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Abstract

Generative Adversarial networks (GANs) have obtained re-
markable success in many unsupervised learning tasks and
unarguably, clustering is an important unsupervised learning
problem. While one can potentially exploit the latent-space
back-projection in GANs to cluster, we demonstrate that the
cluster structure is not retained in the GAN latent space. In
this paper, we propose ClusterGAN as a new mechanism for
clustering using GANs. By sampling latent variables from a
mixture of one-hot encoded variables and continuous latent
variables, coupled with an inverse network (which projects
the data to the latent space) trained jointly with a cluster-
ing specific loss, we are able to achieve clustering in the la-
tent space. Our results show a remarkable phenomenon that
GANs can preserve latent space interpolation across cate-
gories, even though the discriminator is never exposed to such
vectors. We compare our results with various clustering base-
lines and demonstrate superior performance on both synthetic
and real datasets.

1 Introduction
1.1 Motivation
Representation learning enables machine learning models
to decipher underlying semantics in data and disentangle
hidden factors of variation. These powerful representations
have made it possible to transfer knowledge across various
tasks. But what makes one representation better than another
? (Bengio, Courville, and Vincent 2013) mentioned several
general-purpose priors that are not dependent on the down-
stream task, but appear as commonalities in good represen-
tations. One of the general-purpose priors of representation
learning that is ubiquitous across data intensive domains is
clustering. Clustering has been extensively studied in unsu-
pervised learning with multifarious approaches seeking ef-
ficient algorithms (Ng, Jordan, and Weiss 2002), problem
specific distance metrics (Xiang, Nie, and Zhang 2008), val-
idation (Halkidi, Batistakis, and Vazirgiannis 2001) and the
like. Even though the main focus of clustering has been to
separate out the original data into classes, it would be even
nicer if such clustering was obtained along with dimension-
ality reduction where the real data actually seems to come
from a lower dimensional manifold.
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In recent times, much of unsupervised learning is driven
by deep generative approaches, the two most prominent be-
ing Variational Autoencoder (VAE) (Kingma and Welling
2013) and Generative Adversarial Network (GAN) (Good-
fellow et al. 2014). The popularity of generative models
themselves is hinged upon the ability of these models to cap-
ture high dimensional probability distributions, imputation
of missing data and dealing with multimodal outputs. Both
GAN and VAE aim to match the real data distribution (VAE
using an explicit approximation of maximum likelihood and
GAN through implicit sampling), and simulataneously pro-
vide a mapping from a latent space Z to the input space X .
The latent space of GANs not only provides dimensionality
reduction, but also gives rise to novel applications. Pertur-
bations in the latent space could be used to determine ad-
versarial examples that further help build robust classifiers
(Ilyas et al. 2017). Compressed sensing using GANs (Bora
et al. 2017) relies on finding a latent vector that minimizes
the reconstruction error for the measurements. Generative
compression is yet another application involving Z (San-
turkar, Budden, and Shavit 2017). One of the most fasci-
nating outcomes of the GAN training is the interpolation in
the latent space. Simple vector arithmetic properties emerge
which when manipulated lead to changes in the semantic
qualities of the generated images (Radford, Metz, and Chin-
tala 2015). This differentiates GANs from traditional dimen-
sionality reduction techniques (Mika et al. 1999) (Maaten
and Hinton 2008) which lack interpretability. One potential
application that demands such a property is clustering of cell
types in genomics. GANs provide a means to understand the
change in high-dimensional gene expression as one traverses
from one cell type (i.e., cluster) to another in the latent space.
Here, it is critical to have both clustering as well as good in-
terpretability and interpolation ability. This brings us to the
principal motivation of this work: Can we design a GAN
training methodology that clusters in the latent space?

