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Abstract

We initiate the study of the communication complexity of fair division with indivisible goods.
We focus on some of the most well-studied fairness notions (envy-freeness, proportionality,
and approximations thereof) and valuation classes (submodular, subadditive and unrestricted).
Within these parameters, our results completely resolve whether the communication complexity
of computing a fair allocation (or determining that none exist) is polynomial or exponential (in
the number of goods), for every combination of fairness notion, valuation class, and number of
players, for both deterministic and randomized protocols.

1 Introduction

Fair division studies the problem of distributing resources among competing players in a “fair” way,
where each player has equal claim to the resources. There are many different notions of fairness,
with the two most prominent being envy-freeness and proportionality. An allocation is envy-free
(EF) if each player’s value for her own bundle is at least as much as her value for any other player’s
bundle. An allocation is proportional (Prop) if each player’s value for her bundle is at least 1/n of
her value for the entire set of items, where n is the number of players.

In discrete fair division, the resources consist of indivisible items: each item must go to a single
player and cannot be split among players. Unfortunately, neither envy-freeness nor proportionality
can be guaranteed in this setting. Consider two players and a single item: one must receive the
item while the other receives nothing, so the allocation is neither envy-free nor proportional. We
study the problem of finding an envy-free (or proportional) allocation, or showing that none exists.

We also consider approximate versions of these properties: for ¢ € [0, 1], an allocation is ¢-EF if
each player’s value for her own bundle is at least ¢ times her value for any other player’s bundle, and
an allocation is c-Prop if each player’s value for her bundle is at least ¢/n of her value for the entire
set of items. Thus 1-EF and 1-Prop are standard envy-freeness and proportionality, respectively.
The same counterexample of two players and a single item shows that these approximate properties
also cannot be guaranteed for any ¢ > 0.!

From a computational complexity viewpoint, this problem is hard even when player valuations
are additive, meaning that a player’s value for a set of items is the sum of her values for the
individual items. For two players with identical additive valuations, determining whether a 1-EF
or 1-Prop exists is NP-hard, via a simple reduction from the partition problem [3].

It is arguably even more natural to study fair division from a communication complexity per-
spective, where there is no centralized authority and each player initially knows only her own
preferences.

1We generally assume that ¢ > 0, since every allocation is both 0-EF and 0-Prop.



When players have combinatorial valuations, their values for a bundle cannot just be decomposed
into their values for the individual items.? In particular, for m items, a combinatorial valuation may
contain 2™ different values. The primary question is to determine whether players need to exchange
an exponential amount of information to compute a fair allocation, or whether the problem can
be solved using only polynomial communication. This question has not been studied previously,
despite the rich literature on communication complexity in combinatorial auctions (e.g. [22, 21, 12]).

Our paper can also be thought of as formally studying the difficulty of eliciting different classes
of valuations from a fair division standpoint. Additive valuations are typically used in practice
(for example on the non-profit website Spliddit [15]) because each player need only report one
value for each item to specify the entire valuation. Richer combinatorial valuations allow for more
expressiveness, but may be more difficult to elicit. Our work formally studies the tradeoffs between
these factors.

1.1 Our results

We study the following question: “Given n players and m items, a fairness property P € {EF, Prop},
and a constant ¢ € [0, 1], how much communication is required to either find a ¢-P allocation, or
show that none exists?”? We are primarily interested in whether this can be done with communi-
cation polynomial in m. The answer to this question will depend on n, P, and c¢. We also consider
when player valuations are restricted to be submodular or subadditive, as well as deterministic vs.
randomized protocols.

All in all, we give a full characterization of the communication complexity for every combination
of the following five parameters:

1. Number of players n

2. Valuation class: submodular, subadditive, or general
3. Each P € {EF, Prop}

4. Every constant ¢ € [0, 1]

5. Deterministic or randomized communication complexity

1.1.1 The importance of the two-player setting

One of our results (Section 7) shows that there is no hope for a polynomial communication protocol
for more than two players: exponential communication is required for every n > 2, for either P €
{EF, Prop}, for any ¢ > 0, even for submodular valuations, and even for randomized protocols. The
(very important) two-player case is surprisingly rich, however, with multiple phenomena occurring
across different valuation classes and constants c. The results for two players in the deterministic
setting are summarized in Table 1. It is also surprising that there is such a chasm between the two-
and three-player cases; for example, there is no analogous chasm for maximizing the social welfare
in combinatorial auctions.

Furthermore, in contrast to combinatorial auctions, the two-player setting is fundamental in
fair division. Indeed, the first known mention of fair division is in the Bible, when Abraham and

2An increasing amount of research in fair division considers such combinatorial valuations (e.g. [23, 1, 14]).

$We only consider a single ¢-P property at a time: we do not consider satisfying envy-freeness and proportionality
simultaneously. For subadditive valuations, ¢-EF implies c-Prop, but ¢-EF and c-Prop are incomparable for general
valuations.



Lot use the cut-and-choose method to divide a piece of land. In modern day, one of the primary
applications of fair division for indivisible items is divorce settlements, which is fundamentally a
two-player setting. Fair Outcomes Inc.?, a commercial fair division website, only allows for two
players. Other applications of fair division, such as dividing an inheritance and international border
disputes, are also often two player settings. Unless otherwise mentioned, we assume that n = 2
throughout the paper.

1.1.2 Submodular valuations

We first consider submodular valuations in the deterministic setting (for n = 2). We show that full
proportionality (1-Prop) requires only polynomial communication (Theorem 3.1), whereas full envy-
freeness requires exponential communication (Theorem 6.1), exhibiting an interesting difference
between the two properties.

The hardness result for 1-EF leaves open the intriguing possibility of a polynomial-communication
approximation scheme (PAS):° for any fixed ¢ < 1, is communication cost polynomial in m suffi-
cient? As one of our main results, we prove that this is indeed the case, and we prove it using a
reduction to a type of graph we call the “minimal bundle graph” (Theorem 4.1). This is our most
technically involved argument.

The communication cost of this protocol exponential in ﬁ, and so this PAS is not a fully
polynomial-communication approzimation scheme (FPAS), which would require polynomial depen-
dence on 2. Our lower bound for 1-EF (Theorem 6.1) rules out an FPAS, so our results are still

l—c*
tight.

1.1.3 Subadditive valuations

The story is different for subadditive valuations, which are treated in Section 8. We show that only
polynomial communication is required for ¢-EF when ¢ < 1/2 (Theorem 8.3) and for ¢-Prop when
¢ < 2/3 (Theorem 8.4). Interestingly, the constants 1/2 and 2/3 turn out to be tight: we show that
exponential communication is required for ¢-EF for every constant ¢ > 1/2 (Theorem 8.5) and for
c-Prop for every constant ¢ > 2/3 (Theorem 8.6). This establishes another interesting difference
between the two fairness notions.

1.1.4 General valuations

The story is again different for general valuations, which we consider in Section 9. In the determinis-
tic setting, c-EF and c¢-Prop each require exponential communication for every ¢ > 0 (Theorems 9.2
and 9.1). This resolves the deterministic setting.

1.1.5 Randomized communication complexity

The c-Prop lower bound for general valuations also holds in the randomized setting for any ¢ > 0.
However, ¢-EF admits an efficient randomized protocol for any ¢ < 1 and general (and hence also
subadditive and submodular) valuations. This randomized protocol is based on a reduction to
the EQUALITY problem (testing whether two bit strings are identical), which is known to have an
efficient randomized protocol. Our randomized protocol for c-EF also carries over to c-Prop for any

“http://fairoutcomes.com
5This is the same idea as a polynomial-time approximation scheme (PTAS), but here we are interested in com-
munication, not time.



c-EF (deterministic) c-Prop (deterministic)

easy when hard when easy when hard when

general valuations never ¢ >0 (Thm. 9.2) never ¢> 0 (Thm. 9.1)

subadditive valuations | ¢ <1/2 (Thm. 8.3) | ¢> 1/2 (Thm. 8.5) | ¢ <2/3 (Thm. 8.4) | ¢ > 2/3 (Thm. 8.6)

submodular valuations | ¢ < 1 (Thm. 4.1) ¢=1 (Thm. 6.1) ¢ <1 (Thm. 3.1) never

Table 1: A summary of our results for the two-player deterministic setting. For both ¢-EF and
c-Prop, we characterize exactly when the problem is easy (i.e., can be solved with communication
polynomial in the number of items) and hard (i.e., requires exponential communication). We note
that the protocol for Theorem 4.1 has communication cost exponential in ﬁ, and the correspond-
ing lower bound (Theorem 6.1) rules out a protocol with communication cost polynomial in 1%

C
See Section 1.1.2 for additional discussion.

¢ <1 in the special case of subadditive (and hence also submodular) valuations. This resolves the
randomized setting.

Finally, we briefly consider the maximin share property in Section 10, and prove exponential
lower bounds in that setting as well.

