N

R
eg
re
ss
io
n

(h1,m1,s1)

101 102
Err

(h1,m1,s2)

101 102
Err

(h2,m1,s3)

101 102
Err

(h2,m1,s4)

101 102
Err

(h2,m2,s1)

101 102
Err

(h2,m2,s2)

101 102
Err

(h2,m2,s4)

101 102
Err

(h1,m1,s3)

101 102
Err

(h1,m1,s4)

101 102
Err

(h1,m2,s1)

101 102
Err

(h2,m2,s2)

101 102
Err

(h1,m2,s3)

101 102
Err

(h1,m2,s4)

101 102
Err

(h2,m1,s1)

101 102
Err

(h1,m1,s2)

GS DM LMS NLMS

Figure 2: Comparison of prediction error of different transfer learning techniques (GS, DM, LMS, and NLMS) for performance
models of DNN systems (Regression Tree and Neural Net) for inference time (top) and energy consumption (bottom). We
consider 15 different target environments and show error bars for values aggregated over 10 predictions on a log scale.

model that increases the coefficient of determination, while
BE removes an interaction term if its significance is below a
threshold. We study the interaction terms of the final regres-
sion model; in particular, we exclude terms with coefficients
that are less than 10−12. These terms guide the sampling
towards important configuration options and avoid wasting
resources on evaluations that effect no change when building
performance models in new environments. The DM transfer
learning approach reuses a performance model built for one
environment directly in a different environment. The LMS
and NMLS transfer learning techniques learn a linear regres-
sion model and a non-linear random forest regression model,
respectively, to translate the predictions from a performance
model trained for one environment into predictions for a dif-
ferent environment. These transfer models are based on a
small number of randomly-sampled configurations that are
evaluated in both environments.

In our experiments, we select the TX2 platform with the
InceptionV3 DNN and 600× 600 images as the source en-
vironment to train the performance models for. We transfer
these performance models to each of the remaining 15 target
environments. The source code and data are available in an
online appendix [7].

3 Results and Discussion
We present the results in Figure 2. They demonstrate that
GS outperforms DM, LMS, and NMLS in each environment
for both inference time and energy consumption. Average
Err of the performance models induced using GS are 28.09%
and 22.93% lower than DM, 25.64% and 21.59% lower than
LMS, and 23.47% and 19.76% lower than NLMS for infer-
ence time using NN and RT, respectively. Similarly, they are

42.85% and 39.41% lower than DM, 20.52% and 13.19%
lower than LMS, and 12.70% and 8.33% lower than NLMS
for energy consumption for NN and RT, respectively. All of
GS, LMS, and NLMS incurred the same cost (evaluation of
2.44% of the entire configuration space, ≈ 2.48 hours), while
the cost for DM was zero as the performance model from
the source environment is reused without modification in the
target environment. For the DM and GS transfer learning
techniques, an increase in computational effort of just 2.48
hours (≈ 0.15% of the effort to train the original performance
model) leads to an decrease of Err of 28.09% and 22.93% for
inference time and 42.85% and 39.41% for energy consump-
tion using NN and RT, consecutively.

If the environment change between source and target in-
cludes a hardware change, DM is more effective than LMS
and NLMS for inference time modeling; however, for energy
consumption, NLMS performs better than DM and LMS.

Guided sampling can help practitioners to quickly develop
reliable performance models for new environments based
on information they have obtained in the past to tune and
optimize a system. Such performance models can guide prac-
titioners to avoid invalid configurations and are useful for
design space exploration to quickly find optimal configura-
tions in new environments using influential configurations
which typically practitioners miss. These models are also
useful to learn the performance landscape of a system for
performance debugging, and obtain a better understanding of
how the configuration options affect performance in general.
In future work, we will consider extending the configuration
space with options from all 4 levels of the DNN system stack.

ii



4 Acknowledgements
This work has been supported by AFRL and DARPA
(FA8750-16-2-0042). Lars Kotthoff is supported by NSF grant
#1813537.

References

[1] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and
Diana Marculescu. Neuralpower: Predict and de-
ploy energy-efficient convolutional neural networks.
arXiv:1710.05420, 2017.

[2] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss:
A spatial architecture for energy-efficient dataflow for
convolutional neural networks. In ACM SIGARCH Com-
puter Architecture News, volume 44, pages 367–379.
IEEE Press, 2016.

[3] François Chollet. Xception: Deep learning with depth-
wise separable convolutions. arXiv preprint, pages 1610–
02357, 2017.

[4] Daniel Geschwender, Frank Hutter, Lars Kotthoff, Yuri
Malitsky, Holger H. Hoos, and Kevin Leyton-Brown.
Algorithm Configuration in the Cloud: A Feasibility
Study. In LION 8, pages 41–44, February 2014.