1.2 Related Works
Deep learning approaches have been used for dimensional-
ity reduction starting with variants of the autoencoder such
as the stacked denoising autoencoders (Vincent et al. 2010),
sparse autoencoder (Coates, Ng, and Lee 2011) and deep
CCA (Andrew et al. 2013). Architectures for deep unsu-
pervised subspace clustering have also been built on the
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Figure 1: ClusterGAN Architecture

encoder-decoder framework (Ji et al. 2017). Recent works
have addressed this problem of joint clustering and di-
mensionality reduction in autoencoders. (Xie, Girshick, and
Farhadi 2016) solved this problem by initializing the clus-
ter centroids and the embedding with a stacked autoencoder.
Then they use alternating optimization to improve the clus-
tering and report state-of-the-art results in both clustering
accuracy and speed on real datasets. The clustering algo-
rithm is referred to as DEC in their paper. Since K-means is
often the most widely used algorithm for clustering, (Yang
et al. 2017) improved upon DEC by introducing a modi-
fied cost function that incorporates the K-means loss. They
optimized the non-convex objective using alternating SGD
to obtain an embedding that is amenable to K-means clus-
tering. Their algorithm DCN was shown to outperform all
standard clustering methods on a range of datasets. It is in-
teresting to note that the vanilla autoencoder by itself did
not explicitly have any clustering objective. But it could be
improved to achieve this end by careful algorithmic design.
Since GANs have outperformed autoencoders in generating
high fidelty samples, we had a strong intuition in favour of
the powerful latent representations of GAN providing im-
proved clustering performance also.

Interpretable representation learning in the latent space
has been investigated for GANs in the seminal work of
(Chen et al. 2016). The authors trained a GAN with an addi-
tional term in the loss that seeks to maximize the mutual in-
formation between a subset of the generator’s noise variables
and the generated output. The key goal of InfoGAN is to cre-
ate interpretable and disentangled latent variables. While In-
foGAN does employ discrete latent variables, it is not specif-
ically designed for clustering. In this paper, we show that our
proposed architecture is superior to InfoGAN for clustering.
The other prominent family of generative models, VAE, has
the additional advantage of having an inference network, the
encoder, which is jointly learnt during training. This enables
mapping from X to Z that could potentially preserve clus-
ter structure by suitable algorithmic design. Unfortunately,
no such inference mechanism exists in GANs, let alone the
possibility of clustering in the latent space. To bridge the gap
between VAE and GAN, various methods such as Adversar-
ially Learned Inference (ALI) (Dumoulin et al. 2016), Bidi-
rectional Generative Adversarial Networks (BiGAN) (Don-

ahue, Krähenbühl, and Darrell 2016) have introduced an in-
ference network which is trained to match the joint distribu-
tions of (x, z) learnt by the encoder E and decoder G net-
works. Typically, the reconstruction in ALI/BiGAN is poor
as there is no deterministic pointwise matching between x
and G(E(x)) involved in the training. Architectures such as
Wasserstein Autoencoder (Tolstikhin et al. 2017), Adversar-
ial Autoencoder (Makhzani et al. 2015), which depart from
the traditional GAN framework, also have an encoder as part
of the network. So this led us to consider a formulation using
an Encoder which could both reduce the cycle loss as well
as aid in clustering.

1.3 Main Contributions
To the best of our knowledge, this is the first work that ad-
dresses the problem of clustering in the latent space of GAN.
The main contributions of the paper can be summarized as
follows:
• We show that even though the GAN latent variable pre-

serves information about the observed data, the latent
points are smoothly scattered based on the latent distri-
bution leading to no observable clusters.

• We propose three main algorithmic ideas in ClusterGAN
in order to remedy this situation.

1. We utilize a mixture of discrete and continuous latent
variables in order to create a non-smooth geometry in
the latent space.

2. We propose a novel backpropogation algorithm ac-
commodating the discrete-continuous mixture, as well
as an explicit inverse-mapping network to obtain the
latent variables given the data points, since the problem
is non-convex.

3. We propose to jointly train the GAN along with the
inverse-mapping network with a clustering-specific
loss so that the distance geometry in the projected space
reflects the distance-geometry of the variables.

• We compare ClusterGAN and other possible GAN based
clustering algorithms, such as InfoGAN, along with mul-
tiple clustering baselines on varied datasets. This demon-
strates the superior performance of ClusterGAN for the
clustering task.

• We demonstrate that ClusterGAN surprisingly retains
good interpolation across the different classes (encoded
using one-hot latent variables), even though the discrimi-
nator is never exposed to such samples.

The formulation is general enough to provide a meta frame-
work that incorporates the additional desirable property of
clustering in GAN training.