1.2 Ideas behind our protocols

Since the problem is always hard when n > 2, all of our upper bounds are in the two-player setting.
All of our positive results require the following condition: for any partition of the items into two
bundles A; and As, each player must be happy with at least one of Ay and As. This is always true
for envy-freeness: a player is always happy with whichever of A; and A, she has maximum value
for (she could be happy with both bundles if they have equal value to her). This is not satisfied
for proportionality in general, for example if a player has value zero for each of A; and As, but
positive value for A; U As. However, it is satisfied for subadditive valuations.

All of our deterministic protocols have the same first step: if there is any allocation where player
1 would be happy to receive either bundle, she specifies that allocation to player 2, and player 2
selects her preferred bundle. Player 2 is guaranteed to be happy with at least one of the bundles
by the above condition, and player 1 is happy with either bundle in this allocation, so she is happy
as well.

The key to the analysis is what happens when there is no allocation such that player 1 is happy
with either bundle. It will turn out that the absence of such an allocation implies certain structure
in the valuations. The exact structure, and the way the structure is exploited, depends on the
setting (valuation class, property P, and constant c).

For example, consider the case of subadditive valuations and %-EF . We show that if there is
no allocation where player 1 is happy with either bundle, then there must exist a single item that
player 1 values more than the rest of the items combined. Then player 1 can simply specify that
item to player 2. If player 2 is happy with the rest of the items, we have found a satisfactory
allocation. Otherwise, there is no satisfactory allocation, since player 1 and player 2 both care
about that particular item more than the rest of the items combined.

Furthermore, this protocol gives an additional guarantee. If a ¢- P allocation is not returned, the
protocol will return the fairest allocation possible, i.e., a ¢/-P allocation where no allocation is ¢’-P
for any ¢’ > ¢/. For brevity, we will use ¢* to refer to the maximum ¢’ such that a ¢’-P allocation



exists.% If player 2 determines that a c-P allocation does not exist, then there is a single item g
that both players care about more than all of the other items together. One player will have to not
receive item ¢, and the protocol gives g to the player who will be most unhappy otherwise. This
yields a c*-P allocation. In fact, all of our deterministic protocols give this guarantee, although
slightly more work is required to achieve it in other settings.

1.2.1 Minimal bundles

The reasoning described above is actually a special case of analyzing what we call minimal bundles.
We say that a bundle is minimal for some player if that player is happy with the bundle, but is not
happy with any strict subset of that bundle.” The minimal bundles represent the most a player
is willing to compromise. If a player does not receive one of her minimal bundles (or a superset
thereof), she cannot be happy, by definition. On the other hand, if a player receives one of her
minimal bundles (or a superset thereof), she is guaranteed to be happy.® Thus it is both necessary
and sufficient for each player to receive one of her minimal bundles (or a superset thereof). By this
reasoning, it is sufficient for player 1 to specify all of her minimal bundles to player 2: player 2 can
then determine if there is an allocation which satisfies her (player 2), while still giving player 1 one
of player 1’s minimal bundles.

The general Minimal Bundle Protocol (Protocol 2) is as follows. If there is an allocation where
player 1 is happy with either bundle, she specifies that allocation to player 2, and we are done.
Otherwise, player 1 specifies all of her minimal bundles to player 2, who searches for a satisfactory
allocation. If player 2 fails to find one, she declares that no satisfactory allocation exists. There
is a final step that is used to guarantee that a ¢*-P allocation is returned if no ¢-P allocation is
found; this will be described later.

The key is proving that the number of minimal bundles is polynomial in m, and this analysis
varies based on the context. For example, for subadditive valuations and %—EF, we discussed above
how if there is no allocation where player 1 is happy with either bundle, there must be a single
item g that she values more than all of the other items together. This means that player 1 has a
single minimal bundle: {g}.

We also use the protocol to give a PAS for EF in the submodular setting: we show that for

every fixed ¢ < 1, the number of minimal bundles is at most 2(m + 1)%, and thus the protocol
uses polynomial communication for any fixed ¢. The analysis for this case is technically involved
and involves constructing what we call the “minimal bundle graph” for player 1’s valuation. The
vertices in this graph are the minimal bundles, and two vertices share an edge if the corresponding
bundles overlap by exactly one item (it will be impossible for two minimal bundles to overlap by
more than one item). For some of these edges, moving the overlapping item between bundles will
cause a large change in value: these special edges will play an important role. We will show that
the only way to have a large number of minimal bundles is for there to be a large number of these
special edges, but submodularity will imply an upper bound on how many special edges can be
incident on a single vertex, and hence an upper bound on the total number of special edges.

The Minimal Bundle Protocol is correct for any valuation class, property P, or constant c.
However, in some contexts, the number of minimal bundles may be exponential. Our lower bound
constructions all involve valuations with an exponential number of minimal bundles.

STt is possible that ¢* =0 (for example, in the case of two players and one item), but our protocol at least certifies
that this is the best possible.

"A similar notion of “minimal bundles” features prominently in [4].

8We assume monotonicity: adding items to a bundle cannot decrease its value.



1.3 Related work

Fair division has a long history, and a full survey of this field is outside of the scope of this paper:
see e.g. [6, 5, 18] for further background.

There are several approaches for handling the fundamental asymmetry of indivisible items,
where neither envy-freeness or proportionality can be guaranteed. One natural question is whether
there are other compelling properties that can be guaranteed [23, 10, 8, 17]. Another possibility is
to allow for randomized allocations and search for allocations that are fair in expectation [2, 9].

Although EF and Prop allocations do not always exist, they often do. For example, [11] showed
that when the number of items is at least a logarithmic factor larger than the number of players,
envy-free allocations are likely to exist. If a fully envy-free or proportional allocation does exist
in a particular instance, it may be preferable to choose that allocation before resorting to weaker
properties or randomization. In this paper, we address the question of determining whether a c-EF
or a c-Prop allocation exists, and if so, finding one.

Communication complexity was first studied by [25]. The paper most relevant to our work
is [22], which shows that maximizing social welfare requires exponential communication, even for
two players with submodular valuations. Furthermore, they show that for general valuations,
any constant factor approximation of the social welfare requires exponential communication to
compute. Although they do not mention envy-freeness, proportionality, or fair division, some of
their arguments can be adapted to prove exponential lower bounds for some (but not all) of the
cases that we study.

A recent and complementary line of work is presented in [7]. They study the communication
complexity of fair division with divisible goods (also known as “cake cutting”), where each resource
can be divided into arbitrarily small pieces. Their paper complements ours with no overlap. To-
gether, our papers give a comprehensive picture of the communication complexity of fair division
in both the indivisible and divisible models.

The organization of the rest of the paper is as follows. Section 2 formally presents the model.
Section 3 presents our 1-Prop protocol for submodular valuations. In Section 4, we discuss the PAS
for 1-EF for submodular valuations. Section 5 describes our general lower bound approach, and
proves a lemma that we will use to prove lower bounds later on in a standardized way. Section 6
uses that lemma to prove hardness for 1-EF for submodular valuations, which shows that the PAS
from Section 4 is optimal. Section 7 shows that the problem is always hard for more than two
players, even for submodular valuations and even in the randomized setting. The rest of the paper
is focused on resolving the two player case. Section 8 presents the upper and lower bounds for
subadditive valuations. Section 9 considers general valuations, and also handles the randomized
two player setting. Table 1 will be complete after this section. Finally, we consider the maximin
share property (to be defined later) in Section 10.

2 Model

We formally introduce the discrete fair division model in Section 2.1, and the communication
complexity model in Section 2.2.

2.1 Fair division

Let [k] denote the set {1...k}. Let N = [n] be the set of players, and let M be the set of items,
where |M| = m. We assume throughout the paper that items are indivisible, meaning that an



item cannot be split among multiple players. Player i’s value for each subset of M is specified by
a valuation v; : 2M — R>o. We refer to a subset of M as a bundle.

We assume throughout the paper that valuations obey monotonicity (adding items to a bundle
cannot decrease the value of the bundle) and normalization (v;(()) = 0), and that v;(M) > 0. We
refer to set of the valuations constrained only by these three properties as “general valuations”.

There are many commonly studied subclasses of valuations, such as subadditive and submodu-
lar. A valuation v is subadditive if for all bundles S and T, v(SUT) < v(S) + v(T'). Submodular
valuations represent “diminishing returns”: v is submodular if v(T'U{g})—v(T) < v(SU{g})—v(S)
whenever S C T'. Every submodular valuation is subadditive, but not every subadditive valuation
is submodular. Thus a problem that is hard for subadditive valuations may become tractable if
valuations are restricted to be submodular. Similarly, problems that are hard for general valuations
may be easier for subadditive valuations.