[5] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert
Siegmund, and Andrzej Wasowski. Variability-aware
performance prediction: A statistical learning approach.
In Proc. Int’l Conf. Automated Software Engineering
(ASE), pages 301–311. IEEE, 2013.

[6] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin,
Sasa Misailovic, Anant Agarwal, and Martin Rinard.
Dynamic knobs for responsive power-aware computing.
In In Proc. of Int’l Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS), 2011.

[7] Md Shahriar Iqbal, editor. Opml-DNNPerfModeling.
2019. https://github.com/iqbal128855/

OpML19-DNNPerfModeling.

[8] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez,
Christian Kästner, Akshay Patel, and Yuvraj Agarwal.
Transfer learning for performance modeling of config-
urable systems: An exploratory analysis. In Proceedings
of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pages 497–508.
IEEE Press, 2017.

[9] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and
Norbert Siegmund. Learning to sample: exploiting sim-
ilarities across environments to learn performance mod-
els for configurable systems. In Proceedings of the
2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering (ESEC/FSE), pages
71–82. ACM, 2018.

[10] Pooyan Jamshidi, Miguel Velez, Christian Kästner, Nor-
bert Siegmund, and Prasad Kawthekar. Transfer learning
for improving model predictions in highly configurable
software. In Proceedings of the 12th International Sym-
posium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), pages 31–41. IEEE Press,
2017.

[11] Irene Manotas, Lori Pollock, and James Clause. Seeds:
a software engineer’s energy-optimization decision sup-
port framework. In Proceedings of the 36th Interna-
tional Conference on Software Engineering (ICSE),
pages 503–514. ACM, 2014.

[12] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven
Apel. Faster discovery of faster system configurations
with spectral learning. Automated Software Engineering
(ASE), pages 1–31, 2017.

[13] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven
Apel. Using bad learners to find good configurations. In
Proc. Int’l Symp. Foundations of Software Engineering
(FSE), ESEC/FSE 2017, pages 257–267, New York, NY,
USA, 2017. ACM.

[14] Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo:
A performance model for deep neural networks. 2016.

[15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[16] Atri Sarkar, Jianmei Guo, Norbert Siegmund, Sven Apel,
and Krzysztof Czarnecki. Cost-efficient sampling for
performance prediction of configurable systems. In Proc.
Int’l Conf. Automated Software Engineering (ASE),
pages 342–352. IEEE, November 2015.

[17] Norbert Siegmund, Alexander Grebhahn, Sven Apel,
and Christian Kästner. Performance-influence models
for highly configurable systems. In Proc. Europ. Soft-
ware Engineering Conf. Foundations of Software En-
gineering (ESEC/FSE), pages 284–294. ACM, August
2015.

[18] P. M. Swamidass. Mape (mean absolute percentage er-
ror)mean absolute percentage error (mape). In Encyclo-
pedia of Production and Manufacturing Management,
pages 462–462, Boston, MA, 2000. Springer US.

[19] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S
Emer. Efficient processing of deep neural networks:
A tutorial and survey. Proceedings of the IEEE,
105(12):2295–2329, 2017.

[20] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of
the IEEE conference on computer vision and pattern
recognition (CVPR), pages 2818–2826, 2016.

iii



[21] Pavel Valov, Jean-Christophe Petkovich, Jianmei Guo,
Sebastian Fischmeister, and Krzysztof Czarnecki. Trans-
ferring performance prediction models across different
hardware platforms. In Proc. Int’l Conf. on Performance
Engineering (ICPE), pages 39–50. ACM, 2017.

[22] Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and
Jens Krinke. Deep parameter optimisation. In Proc.
of the Annual Conference on Genetic and Evolutionary
Computation (GECCO), pages 1375–1382. ACM, 2015.

[23] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou,
Shankar Pasupathy, and Rukma Talwadker. Hey, you

have given me too many knobs!: Understanding and
dealing with over-designed configuration in system soft-
ware. In Proc. Int’l Symp. Foundations of Software En-
gineering (FSE), pages 307–319, New York, NY, USA,
August 2015. ACM.

[24] Nezih Yigitbasi, Theodore L Willke, Guangdeng Liao,
and Dick Epema. Towards machine learning-based auto-
tuning of mapreduce. In Proc. Int’l Symp. on Modeling,
Analysis and Simulation of Computer and Telecommuni-

cation Systems (MASCOTS), pages 11–20. IEEE, 2013.

iv


	Introduction
	Methodology
	Results and Discussion
	Acknowledgements