2 Discrete-Continuous Prior
2.1 Background
Generative adversarial networks consist of two components,
the generator G and the discriminator D. Both G and D are
usually implemented as neural networks parameterized by
ΘG and ΘD respectively. The generator can also be consid-
ered to be a mapping from latent space to the data space
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Figure 2: TSNE visualization of latent vectors for GANs trained with different priors on MNIST.

which we denote as G : Z 7→ X . The discrimator de-
fines a mapping from the data space to a real value which
can correspond to the probability of the sample being real,
D : X 7→ R. The GAN training sets up a two player game
between G andD, which is defined by the minimax objective
: minΘG

maxΘD Ex∼Pr
x
q(D(x)) +Ez∼Pz

q(1−D(G(z))),
where Pr

x is the distribution of real data samples, Pz is the
prior noise distribution on the latent space and q(.) is the
quality function. For vanilla GAN, q(x) = log x, and for
Wasserstein GAN (WGAN) q(x) = x. We also denote the
distribution of generated samples xg as Pg

x. The discrimina-
tor and the generator are optimized alternatively so that at
the end of training Pg

x matches Pr
x.

2.2 Vanilla GAN does not cluster well in the
latent space

One possible way to cluster using a GAN is to back-
propagate the data into the latent space (using back-
propogation decoding (Lipton and Tripathi 2017)) and clus-
ter the latent space. However, this method usually leads to
very bad results (see Fig. 2 for clustering results on MNIST).
The key reason is that, if indeed, back-propagation succeeds,
then the back-projected data distribution should look simi-
lar to the latent space distribution, which is typically cho-
sen to be a Gaussian or uniform distribution, and we cannot
expect to cluster in that space. Thus even though the latent
space may contain full information about the data, the dis-
tance geometry in the latent space does not reflect the inher-
ent clustering. In (Gurumurthy, Sarvadevabhatla, and Babu
2017), the authors sampled from a Gaussian mixture prior
and obtained diverse samples even in limited data regimes.
However, even GANs with a Gaussian mixture failed to
cluster, as shown in 2(c). As observed by the authors of
DeLiGAN, Gaussian components tend to ‘crowd’ and be-
come redundant. Lifting the space using categorical vari-
ables could solve the problem effectively. But categorical
variables might introduce discontinuity. Continuity in latent
space has been traditionally viewed to be a pre-requisite for
the objective of good interpolation. In other words, inter-
polation seems to be at loggerheads with the clustering ob-
jective. We demonstrate in this paper how ClusterGAN can
obtain good interpolation and good clustering simultane-
ously.

2.3 Sampling from Discrete-Continuous Mixtures
In ClusterGAN, we sample from a prior that consists
of normal random variables cascaded with one-hot en-
coded vectors. To be more precise z = (zn, zc), zn ∼
N (0, σ2Idn

), zc = ek, k ∼ U{1, 2, . . . ,K}, ek is the kth
elementary vector in RK and K is the number of clus-
ters in the data. In addition, we need to choose σ in such
a way that the one-hot vector provides sufficient signal to
the GAN training that leads to each mode only generat-
ing samples from a corresponding class in the original data.
To be more precise, we chose σ = 0.10 in all our experi-
ments so that each dimension of the normal latent variables,
zn,j ∈ (−0.6, 0.6) << 1.0 ∀j with high probability. Small
variances σ are chosen to ensure the clusters in Z space are
separated. Hence this prior naturally enables us to design an
algorithm that clusters in the latent space.

2.4 Modified Backpropagation Based Decoding
Previous works (Creswell and Bharath 2018) (Lipton
and Tripathi 2017) have explored solving an optimiza-
tion problem in z to recover the latent vectors, z∗ =
arg minz L(G(z), x)+λ‖z‖p, where L is some suitable loss
function and ‖·‖p denotes the norm. This approach is insuffi-
cient for clustering with traditional latent priors even if back-
propagation was lossless and recovered accurate latent vec-
tors. To make the situation worse, the optimization problem
above is non-convex in z (G being implemented as a neural
network) and can obtain different embeddings in theZ space
based on initialization. Some of the approaches to address
this issue could be multiple restarts with different initialia-
tions to obtain z∗, or stochastic clipping of z at each itera-
tion step. None of these lead to clustering, since they do not
address the root problem of sampling from separated mani-
folds in Z . But our sampling procedure naturally gives way
to such an algorithm. We use L(G(z), x) = ‖G(z) − x‖1.
Since we sample from a normal distrubution, we use the reg-
ularizer ‖zn‖22, penalizing only the normal variables. We use
K restarts, each sampling zc from a different one-hot com-
ponent and optimize with respect to only the normal vari-
ables, keeping zc fixed. Adam (Kingma and Ba 2014) is used
for the updates during Backprop decoding.