An allocation is a partition of M into n disjoint subsets (A1, As... A, ), where A; is the bundle
allocated to player i. The goal is to find a “fair” allocation. The two most prominent fairness
notions for indivisible items are envy-freeness and proportionality. Envy-freeness states that no
player strictly prefers another player’s bundle to her own, and proportionality states that every
player receives at least 1/n of her value for the entire set of items. We can also define approximate
versions of these properties:

Definition 2.1. An allocation A = (A;...A,) is c-EF for some ¢ € [0,1] if for all i,j € N,
'UZ(AZ) Z C- Ui(Aj)
Definition 2.2. An allocation A = (A;...Ay) is c-Prop for some ¢ € [0,1] if for alli € N,

UZ(M)

n

’UZ(AZ) >c-

Thus 1-EF is standard envy-freeness, and 1-Prop is standard proportionality.

We will say that a player is (¢, P)-happy with an allocation A if property c-P is satisfied from her
viewpoint. Specifically, when P = EF, we will say that player i is (¢, P)-happy with allocation A if
v;(A;) > c-v;i(A;j) for all j. For P = Prop, we will say a player ¢ is (¢, P)-happy if v;(4;) > %v,(M)
We will typically leave P implicit, and just say that player i is c-happy. We sometimes also leave
¢ implicit, and just say that player 7 is happy.

A instance of FAIR DIVISION consists of a set of players N, a set of items M, player valuations
(v1...v,), a fairness property P € {EF, Prop}, and a constant ¢ € [0,1]. The goal is to find an
allocation satisfying c-P, or show that none exists.

2.1.1 Two players

We use the following additional terminology when n = 2. For a player i, we will use i to denote
the other player. For an allocation A = (Aj, As), let A be the allocation (As, A1). Also, when
n = 2, knowing player i’s bundle uniquely determines the overall allocation, since player i simply
has every item not in player i’s bundle. Therefore, with slight abuse of notation, we say that player
i is c-happy with bundle S if player 7 is c-happy with the allocation A where A; = S and A; = M\S.

2.2 Communication complexity

We assume that each player knows only her own valuation v;, and does not know anything about
other players’ valuations. In order to solve an instance of FAIR DIVISION, players will need to



exchange information about their valuations. We assume that all players know N, M, P, and c.
Since there 2™ subsets of M, specifying a bundle requires m bits. We will use v%%¢ to refer to
the number of bits required to represent a value v;(.S). We assume that v*?*¢ is polynomial in m,
otherwise sending even a single value would rule out a polynomial communication protocol.

A (deterministic) protocol I' specifies which player should speak (and what she should say) as
a function of the messages sent so far, and terminates when a player declares that an allocation A
satisfies ¢-P, or when a player declares that no ¢-P allocation exists. For fixed N, M, P, and ¢, we
define the communication cost of a protocol I" to be the maximum number of bits I" sends across all
player valuations vj...v,. Formally, let Cp(N, M, (v;...v,), P,¢) be the number of bits that I com-
municates when run on the fair division instance (N, M, (v1...v,), P,c¢). Then the communication
cost of I is max,, ) Cr(N, M, (v1...vn), P, c).

We define the deterministic communication complexity D(n,m, P, c) as the minimum communi-
cation cost of any protocol I which correctly solves FAIR DIVISION for n players, m items, property
P and constant c¢. Formally,

D(n,m,P,c) = min(max)Cp([n], [m], (v1...v), P, ¢)
V1...Un
where I' ranges over all correct deterministic protocols.

In a randomized protocol I'g, each player also has access to an infinite stream of random bits.
The protocol should correctly solve FAIR DIVISION with probability 2/3 (say) over these random
bits. Like the deterministic setting, the communication cost of I'g is the number of bits I'g commu-
nicates for a worst-case choice of v;...v,. We can similarly define the randomized communication
complexity R(n,m, P, c) as the minimum communication cost of any randomized protocol I'g which
correctly solves FAIR DIVISION with probability at least 2/3. Formally,

R(n,m, P,c) = nlgin(maX)C'pR([n], [m], (vi...0,), P, c)
R \V1...Un

where I'g ranges over all correct randomized protocols. If valuations are restricted to be subadditive
or submodular, the problem may become easier, so D(n, m, P, c) and R(n,m, P, c) may be affected.
We use Dgypadda(n, m, P, ¢) and Dgypmod(n, m, P, ¢) to denote the deterministic communication com-
plexity when valuations are restricted to be subadditive and submodular, respectively (and similarly
for Rsypadd(n, m, P,c) and Rgsypmod(n, m, P,c)). The following relationships are immediate, for all
n,m, P, and c:

R(n,m,P,c) < D(n,m, P, c)
Dsubmod(n7 m, P7 C) S Dsubadd(ny m, P7 C) D(TL, m, P7 C)

<
< R(n,m, P,c)

Rsubmod(”y m, P, C) < Rsubadd(n7 m, Pv C)

Another factor that may affect the communication complexity is how the players gain access to
random bits. In the public-coin model, the players can also see other players’ streams of random
bits; in the private-coin model, each player sees only her own stream. This distinction is not
significant in our setting, however, due to the following theorem by [19].

Theorem 2.1 ([19]). Suppose there exists a public-coin randomized protocol with communication

cost C' on £ bits of input. Then there exists a private-coin randomized protocol with communication
cost O(C +log?).

Thus we will assume all randomized protocols to be public-coin for the rest of the paper.
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Finally, we mention the multiparty (i.e., n > 2) communication complexity model. There is
more than one such model: for example, do players communicate in a peer-to-peer fashion, or is
each message broadcast for all of the players to see? We discuss in Section 7 how this turns out
not to matter in our setting.

3 An upper bound for 1-Prop with submodular valuations

This section presents our first result: a deterministic protocol for 1-Prop, when there are two
players, and when valuations are submodular. The protocol will communicate just m + 1 values
and a single bundle. Our protocol either finds a 1-Prop allocation or a ¢*-Prop allocation. Recall
that ¢* is the maximum c such that a ¢-P allocation exists.” We prove the following theorem:

Theorem 3.1. For two players with submodular valuations, Protocol 1 has commumnication cost at
most (m + 1)v5%¢ + m, and either returns a 1-Prop allocation or a ¢*-Prop allocation. This also
implies that for any c € [0,1],

Dsubmod(2, m, PTOp, C) < (m + 1)Usize +m

To see that the theorem also implies Dypmod(2, m, Prop, ¢) < (m+1)v%*¢ +m for any c, suppose
that the protocol returns a c¢*-Prop allocation where ¢* < 1: then we know that no allocation is
c-Prop for any ¢ > ¢*, so a c-Prop allocation exists if and only if ¢* > ¢. Thus Protocol 1 either
finds a c-Prop allocation or shows that none exists, for any ¢ € [0, 1].

It will be important that the following condition is satisfied in this setting:

Condition 3.1. For every allocation A, each player is happy with at least one of A and A.

Recall that for an allocation A = (Aj,As), A = (Ag, A1). This condition is satisfied for
proportionality with subadditive valuations (and hence also satisfied for submodular valuations):

vi(Ar U Ag) = ~oy(M) > Sui(M)

max (v,-(Al),v,-(Ag)) > 5

(vi(A1) +vi(Ag)) >

N | —
N | —

(2
for all ¢ € [0,1]. Thus player i is always happy if she receives the bundle arg max (vi(Al), vi(Ag)).
Also, we assume in this section that v1(M) = 1, without loss of generality: were this not the case,
we could simply rescale v; as needed.

Let M = (g1,92.--gm) be an arbitrary ordering of the items. Consider starting from the empty
set and adding the items in M one at a time in this order. We define 5@4 as player 1’s marginal
value of adding g in this process: 511\4 =v1(91,92 - 9k—1,9%) — v1(91,92 - - - gk—1). Note that 511\4 is
not equal to v;({gx}) in general, because of submodularity.

The protocol is as follows. The first step is common to all of our deterministic protocols: player
1 checks if there is an allocation A where she is happy with both 4 and A. If so, player 2 can choose

9Technically, our protocol always returns a c*-Prop allocation, since we only consider ¢ € [0,1]. We state the
1-Prop case separately in the theorem because it is handled separately in the protocol.



whichever she prefers, and we are done by Condition 3.1. If this fails, the following condition is
satisfied:

Condition 3.2. There is no allocation A for which player 1 is happy with both A and A.

In this case, player 1 sends the values (5{\/[ , (5%‘/[ ...0MY to player 2. For every bundle S, player 2
needs to be able to figure out whether player 1 likes S or M\S. To do this, player 2 simply pretends

that player 1’s valuation is additive where 2 is the value of item gj. Formally, let x(S) = Y. dM:
gLES
player 2 pretends that v1(S) = x(S). This will not be a perfect estimate of v1, of course, but player

2 does not need to know the exact value of v1(S): she only needs to know whether player 1 is happy
with S.

Lemma 3.1 shows that this actually works: assuming Condition 3.2, v;(S) > 1/2 if and only if
x(S) > 1/2. We informally argue why this is case. Crucially, submodularity implies that x(S) will
be an underestimate of v1(S): v1(S) > x(S) for all S. Since x(S) + x(M\S) = S 1o, M = vy (M),
either x(S) > 1/2 or x(M\S) > 1/2. Say x(S) > 1/2: then v1(S) > x(S) > 1/2, so player 1 is
happy with S. Then by Condition 3.2, we know that player 1 is not happy with M\S. Therefore,
for any bundle S, player 2 can correctly use x as a proxy for v; to determine which of S and M\S
player 1 is happy with. Thus y is sufficient for her to determine whether or not a 1-Prop allocation
exists, and if so, find one. This lemma. is the heart of Protocol 1.

Step 4, S*(v;), and ¢;(S*(v;)) are necessary only for finding a ¢*-Prop allocation if no 1-Prop

allocation is found. For a bundle S and property P, let cf) (S) be the maximum ¢ < 1 such that

player i is ¢-happy with S. For example, cfmp (S) = min <1, ivéj(\j))) = min(1, 2v;(.9)), since we

assumed v;(M) = 1. Although this section considers only proportionality, we allow for either P €
{EF, Prop} in our definitions, since we will use this terminology again in later sections. We will
typically leave P implicit and write ¢;(.5).

For each player i, we define a special bundle

S*(v;) = argmax ¢;(95)
SCM: c;(S)<c

In words, S*(v;) the bundle that player ¢ is the most happy with, out of all of the bundles she is
not fully happy (i.e., c-happy) with.
It will be useful for the analysis to define 5;9 for an arbitrary bundle S. First, let

S<k=A{g;€ 5| <k}

For example, S<¢ = () and S<,,, = S for all S. Also, whenever g, € S, we have S<j, = S<;—1 U{gx}-
Let 67 = v1(S<k) — v1(S<g—1). Note that for all S, vy(S) =Y _J*, 67.

Lemma 3.1. Assuming Condition 3.2, for any bundle S, v1(S) > 1/2 if and only if x(S) > 1/2.
Proof. We first claim that for any bundle S and any item g € S, (5,? > 6% . We have
5y = v1(S<k) — v1(S<p—1) = v1(S<p—1 U {gk}) — v1(S<k-1)

and

Gt = v1(Meg) = vi(Meg-1) = o1 (M<g—1 U {gr}) — v1(M<p1)
Since S<j—1 € M<j—1, we have vy (S<x—1 U{gr}) —v1(S<p—1) > vi(M<p—1U{gr}) —vi(M<r_1) by
submodularity. Thus 5;? > 5@4 for all £ and S. Therefore for any bundle .S,

vi(S) =Y 05 = > G =x(9)

gr€S grES
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Protocol 1 Protocol for two players with submodular valuations to either find a 1-Prop allocation
or a c*-Prop allocation.

Private inputs: v, v
Public inputs: the ordering of M = {¢1,92...9m }

1. If there exists an allocation A where player 1 is happy with both A and A, player 1 sends that
allocation to player 2. If player 2 is happy with A, she declares that A is 1-Prop, otherwise
she declares that A is 1-Prop.

2. If there is no such allocation A, player 1 sends the values ((5{‘/1 ,5%4 ..0MY to player 2, along
with S*(v1) and the value ¢1(S*(v1)).

3. Player 2 first checks if there exists any bundle S where x(S) > 1/2 and vo(M\S) > 1/2. If
so, she declares that the allocation (S, M\S) is 1-Prop.

4. If not, player 2 computes S*(v2), c2(S*(v2)), and i = argmax; ¢ 9y € (S*(vir)). Let A be
the allocation where A; = S*(v;) and A; = M\S*(v;). Player 2 then declares that A is
c;(S*(v;))-Prop, and that ¢* = ¢;(S*(v;)).

so v1(S) > x(S) for all S C M.
Suppose x(S) > 1/2: then we immediately have v1(S) > 1/2 by the above argument. Suppose
v1(S) > 1/2. Then by Condition 3.2, v1(M\S) < 1/2. Therefore x(M\S) < 1/2. Next, we have

XS) +x(M\S) =D "+ Y &t _Zak = (M) =1

grLES gLEM\S
Since x(M\S) < 1/2, we have x(S) > 1/2. O

Theorem 3.1. For two players with submodular valuations, Protocol 1 has communication cost at
most (m + 1)v**¢ + m, and either returns a 1-Prop allocation or a c*-Prop allocation. This also
implies that for any c € [0,1],

Dgupmod(2,m, Prop,c) < (m + 1)v S1Z€ Lo

Proof. 1f the protocol terminates in step 1, just one bundle is communicated (and zero values),
which requires m bits. Thus in this case, the communication cost is m < (m + 1)v5*¢ + m. If the
protocol does not terminate in step 1, then the m values (617...6M) are sent, plus the bundle S*(v1),
plus the value ¢;(S*(v1)). By definition of chp c1(S*(v1)) requires a single value to communicate.

Thus in this case, m + 1 values and one bundle are communicated, so the communication cost
is (m + 1)v%%*¢ + m. Therefore the communication cost bound is satisfied.

It remains to prove correctness. Suppose the protocol terminates in step 1. By Condition 3.1,
player 2 is happy with at least one of A and A. Therefore player 2 is happy with whichever of
A and A she declares to be 1-Prop. Player 1 is happy with both A and A, so she is also happy.
Therefore if the protocol terminates in step 1, the declared allocation is in fact 1-Prop.

Suppose the protocol does not terminate in step 1. We assume Condition 3.2 for the remainder
of the proof. Suppose player 2 declares that (S, M\S) is 1-Prop in step 3: then

X(8) = 1/2 and va(M\S) > 1/2

11



Thus by Lemma 3.1, v1(S) > 1/2, so (S, M\S) is indeed a 1-Prop allocation.

So suppose the protocol does not terminate until step 4. We first claim that no 1-Prop allocation
exists. Suppose that a 1-Prop allocation A does exist: then v;(A4;) > 1/2 for both i. Since the
protocol did not terminate in step 1, we have Condition 3.2. Thus by Lemma 3.1, x(A4;) > 1/2.
Let S = A;: then

X(S) > 1/2 and UQ(M\S) = UQ(AQ) > 1/2

so the protocol should have terminated in step 3, which is a contradiction.

Therefore no 1-Prop allocation exists. It remains to show that we return a c¢*-Prop allocation
in this case. Let i = argmax; ¢ 9y €ir(S™(vir)) as computed by player 2 in step 4. Let A be the
allocation returned by the protocol in this case: A; = S*(v;) and A; = M\S*(v;).

We first claim that A is ¢;(S*(v;))-Prop. Player i is ¢;(S*(v;))-happy with A by definition, and
we claim that player 7 is 1-happy with A. If i were not 1-happy with A, then she must be 1-happy
with A by Condition 3.1. Furthermore, Since player i is not 1-happy with A, she must be 1-happy
with A also by Condition 3.1. But then both players are 1-happy with A, which is a contradiction.

Thus A is ¢;(S*(v;))-Prop. Suppose that ¢* # ¢;(S*(v;)): then there exists an allocation A’
where A’ is ¢-Prop for some ¢ > ¢;(S*(v;)). We know that player i cannot be happier than
¢;(S*(v;))-happy without being 1-happy, so player ¢ must be 1-happy with A’. That implies that
player 2 is not 1-happy with A’, since no allocation makes both players 1-happy in this case. But
then the happiest player i can be is ¢;(5*(v;)), and ¢;(S*(v;)) < ¢;(S*(v;)) by assumption. Thus
for any allocation, there is a player who is at most c;(S*(v;))-happy. Therefore no allocation is
c-Prop for any ¢ > ¢;(5*(v;)). O

4 PAS for EF with submodular valuations

In this section, we prove our other positive result for specifically submodular valuations: a deter-
ministic protocol for c-EF when ¢ < 1, and when there are two players. This is our most technically
involved result. We prove the following theorem:

Theorem 4.1. For two players with submodular valuations and any ¢ < 1, Protocol 2 has com-

8 .
munication cost at most 2m(m + 1)1-c + 205%¢_ and either returns a c-EF allocation or a ¢*-EF
allocation. This also implies that

Dsubmod(2, m, EF, C) < Qm(m + 1) 1§c + 9y 5i%€
for any ¢ < 1.

This constitutes a polynomial-communication approximation scheme (PAS): the communication
cost approaches infinity exponentially as ¢ goes to 1, but for any fixed constant ¢ < 1, it is
polynomial in m.!°

We use much of the same terminology from Section 3: in particular, CZP (A), S*(v;), S<k, and
5;? . Also, recall the following condition:

Condition 3.1. For every allocation A, each player is happy with at least one of A and A.

This is satisfied for c-EF for any c € [0, 1], even for general valuations: if v;(A4;) > v;(4;), player
i is happy with A. Otherwise, v;(4z) > v;(4;), so she is happy with A.