2.5 Linear Generator clusters perfectly
The following lemma suggests that with discrete-continuous
mixtures, we need only linear generation to generate mixture



(a) Non-linear generator with
z ∼ N (0, I)

(b) Linear generator with z ∼
one-hot encoded normal.

Figure 3: TSNE visualization of latent vectors. Linear
Generator recovers clusters, suggesting that representation
power is not a bottleneck.

of Gaussians in the generated space.

Lemma 1. Clustering with only zn cannot recover a mixture
of gaussian data in the linearly generated space. Further
∃ a linear G(·) mapping discrete-continuous mixtures to a
mixture of Gaussians.

Proof. If latent space has only the continuous part, zn ∼
N (0, σ2Idn

), then by the linearity property, any lin-
ear generation can only produce Gaussian in the gen-
erated space. Now we show there exists a G(·) map-
ping discrete-continuous mixtures to the generate data
X ∼ N (µω, σ

2Idn), where ω ∼ U{1, 2, . . . ,K} (K
is the number of mixtures). This is possible if we let
zn ∼ N (0, σ2Idn

), zc = ek, k ∼ U{1, 2, . . . ,K} and
G(zn, zc) = zn + Azc, A = diag[µ1, · · · , µK ] being a
K ×K diagonal matrix with diagonal entries as the means
µi.

To illustrate this lemma, and hence the drawback of tra-
ditional priors Pz for clustering, we performed a simple ex-
periment. The real samples are drawn from a mixture of 10
Gaussians in R100. The means of the Gaussians are sampled
from U(−0.3, 0.3)100 and the variance of each component
is fixed at σ = 0.12. We trained a GAN with z ∼ N (0, I10)
where the generator is a multi-layer perceptron with two
hidden layers of 256 units each. For comparison, we also
trained a GAN with z sampled from one-hot encoded nor-
mal vectors, the dimension of categorical variable being 10.
The generator for this GAN consisted of a linear mapping
W ∈ R100×10, such that x = Wz. After training, the la-
tent vectors are recovered using backpropagation with 10
restarts from random initializations both for the linear gener-
ator and non-linear generator. For linear generator, we used
the modified backpropagation. Even for this toy setup, the
linear generator perfectly clustered the latent vectors (Acc.
= 1.0, NMI = 1.0, ARI = 1.0), but the non-linear generator
performed poorly (Acc. = 0.73, NMI = 0.75, ARI = 0.60)
(Figure 3). The situation becomes worse for real datasets
such as MNIST when we trained a GAN using latent vec-
tors drawn from uniform, normal or a mixture of Gaussians.
None of these configurations succeeded in clustering in the
latent space as shown in Figure 2.

2.6 Separate Modes for distinct classes in the data
It was surprising to find that trained in a purely unsuper-
vised manner without additional loss terms, each one-hot
encoded component generated points from a specific class
in the original data. For instance, z = (zn, ek) generated a
particular digit π(k) in MNIST, for multiple samplings of
zn ∼ N (0, σ2Idn