10Because the dependence on ﬁ is exponential, this constitutes a PAS but not an FPAS. An FPAS is ruled out
in Section 6.
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bundle S | v;(S) 1-Prop? minimal?
{01} 2 no N/A
{92} 4 no N/A
{93} 5 yes yes
{91, 92} 6 yes yes
{91,93} 7 yes no
{92,935} 9 yes no
{91,92,93} | 10 yes no

Figure 2: An example demonstrating the minimal bundle property for P = Prop and ¢ = 1. This
instance involves a valuation v; over three goods. Since v;(M) = v;({g1,92,93}) = 10 in this case,
player i is happy with S if and only if v;(S) > 10/n = 5. For example, player i is happy with
{g1, 93}, but that bundle is not minimal, since player ¢ is also happy with {g3}. In contrast, {g1, g2}
is minimal, since player ¢ is happy with neither {g;} nor {g2}.

Our PAS protocol will use the minimal bundle analysis discussed in Section 1.2. For a fixed
constant ¢, we say that a bundle S is minimal for a particular player if that player is c-happy with
S, but for all g € S, she is not c-happy with S\{g}. We use S to denote the set of player 1’s
minimal bundles: each S € S is a minimal bundle for player 1. Also, in this section, we assume
that vy (M) = 1.

4.1 The protocol

We now describe Protocol 2, also known as the Minimal Bundle Protocol. Although we only
consider envy-freeness in this section, we define Protocol 2 for either P € {EF, Prop}. We will use
this same protocol in Section 8.1 to prove upper bounds for both envy-freeness and proportionality
in the subadditive case.

First, if there is an allocation A where player 1 is happy with both A and A, we are done:
player 2 chooses her favorite of A and A, and she is guaranteed to be happy with at least one them
by Condition 3.1. If there is no such allocation A, player 1 sends the set S of all of her minimal
bundles to the other player. We will prove that in our setting, the number of minimal bundles sent
in step 2 must be polynomial in m. Specifically, we will show that |S| < 2(m + 1)%

The minimal bundles represent the most player 1 is willing to compromise while still being
happy: she does not require anything more than a minimal bundle, but she is not happy with
any strict subset of any of her minimal bundles. In this way, receiving a minimal bundle is both
necessary and sufficient for player 1 to be happy. Using this reasoning, we will show that knowing S
is sufficient for player 2 to find a c¢-P allocation or show that none exists. Finally, step 4 is identical
to that of Protocol 1, and is used to find a ¢*-P allocation when no ¢-P allocation exists.

4.2 Correctness

We now formally prove the correctness of Protocol 2. We will prove a few helpful lemmas before
proving the main correctness lemma (Lemma 4.4).

Lemma 4.1. If Protocol 2 declares an allocation to be c-P, the allocation is in fact c-P.

Proof. The only two steps that can declare an allocation to be c-P are steps 1 and 3. Suppose the
protocol declares an allocation to be ¢-P in step 1. Then by assumption, there exists an allocation
A where player 1 is happy with both A and A. If player 2 declares A to be ¢-P, then both players

13



Protocol 2 Protocol for two players to either find a ¢-P allocation or a ¢*-P allocation.

Private inputs: vy, v9
Public inputs: P, c

1. If there exists an allocation A where player 1 is happy with both A and A, player 1 sends
that allocation to player 2. If player 2 is happy with A, she declares that A is ¢-P, otherwise
she declares that A is c-P.

2. If there is no such allocation A, player 1 sends the set S of her minimal bundles to player 2.
She also sends the bundle S*(v1) and the value ¢ (S*(v1)).

3. Player 2 first checks if there exists a bundle S € § where player 2 is happy with M\S. If so,
she declares that (S, M\S) is ¢-P.

4. If not, player 2 computes S*(vz) and i = arg max; ¢ 93 € (S*(vir)). Let A be the allocation
where A; = S*(v;) and A; = M\S*(v;). Player 2 then declares that A is ¢;(S*(v;))-P, and
that ¢* = ¢;(S*(v;)).

are happy with A, and the claim is satisfied. If player 2 declares A to be c-P, then she was not
happy with A. By Condition 3.1, player 2 is happy with A. Thus A is c-P in this case, so the
lemma, is satisfied if the protocol terminates in step 1.

Suppose the protocol declares an allocation to be ¢-P in step 3. Then the allocation declared
can be written as (S, M\S) for some S € S. Since S is minimal, player 1 is happy with S by
assumption, and player 2 only declares an allocation to be ¢-P in this step if she is happy with it.
Thus the lemma is satisfied in this case as well. O

Lemma 4.2. Player 1 is happy with a bundle S if and only if there exists a minimal bundle T
where T C S.

Proof. ( =) Suppose player 1 is happy with bundle S. If S is minimal, we are done, so assume
S is not minimal. Then there exists g € S where player 1 is happy with S\{g}. If S\{g} is not
minimal, there again exists some g’ € S\{g} that we can remove, and this process can be repeated
until we obtain some minimal subset of S.

( <= ) Suppose there exists a minimal bundle 7" where 7' C S. Then by monotonicity, v1(S) >
v1(T). Since T is minimal, player 1 is happy with 7. If P = Prop, this is sufficient to show that
player 1 is happy with S. If P = EF, it is also necessary to note that vy (M\S) < v1(M\T), again
by monotonicity. Thus the claim holds for both P € {EF, Prop}. O

Lemma 4.3. Protocol 2 declares an allocation to be c-P if and only if a c-P allocation exists.

Proof. If no c-P allocation exists, the protocol does not declare any allocation to be c-P by
Lemma 4.1. Thus assume a c-P allocation A exists. Then player 1 is happy with Ay, so by
Lemma 4.2, there exists S € S where S C A;. Then Ay C M\S, so by monotonicity, player 2 is
happy with M\S. Thus if the protocol has not already terminated, player 2 will declare will declare
(S, M\S) to be c-P. Then by Lemma 4.1, the declared allocation is in fact ¢-P, so the claim is
satisfied in this case.

14



If the protocol terminated before player 2 considered S in step 3, the protocol declared some
other allocation to be ¢-P, and the declared allocation is again ¢-P by Lemma 4.1 in this case.
Thus the claim is satisfied in both cases. O

Finally, we show that the protocol correctly returns a c¢*-P allocation if no ¢-P allocation
exists. Recall the definitions of S*(v;) and ¢(S): ¢;(S) is the maximum ¢ < 1 where player 7
is ¢-happy with S, and S*(v;) = argmaxgcay. ¢,(s)<c €i(S). In words, S*(v;) is the bundle that
makes player i the most happy, out of all the bundles that do not make her c-happy. For P = EF,

¢;(S) = min (1, v;(};\gli)s))

Lemma 4.4. Protocol 2 either returns a c-P allocation or a c¢*-P allocation.

Proof. If a c-P allocation exists, Lemma 4.3 implies that the protocol correctly returns one, so the
claim is satisfied in this case.

Suppose no c-P allocation exists: then the protocol does not declare an allocation to be ¢-P,
again by Lemma 4.3. Thus the protocol does not terminate until step 4. Let ¢ = arg max; ¢y 9y €/ (S*(vir))
as computed by player 2 in step 4. Let A be the allocation returned by the protocol in this case:
A; = S*(v;) and A; = M\S*(v;).

First observe that A is ¢;(S*(v;))-P: this is because player i is ¢;(S*(v;))-happy with A, and
player i is c-happy with A. Suppose that A is not ¢*-P: then there exists an allocation A’ where A’
is ¢’-P for some ¢’ > ¢;(S*(v;)). We know that player ¢ cannot be happier than ¢;(S*(v;))-happy
without being c-happy, so player ¢ must be c-happy with A’. That implies that player 2 is not c-
happy with A’, since no allocation makes both players c-happy in this case. But then the happiest
player i can be is ¢z(S*(vz)), and c;(S*(v;)) < ¢;(S*(v;)) by assumption. Thus for any allocation,

there is a player who is at most ¢;(S*(v;))-happy. Therefore ¢* = ¢;(S*(v;)). O

4.3 Communication cost

It remains to bound the communication cost. This will primarily consist of proving an upper bound
on the number of minimal bundles player 1 sends to player 2. We will go through a series of helpful
lemmas before proving the final theorem.

The upper bound on the number of minimal bundles will depend on there being no allocation
A for which player 1 is happy with both A and A: recall that if there is such an allocation, then
Protocol 2 terminates after step 1 and does not even send the set of minimal bundles §. This
condition was defined in Section 3.

Condition 3.2. There is no allocation A for which player 1 is happy with both A and A.

Let A(S,g) be player 1’s marginal value for adding item ¢ to bundle S. Formally, A(S,g) =
v1(SU{g}) — v1(S). Also, let o = L-c

The idea behind Lemma 4.5 is the following. Because of Condition 3.2, we have ¢ - v1(S) >
v1(M\S) whenever player 1 is happy with S. If S is minimal, then moving any g € S to M\S will
invert this inequality: v1(S\{g}) < ¢-v1((M\S)U{g}). Lemma 4.5 uses this to show that at least
one of A(S\{g},g) and A(M\S, g) has to be fairly large.

Lemma 4.5. Assuming Condition 3.2, for every minimal bundle S and every good g € S,

max (A(S\{g},9). A(M\S,g)) > a
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Proof. Since S is minimal, for every good g € S, we know that player 1 is not happy with S\{g}.
Specifically,

vi(S\{g}) < ¢ v ((M\S)U{g})
so by definition of A, we have
vi(8) = A(S\{g},9) < c- (vi(M\S) + AM\S, g)) = c-vi(M\S) +c- A(M\S, g)

We also know that player 1 is happy with S. Thus by Condition 3.2, player 1 is not happy with
M\S, so v1(M\S) < c-v1(S). Adding this to the above equation yields

v1(S) — A(S\{g},9) + v1(M\S) < c-vi(M\S) +c- A(M\S, g) + c-v1(5)
(I =cv1(S) + (1 = cJui(M\S) < A(S\{g},9) +c- A(M\S, g)
(I =c)u1(S) + (1 = cJui(M\S) < A(S\{g},9) + A(M\S, 9)
(1 =) (va(S) +v1(M\S)) < A(S\{g},9) + A(M\S, g)
(I —cui(M) < A(S\{g},9) + A(M\S, g)

where the last step follows from submodularity (actually just subadditivity).
Since v1 (M) = 1 by assumption, we have

A(S\{g},9) + A(M\S,g9) > 1—c
max (A(S\{gh), AOMNS, ) = =

=«
O

Next, we define the a directed graph G = (V, E') which we call the minimal bundle graph. The
vertex set V is the set of minimal bundles. With slight abuse of notation, we will use S and T to
refer both to minimal bundles and to the corresponding vertices in V. We define the edge set E by

E={(5T)|3g€ S where T C (M\S)U{g}}
The next three lemmas establish some useful properties of the minimal bundle graph.

Lemma 4.6. Assuming Condition 3.2, let (S,T) € E, and let g be a good in S such that T C
(M\S)U{g}. ThengeT.

Proof. Suppose g ¢ T: then S C M\T. Since S is minimal, player 1 is happy with S. Thus by
monotonicity, player 1 is also happy with M\T. But player 1 is also happy with T, because T is
minimal. This contradicts Condition 3.2, so we must have g € T O

Lemma 4.7. Assuming Condition 3.2, if (S,T) € E, then there is a unique g € S where T C
(M\S) U{g}.

Proof. Suppose there exist g1, g2 € S where g1 # go, T C (M\S)U{g1}, and T C (M\S) U {g2}.
Then by Lemma 4.6, g1 € T and g2 € T. But this contradicts T C (M\S) U {g1}, because
g2 € S\{g1}, so g2 & (M\S) U{g1}. Therefore g; = go. O

Using Lemma 4.7 for each edge (S,T) € E, let ¢g(S,T) be the unique good such that T° C
(M\S) U {g(S,T)}
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Lemma 4.8. Assuming Condition 5.2, if (S,T) € E, then (T,S) € E. Furthermore, g(T,S) =
9(8,T).

Proof. Suppose (S,T) € E: then T C (M\S) U {g(S,T)}. By Lemma 4.6, we have ¢(S,T) € T.
Since T' C (M\S) U{g(S,T)}, we have S\{g(S,T)} € M\T. Therefore S C (M\T) U {g(S,T)},
and so (T,S) € E and ¢(S,T) = ¢(T, S). O

The next lemma is because there are |S| items in S that we could move to M\S. The proof uses
Lemma 4.7 to show that each of them will yield a different minimal bundle 7', so this constitutes
|S| distinct edges (S, T).

Lemma 4.9. The out-degree of each bundle S € V is at least |S)|.

Proof. Let S = {g1,92---9;5/}. We first claim that for all g; € S, there exists T; € V where
T; € (M\S)U {g;}. Consider some g; € S. Because S is minimal, we know that player 1 is not
happy with S\{g;}. Therefore player 1 must be happy with (A/\S) U {g;}. Then by Lemma 4.2,
there exists T; C (M\S) U {g;} where T} is minimal. Therefore (S,7T}) € E.

By Lemma 4.7, g; = ¢(S,Tj) is unique. Thus for all g € S where g # ¢(S5,T}), we have g ¢ T;.
This implies that each Tj is distinct. Thus (5,71), (S, T2)...(S, T||) are all distinct edges in E, so
the out-degree of S is at least |S]. O

Next, we define a set of edges F, C E by
Er ={(S.T) | A(S\{9(S,T)},9(5,T)) = o}

This is the set of “special edges” alluded to in Section 1.2.

The informal argument for the next lemma is as follows. By Lemma 4.8, we have (S,7) € E if
and only if (7, 5) € E. Then Lemma 4.5 (combined with submodularity) implies that at least one
of A(S\{9(S.T)},9(S,T)) > o and A(T\{g(S,T)},9(S,T)) > « is true, so at least one of (S,T)
and (7,S) must be in E,.

Lemma 4.10. Assuming Condition 3.2, |Ey| > |E|/2.

Proof. Let (S,T) be some edge in E: then by Lemma 4.8, (T, S) € E. It suffices to show that for
every edge (S,T) € E, at least one of (S,T) and (7, S) are in Ey. Assume (S,T) ¢ E,: otherwise
we are done. Then

A(S\{g(8,T)},9(5. 1)) <

Thus by Lemma 4.5,
A(M\S,9(S,T)) =

Since (7, S) is an edge in the graph, S C (M\T)U{g(S,T)}. Therefore S\{g(S,T)} C M\T. Thus
by submodularity, A(S\{g(S,T)},g(S,T)) > A(M\T, g(S,T)) > «. Therefore (S,T) € E. O

Lemma 4.11 follows from a simple counting argument.

4
Lemma 4.11. For any integers m and £, > (T) < (m+1)~.
j=0
Proof. The left-hand-side is number of subsets of [m] of size at most ¢. The right-hand-side is the
number of ways to select ¢ elements from [m] U {d}, where each element can be selected multiple
times, and including ordering. We think of d as a dummy element. For each subset S C [m] counted
by Z?:o (Z”’), we represent it in (m + 1) as follows: first select element d ¢ — |S| times, and then
select the elements in S in any order. Thus each subset of [m] counted by the left-hand-side is
represented in a unique way by the right-hand-side, and so Z§:0 (Zn) < (m+1)°% O
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We are now ready to prove the final theorem. Recall the following definitions from Section 3:

Sck={g;€5[j<k}

8 = v1(S<k) — v1(S<k—1)

Theorem 4.1. For two players with submodular valuations and any ¢ < 1, Protocol 2 has com-

8 .
munication cost at most 2m(m + 1)1-c + 205%¢_ and either returns a c-EF allocation or a ¢*-EF
allocation. This also implies that

Dsubmod(2, m, EF, C) < Qm(m + 1) 1§c + 9y5i%€
for any ¢ < 1.

Proof. Correctness of Protocol 2 follows from Lemma 4.4, so it remains only to bound the commu-
nication cost. .

We prove that the number of minimal bundles is (strictly) less than 2(m+1)T— = 2(m + 1)%/,
assuming Condition 3.2. Let 8 = 4/«, and suppose that the number of minimal bundles is at least
2(m 4+ 1)%* = 2(m +1)?. By Lemma 4.11, the number of minimal bundles of size at most f is at
most (m + 1). Thus there are at least (m + 1)? minimal bundles S where |S| > 8.

So at least half of the minimal bundles have size more than . Let G = (V, E)) be the minimal
bundle graph. Then by Lemma 4.9, at least half of the minimal bundles in V' have out-degree more
than 8. Therefore |E| > §|V|/2. Then by Lemma 4.10, |E4| > B|V|/4 = |V]|/a.

For a bundle S, let X f be the set of out-edges from S that are in F,. Formally,

X§={(8.T) € E | A(S\{9(5,T)},9(5.T)) > a}

and we can define the corresponding goods by g(X?) = {g € S | A(S\{g},9) > a}.
We next show that there must exist a minimal bundle S € V where | X7 | > 1/a. Suppose that
|X7| < 1/a for all S € V: then
[Er] < V]/a
which contradicts |E.| > |V|/a. Therefore there exists some bundle S with |X%| > 1/a. By
definitions, we have

m

v(S) =Y 0= > %= AS<-10)> > A(S<k1,9)

k=1 k:gr€S k:gr€S k:ngQ(Xf)

Because S<_1 C S and gy & S<j_1, we have S<i_1 C S\{gr}. Therefore by submodularity,!