) (π denotes a permutation). This was a
necessary first step for the success of modified backpropa-
gation. We also quantitatively evaluated the modes learnt by
the GAN by using a supervised classifier for MNIST. The
supervised classifier had a test accuracy of 99.2%, so it had
high reliability of distinguishing the digits. We sample from
a mode k and generate a digit xg . It is then classified by the
classifier as ŷ. From this pair (k, ŷ), we can map each mode
to a digit and compute the accuracy of digit ŷ being gener-
ated from mode k. This is denoted as Mode Accuracy. Each
digit sample xr with label y can be decoded in the latent
space to obtain z. Now z can be used to generate xg , which
when passed through the classifier gives the label ŷ. The pair
(y, ŷ) must be equal in the ideal case and this accuracy is de-
noted as Reconstruction Accuracy. Finally, all the mappings
of points in the same class in X space should have the same
one-hot encoding when embedded in Z space. This defines
the Cluster Accuracy. This metholodgy can be extended to
quantitatively evaluate mode generation for other datasets
also, provided there is a reliable classifier. For MNIST, we
obtained Mode Accuracy of 0.97, Reconstruction Accuracy
of 0.96 and Cluster Accuracy of 0.95. Some of the modes in
Fashion-MNIST and MNIST are shown in Figures 4.

3 ClusterGAN
Even though the above approach enables the GAN to cluster
in the latent space, it may be able to perform even better if
we had a clustering specific loss term in the minimax objec-
tive. For MNIST, digit strokes correspond well to the cate-
gory in the data. But for more complicated datasets, we need
to enforce structure in the GAN training. One way to ensure
that is to enforce precise recovery of the latent vector. We
therefore introduce an encoder E : X 7→ Z , a neural net-
work parameterized by ΘE . The GAN objective now takes
the following form:

min
ΘG,ΘE

max
ΘD

E
x∼Pr

x

q(D(x)) + E
z∼Pz

q(1−D(G(z)))

+ βn E
z∼Pz

‖zn − E(G(zn))‖22 + βc E
z∼Pz

H(zc, E(G(zc))

where H(., .) is the cross-entropy loss. The relative mag-
nitudes of the regularization coeficients βn and βc enable
a flexible choice to vary the importance of preserving the
discrete and continuous portions of the latent code. One
could imagine other variations of the regularization that map
E(G(z)) to be close to the centroid of the respective cluster,
for instance ‖E(G(z(i))) − µc(i)‖22, in similar spirit as K-
Means. The GAN training in this approach involves jointly
updating the parameters of ΘG and ΘE .

As shown in Figure 5, in our architecture, both x is close
to G(E(x)) and z is close to E(G(z)). Even though our archi-
tecture is optimizing for one type of cycle loss, both losses
are small. The loss optimized for is even smaller.



Figure 4: Fashion Items (Fashion-MNIST) and Digits (MNIST) generated from distinct modes of the GAN trained with one-hot
encoded normal vectors in an unsupervised manner without additional loss terms.

Figure 5: Decrease of Cycle Loss with iterations in MNIST.
The mean square L2-distance ||x−G(E(x))|| was 0.038 and
||z−E(G(z))|| was 0.0004. Mean distances were computed
on a test batch not used in training.

Interpolation in latent space is preserved
The latent space in a traditional GAN with Gaussian latent
distribution enforces that different classes are continuously
scattered in the latent space, allowing nice inter-class inter-
polation, which is a key strength of GANs. In ClusterGAN,
the latent vector zc is sampled with a one-hot distribution
and in order to interpolate across the classes, we will have
to sample from a convex combination on the one-hot vec-
tor. While these vectors have never been sampled during
the training process, we surprisingly observed very smooth
inter-class interpolation in ClusterGAN. To demonstrate in-

terpolation, we fixed the zn in two latent vectors with differ-
ent zc components, say z(1)

c and z(2)
c and interpolated with

the one-hot encoded part to give rise to new latent vectors
z = (zn, µz

(1)
c + (1 − µ)z

(2)
c ), µ ∈ [0, 1]. As Figure 6 il-

lustrates, we observed a nice transition from one digit to an-
other as well as across different classes in FashionMNIST.
This demonstrates that ClusterGAN learns a very smooth
manifold even on the untrained directions of the discrete-
continuous distribution. We also show interpolations from a
vanilla GAN trained with Gaussian prior as reference.

4 Experiments
4.1 Datasets
Synthetic Data The data is generated from a mixture of
Gaussians with 4 components in 2D, which constitutes the
Z space. We generated 2500 points from each Gaussian.
The X space is obtained by a non-linear transformation :
x = f(U · f(Wz)), where W ∈ R10×2,U ∈ R100×10

with Wi,j ∼ N (0, 1), Ui,j ∼ N (0, 1). f(·) is the sigmoid
function to introduce non-linearity.