Yo A= Y AG\gha) = Y, a=alXP>1

k:greg(XY) k:greg(XY) k:greg(XF)

But v; (M) = 1, so this is a contradiction. Therefore the number of minimal bundles is less than
8
2(m +1)T--.
8
Thus the number of minimal bundles is at most 2(m + 1)T-¢ — 1. If the protocol terminates

in step 1, just one bundle is communicated (and zero values), so the communication cost bound is
trivially satisfied. Suppose the protocol does not terminate in step 1: then player 1 sends at most

"This is the crucial use of submodularity: that we can add in the items in S one by one, and the value of the set
increases by at least A(S\{gx}, gr) each time. This allows us to pump the value of S over vy (M).
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2(m + 1)% — 1 minimal bundles, as well as S*(v1). Thus at most 2(m + 1)%6 bundles are sent,
each of which require m bits to communicate.

Player 1 also sends ¢;(S*(v1)). By definition of ¢F¥, ¢;(S*(v1)) can be expressed as the ratio
of two values, each of which takes v***¢ bits to communicate. Therefore the total communication
cost is

2m(m + 1) T gytice
as required. O

We will show formally in Section 6 that Theorem 4.1 is tight, meaning that exponential com-
munication can be required when ¢ = 1. To see why the minimal bundle argument fails for ¢ = 1,
consider an additive (and hence submodular) valuation over an even number of items, where the
value of each item is one. Then a bundle is minimal if and only if it contains exactly half the items,
and there are exponential number of such bundles.

5 Lower bound approach

In Section 6, we will prove a lower bound that matches the PAS from Section 4. Before we do that,
we describe our general lower bound approach in this section. All of our lower bounds will rely
on reductions from two well-known problems in communication complexity: determining whether
two bit strings are equal, and determining whether two bit strings are disjoint. Let x; denote the
bit string held by player ¢, and let x;; denote the jth bit of ;. An input (z1,22) is a no-instance
of the EQUALITY problem if and only if there exists j where z1; # x;. An input (z1,z2) is a
no-instance of the DISJOINTNESS problem if and only if there exists j where x1; = x9; = 1. The
following lemma states that DISJOINTNESS is hard in the randomized setting (and thus also in the
deterministic setting).

Lemma 5.1 ([16, 24]). Any randomized protocol which solves DISJIOINTNESS for bit strings of
length € has communication cost ().

The following well-known lemma states that EQUALITY is hard in the deterministic setting.

Lemma 5.2. Any deterministic protocol which solves EQUALITY for bit strings of length ¢ has
communication cost at least €.

Perhaps surprisingly, EQUALITY admits a constant communication randomized protocol, due
to [25].

Lemma 5.3 ([25]). There exists a randomized protocol which solves EQUALITY and has commu-
nication cost O(1).

The protocol for Lemma 5.3 asks each player to compute the inner product mod 2 of her bit string
and a random string. The protocol then compares those inner products. The Principle of Deferred
Decisions can be used to show that this protocol arrives at the correct answer with probability at
least 75%. Lemma 5.3 will be a key element of our randomized upper bound in Section 9.3.

All of our lower bounds have the following structure. Given two bit strings x1 and x5 of length
= Q((2kk)), we construct a corresponding instance of FAIR DivisioN with O(k) items. In the two
player case, each index in the bit strings will correspond to a possible allocation that gives each
player k items.
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Our constructed instance will have that a property that a c-P allocation exists if and only
if (z1,72) is a no-instance'? of EQUALITY (for a deterministic lower bound), or a no-instance of
Di1sJOINTNESS (for a randomized lower bound). Thus if there existed a protocol for FAIR DIVISION
with communication cost less than Q((zlf)), it could also be used to solve EQUALITY or DISJOINT-
NESS in communication less than €2(¢). This is impossible according to Lemmas 5.1 and 5.2, so any
protocol for FAIR DIVISION requires exponential communication.

Using this framework, all that is needed to prove a lower bound for a particular set of parameters
(property P, constant ¢, and a valuation class) is:

1. Given bit strings 1 and x3 of length Q( (%f) ), define how to construct a corresponding instance
of FAIR DIVISION with O(k) items.

2. Show that a c-P allocation exists in the constructed instance if and only if (z1,z2) is a
no-instance of EQUALITY or DISJOINTNESS.

3. Show that the valuations in the constructed instance of FAIR DIVISION are of the desired
valuation class.

More specifically, our FAIR DIVISION instance will have two players and 2k items. Valuations
will be constructed such that a player will never be happy if she receives fewer than k items, so
both players will have to receive exactly k items. There are (2kk ) allocations which give each player
k items, and this gives rise to the exponential communication lower bound.

In fact, we can do this in a very standardized way for the two player deterministic case. Given
bit strings of length %(215), we define a list of allocations 7 = (Tl,Tg...Tm) where each T =
(Tj1,Tj2) € T is an allocation giving each player k items: |Tji| = |Tj2| = k. It is important that
T does not contain every such allocation: in particular, for any allocation A € 7, A ¢ T.'3 The
allocations in 7 appear in an arbitrary (but known) order. Note that |T| = %(2:)

Lemma 5.4 states that under this approach, all that is necessary to complete the lower bound
is to construct valuations satisfying three particular properties. The exact way valuations are con-
structed will depend on what class we wish them to belong to (general, subadditive, or submodular).
We only prove the lemma for the c-EF in the two player deterministic setting. A similar result is
possible for other settings, but this is only setting where we prove enough different lower bounds
to make it worth having a separate lemma.

For a bit string x;, let T; denote the string obtained by flipping every bit: x;; # 7;; for all j.
We will define two new bit strings, y; and yo, by y1 = 1 and yo = T3. Also, recall that for a player
i, 7 denotes the other player.

The lemma relies on three conditions. Condition 5.1 states that neither player is happy with
any bundle containing fewer than k items: then any c-P allocation must either be A or A for
some A € T. Condition 5.2 states that player i is unhappy receiving Ty when y;; = 1 (and happy
receiving T)j;). Condition 5.3 states that player ¢ is unhappy receiving Tj; when y;; = 0 (and happy
receiving Tﬁ) Thus we want to find an index j where either y1; = y2; = 1, in which case the
allocation (7)1, Tj2) is ¢-P, or where y1; = y2; = 0, in which case the allocation (Tj2,Tj1) is c-P.
Therefore we are looking for an index where y;; = y2;, which is equivalent to x1; # 2;. This is
exactly the EQUALITY problem.

Lemma 5.4. Given bit strings of length %(2:) for some integer k, let M = [2k] and N = [2]. Let

y1 = x1 and ys = Tz, and let ¢ be some constant. Let T = (Tl,T2...ﬂT|) be a list of allocations as
described above. Suppose vi,ve can be constructed such that the following conditions are met:

2Note that no-instances of EQUALITY or DISJOINTNESS become instances where a ¢-P allocation does exist.
13Recall that for A = (A1, A2), A = (A2, A1).
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Condition 5.1. For all |S| < k and both i, v;(S) < ¢ - v;(M\S).
Condition 5.2. Whenever y;; = 1, vi(T;;) < ¢~ vi(L}i).
Condition 5.3. Whenever y;; =0, v;(Tj;) < ¢ vi(Tj).
Then any deterministic protocol which finds a c-EF allocation for two players requires exponen-
tial communication. Specifically,

1/2k
> _
D(2,2k, EF,c) > 2<1<;>

Proof. We reduce from EQUALITY. Given bit strings x1 and x2 of length %(2:

k, we construct the following instance of FAIR DIvISION. Let N, M, (y1,y2), and T be as defined
in the statement of Lemma 5.4. Also assume that v; and vs satisfy Conditions 5.1, 5.2, and 5.3.

Suppose that (z1,22) is a no-instance of EQUALITY: then there exists j where z1; # x9;.
Therefore y1; = y2;. If y1; = y2; = 1, then by Condition 5.2,

> for some integer

1
vi(Tji) > Evi(Tﬁ) > ¢ ui(Ty)
for both 4. Thus the allocation Tj is c-EF, because each player ¢ receives T)j;. If y1; = yo; = 0, then
by Condition 5.3,

1
vilTy) > —vi(Tji) 2 ¢ vilTi)

for both 7. Thus the allocation TJ is c-EF, because each player i receives T Therefore if (x1,x2)
is a no-instance of EQUALITY, there exists an allocation satisfying c-EF.

Suppose that (z1,x2) is a yes-instance of EQUALITY: then for every j, yi; # y2;. For any
allocation A where |A;| < k for some 4, we have v;(4;) < ¢-v;(A4;) by Condition 5.1. Thus A cannot
be ¢-EF whenever |A4;| < k for some i.

Now consider an arbitrary allocation A where |A;| = |A2| = k. For any such allocation, there
must exist j where either A = T}, or A =Tj. Since y1; # y2j, there exists a player i where y;; = 0,
and y;; = 1. Then by Condition 5.3, v;(T};) < c-v;(T};). Also, v;(Tﬁ) < c-v3(T};) by Condition 5.2,
where 7 = i represents the player other than 7. Thus v(T};) < ¢ vy(T};).