MNIST It consists of 70k images of digits ranging from
0 to 9. Each data sample is a 28× 28 greyscale image.

Fashion-MNIST (10 and 5 classes) This dataset has the
same number of images with the same image size as MNIST,
but it is fairly more complicated. Instead of digits, it con-
sists of various types of fashion products. We also merged
some categories which were similar to form a separate 5-
class dataset. The five groups were as follows : {Tshirt/Top,
Dress}, {Trouser}, {Pullover, Coat, Shirt}, {Bag}, {Sandal,
Sneaker, Ankle Boot}.

10x 73k Even though GANs have achieved unprece-
dented success in generating realistic images, it is not clear
whether they can be equally effective for other types of data.



Figure 6: Comparison of Latent Space Interpolation : ClusterGAN (left) and vanilla WGAN (right)

Moreover, computer vision might have ample supply of la-
belled images, obtaining labels for some fields, for instance
biology, is extremely costly and laborious. Thus, unsuper-
vised clustering of data is truly a necessity for this domain.
In this experiment, we trained a GAN to cluster cell types
from a single cell RNA-seq counts matrix. The dataset con-
sists of RNA-transcript counts of 73233 data points belong-
ing to 8 different cell types (Zheng et al. 2017). To reduce
the dimension of the data, we selected 720 highest variance
genes across the cells. The entries of the counts matrix C
are first tranformed as log2(1+Cij) and then divided by the
maximum entry of the transformation to obtain values in the
range of [0, 1]. One of the major challenges in this data is
sparsity. Even after subselection of genes based on variance,
the data matrix had close to 40% zero entries.

Pendigits It is a very different dataset that consists of a
time series of {xt, yt}Tt=1 coordinates. The points are sam-
pled as writers write digits on a pressure sensitive tablet.
The total number of datapoints is 10992, and consists of 10
classes, each for a digit. It provided a unique challenge of
training GANs for point cloud data.

In all our experiments in this paper, we used an improved
variant (WGAN-GP) which includes a gradient penalty
(Gulrajani et al. 2017). Using cross-validation for select-
ing hyperparameters is not an option in purely unsupervised
problems due to absence of labels. We adapted standard ar-
chitectures for the datasets (Chen et al. 2016) and avoided
data specific tuning as much as possible. Some choices of
regularization parameters λ = 10, βn = 10, βc = 10
worked well across all datasets.

4.2 Evaluation
Since clustering is an unsupervised problem, we ensured that
all the algorithms are oblivious to the true labels unlike a su-
pervised framework like conditional GAN (Mirza and Osin-
dero 2014). We compared ClusterGAN with other possible
GAN based clustering approaches we could conceive.

Modified backpropagation + K-Means is denoted as
“GAN with bp”. For InfoGAN, we used arg maxc P(c | x)

as an inferred cluster label for x. Further, the features φ(x) in
the last layer of the Discriminator could contain some class-
specific discriminating features for clustering. So we used
K-Means on φ(x) to cluster, denoted as “GAN with Disc.
φ”. We also included clustering results from Non-negative
matrix Factorization (NMF) (Lee and Seung 1999), Ag-
golomerative Clustering (AGGLO) (Zhang et al. 2012) and
Spectral Clustering (SC). AGGLO with Euclidean affinity
score and ward linkage gave best results. NMF had both l-1
and l-2 regularization, initialized with Non-negative Dou-
ble SVD and used KL-divergence loss. SC had rbf ker-
nel for affinity. We reported normalized mutual information
(NMI), adjusted Rand index (ARI), and clustering purity
(ACC). Since DCN has been shown to outperform various
deep-learning based clustering algorithms, we reported its
metrics from the paper (Yang et al. 2017) for MNIST and
Pendigits. We found DCN to be very sensitive to hyperpa-
rameter choice, architecture and learning rates and could
not obtain reasonable results from it on the other datasets.
But we outperformed DCN results on MNIST and Pendigits
dataset 1. The code for ClusterGAN is available at https:
//github.com/sudiptodip15/ClusterGAN.

Since clustering metrics do not reveal the quality of gen-
erated samples from a GAN, we report the Frechet Inception
Distance (FID) (Heusel et al. 2017) for the image datasets.
We found that ClusterGAN achives good clustering without
compromising sample quality as shown in Table 2.

In all datasets, we provided the true number of clusters to
all algorithms. In addition, for MNIST, Table 3 provides the
clustering performance of ClusterGAN as number of clus-
ters is varied. Overestimates do not severely hurt Cluster-
GAN; but underestimate does.

4.3 Scalability to Large Number of Clusters
We ran ClusterGAN on Coil-20 (N = 1440, K = 20) and
Coil-100 (N = 7200,K = 100) datasets, where N is the

1For all baselines and GAN variants, Table 1 reports metrics for
the model with best validation purity from 5 runs.



Dataset Algorithm ACC NMI ARI

Synthetic

ClusterGAN 0.99 0.99 0.99
Info-GAN 0.88 0.75 0.74

GAN with bp 0.95 0.85 0.88
GAN with Disc. φ 0.99 0.98 0.98

AGGLO. 0.99 0.99 0.99
NMF 0.98 0.96 0.97
SC 0.99 0.98 0.98

MNIST

ClusterGAN 0.95 0.89 0.89
Info-GAN 0.89 0.86 0.82

GAN with bp 0.95 0.90 0.89
GAN with Disc. φ 0.70 0.62 0.52

DCN 0.83 0.81 0.75
AGGLO. 0.64 0.65 0.46

NMF 0.56 0.45 0.36

Fashion-10

ClusterGAN 0.63 0.64 0.50
Info-GAN 0.61 0.59 0.44

GAN with bp 0.56 0.53 0.37
GAN with Disc. φ 0.43 0.37 0.23

AGGLO. 0.55 0.57 0.37
NMF 0.50 0.51 0.34

Fashion-5

ClusterGAN 0.73 0.59 0.48
Info-GAN 0.71 0.56 0.45

GAN with bp 0.73 0.54 0.45
GAN with Disc. φ 0.67 0.49 0.40

AGGLO. 0.66 0.52 0.36
NMF 0.67 0.48 0.40

10x 73k

ClusterGAN 0.81 0.73 0.67
Info-GAN 0.62 0.58 0.43

GAN with bp 0.65 0.59 0.45
GAN with Disc. φ 0.33 0.17 0.07

AGGLO. 0.63 0.58 0.40
NMF 0.71 0.69 0.53
SC 0.40 0.29 0.18

Pendigits

ClusterGAN 0.77 0.73 0.65
Info-GAN 0.72 0.73 0.61

GAN with bp 0.76 0.71 0.63
GAN with Disc. φ 0.65 0.57 0.45

DCN 0.72 0.69 0.56
AGGLO. 0.70 0.69 0.52

NMF 0.67 0.58 0.45
SC 0.70 0.69 0.52

Table 1: Comparison of clustering metrics across datasets

Dataset Algorithm
Cluster WGAN WGAN Info
GAN (Normal) (One-Hot) GAN

MNIST 0.81 0.88 0.94 1.88
Fashion 0.91 0.95 6.14 11.04

Table 2: Comparison of Frechet Inception Distance (FID)
(Lower distance is better)

number of Data points. ClusterGAN could obtain good clus-
ters even with such high value of K. These data sets were
particularly difficult for GAN training with only a few thou-

Dataset : MNIST, Algorithm : ClusterGAN
ACC

K = 7 K = 9 K = 10 K = 11 K = 13
0.72 0.80 0.95 0.90 0.84

Table 3: Robustness to Cluster Number K

sand data points. Yet, we found similar behavior as MNIST /
Fashion-MNIST emerging here as well. Distinct modes gen-
erated distinct 3D-objects along with rotations as shown in
Figure 7.

5 Discussion and Future Work
In this work, we discussed the drawback of training a GAN
with traditional prior latent distributions for clustering and
considered discrete-continuous mixtures for sampling noise
variables. We proposed ClusterGAN, an architecture that en-
ables clustering in the latent space. Comparison with clus-
tering baselines on varied datasets using ClusterGAN illus-
trates that GANs can be suitably adapted for clustering. Fu-
ture directions can explore better data-driven priors for the
latent space.
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