Therefore neither player is happy with bundle 7};. But since either A = T or A = Tj, there
must be a player who receives T};, is hence is not happy. Thus no allocation where [A;| = [A2| =k
can be c-EF, no allocation is c-EF. O

This lemma will be useful in a variety of settings. In the next section, we will use this lemma
to prove a lower bound for 1-EF that matches the PAS from Section 4.

6 1-EF is hard for submodular valuations

In this section, we use the general approach described in Section 5 to show that 1-EF requires
exponential communication, even for two players with submodular valuations. This shows that the
PAS for this setting from Section 4 is the best we can hope for.

Formally, Section 4 showed that Dgypmoed(2, m, EF,¢) is polynomial in m when ¢ < 1. We now
show that Dgypmoed(2, m, EF, ¢) is exponential when ¢ = 1. Section 3 showed that Dgypmod(2, m, Prop, ¢)
is polynomial for any ¢, so there is no lower bound necessary there. Thus this section resolves the
deterministic submodular case for two players.
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Theorem 6.1. For two players with submodular valuations, any deterministic protocol which deter-
mines whether a 1-EF allocation exists requires an exponential amount of communication. Specifi-
cally,

1/2k
Dsubmod(za 2k7 EF, 1) 2 5 < k>

Proof. Given bit strings of length %(%:) for some integer k, define M, N, (y1,y2), and 7 as in
Lemma 5.4. We need only to construct submodular valuations vy, vo such that Conditions 5.1, 5.2,
and 5.3 are met. We define each v; by

3|5 if [S|<k

3k if |S| >k

3k it S=1Tj and y;; =1

3k if S:Tﬁ and y;; =0

3k—1 if S=1Tj and y;; =0

3k—1 ifS:Tﬁ and y;; =1

\

Importantly, for every bundle S with |S| = k, there exists exactly one pair (¢,j) where S = Tj;.
Thus if |S| = k, S falls under exactly one of the last four cases in the definition of v;.

If |S| < k, we have |M\S| > k, so v;(S) < 3k = v;(M\S). This satisfies Condition 5.1. Suppose
yij = 1 for some i, j: then v;(T};) = 3k — 1 < 3k = v;(T};), so Condition 5.2 is satisfied. Suppose
yi; = 0 for some 4, j: then similarly, v;(T};) = 3k —1 < 3k = vi(Tﬁ). Thus Condition 5.3 is satisfied
as well.

It remains to show that the valuations are submodular. To do this, we examine v;(S U {g}) —
v;(S), for any bundle S and item g ¢ S.

3 it [SU{g} <k

2or3 if [SU{g} =k

Oorl if |[SU{g}=Fk+1

0 if [SU{g}>k+1

Therefore v;(SU{g}) — vi(S) is non-increasing with |S|. Thus v;(X U{g}) —vi(X) > v;(Y U{g}) —
v;(Y) whenever | X| < |Y|. If X C Y, either | X| <|Y|or X =Y. When X =Y, we trivially have
v (X U{g}) —vi(X) = v;(YU{g}) —vi(Y). Thus we have v;( X U{g}) —vi(X) > v;(YU{g}) —v;i(Y)
whenever X C Y, and so v; is submodular.

vi(SU{g}) —vi(S) =

O

Recall that Section 4 gave a PAS for this setting, where for any fixed ¢, communication at most

8
2(m + 1)7== is required. In a fully polynomial-communication approximation scheme (FPAS), the

dependence in ﬁ is required to be polynomial. The PAS from Section 4 is not an FPAS, since
1

the dependence on 1=

The above proof of Theorem 6.1 actually shows that for any ¢ > 3%—;1 = 3?7,:2, exponential
communication is required. This does not contradict the PAS from Section 4, because 37”7;2 is
not a fixed constant (it depends on m). However, this does rule out the possibility of an FPAS.

is exponential.

To see this, suppose an FPAS existed, and consider some ¢ > % Then the FPAS would have
communication cost polynomial in 1ic. We have
1 1 3m
—c | _3m=27" "3




so the communication cost is polynomial of m. But the proof of Theorem 6.1 shows communication
exponential in m is required, which is a contradiction.

Finally, we note that the proof of Theorem 6.1 can easily be adapted to prove exponential
lower bounds on the communication complexity of maximizing Nash welfare (the product of player
utilities) or egalitarian welfare (the minimum player utility).

7 Everything is hard for more than two players

In this section, we show that FAIR DIVISION requires an exponential amount of communication
whenever there are more than two players: even when randomization is allowed, even for submod-
ular valuations, and for any ¢ > 0. This will allow us to focus on the two player setting for the rest
of the paper.

Before proving the theorems, we discuss the multiparty (i.e., n > 2) communication complexity
model. As mentioned in Section 2, there is more than one such model. This will turn out not
to matter in our setting. The reason is that our lower bounds will hold even when only player 1
and player 2 have private valuations, and the valuations of all other players are public information.
One can think of the other players as not really being agents, and just being a (publicly known)
part of the input. Thus we never actually consider multiparty communication. In this way, the
theorem that we are really proving is that when there are more than two FAIR DIVISION players,
the problem is hard in the two-party communication complexity model.

We first prove hardness for envy-freeness, and then reduce envy-freeness to proportionality.
Recall that DisJOINTNESS has randomized communication complexity 2(¢), where ¢ is the length
of the bit strings (Lemma 5.1).

Theorem 7.1. For any n > 2 and any ¢ > 0, any randomized protocol which determines whether
a c-EF allocation exists requires an exponential amount of communication, even for submodular
valuations. Specifically,

2
Rsubmod(n7 2k +n — 27 EFv C) € << kk>>

for any n > 2 and ¢ > 0.

Proof. We reduce from DISJOINTNESS. Given bit strings 1 and x5 of length (2:), we construct
a fair division instance as follows. Although there will be more than two players, there are only
two bit strings. Let player 1 hold z; and player 2 hold x5, and the other players will have no bit
strings.

Let My = [2k], My = {g3...gn}, and M = M; U My: note that |M| =2k +n —2. Let N = [n].
We define a similar list of allocations 7 = (T1,75...), where T; = (T}1,T}2). Here each T} is an
allocation over only Mj, and for just two players. Any such allocation A where |A;| = |As| = k is

in 7 (and so is A). Note that |T| = <2:) For i € {1,2}, v; is given by

k if g€ 8
|S|e if |S|<k and g3¢ S

24(8) = kc if |S|>k and g3¢ S
(k—2%)c if |S|=k and g3¢S and SN M, #0
kc if 3j S=1T; where x;; =1 and g3 & S
((k—g)c if 3j S=Tj where 2;;=0 and g ¢S
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Every allocation giving each player k items occurs in 7 exactly once. Thus when |S| = k and
S C My, exactly one of the last two cases occurs, and any such j must be unique. For i > 2, v;(S)

0 otherwise

Suppose that (z1,22) is a no-instance of DISJOINTNESS: then there exists j where x1; = x9; = 1.
Consider the allocation A where A; = Tj; for i < 2, and A; = {g;} for i > 2. For i > 2, v;(4;) =1
and v;(Ay) = 0 for all i’ # 4, so each player ¢ > 2 is happy. For i < 2, we have v;(4;) = v;(T};) = ke,
and v;(Ay) < k for all ¢'. Therefore for all 4,7, v;(A;) > cv;(Ay), so A is ¢-EF.

Suppose that (z1,z2) is a yes-instance of DISJOINTNESS: then for every j, there exists ¢ where
xi; = 0. Suppose that a c-Prop allocation A = (A;, Ag) exists. We first claim that for every i > 2,
gi € A;: if not, v;(A;) = 0, so player ¢ will envy whichever player receives g;.

Thus for i < 2,

vi(A;) > c-vi(Az) > c-vi({g3}) = ke

Suppose a player i < 2 receives strictly fewer than k items in A;: then v;(4;) < ke, since none of
those items can be gs. This is a contradiction, so we have |A;| = |A3| = k. Since T contains all of
the allocations which give each player k items, there must exist j where A; = Tj; for both ¢, and
v;(A;) > ke. But that implies that z1; = x9; = 1, which is a contradiction. Therefore no allocation
is c-Prop.

It remains to show that the valuations are submodular. For ¢ > 2, v; is trivially submodular.
We now we examine v;(S U {g}) — v;(S5) for i < 2, any bundle S, and any item g ¢ S where
93 ¢ SU{g}.

c if [SU{g} <k
corc/2 if |SU{g} =k
c¢/2or 0 if |SU{g}|=k+1
0 it |SU{g}|>k+1

Therefore v;(SU{g})—v;(S) is non-increasing with |S| when g3 ¢ SU{g}. Thus v;(XU{g})—v;(X) >
v;(Y U{g}) — vi(Y) whenever | X| < |Y]| and g3 ¢ SU {g}. If X C Y, either | X| <|Y]or X =Y.
When X = Y, we trivially have v;(X U {g}) — v;(X) = v;(Y U {g}) — v;(Y). Thus we have
v (X U{g}) —vi(X) > v (Y U{g}) — vi(Y) whenever X C Y and g3 ¢ SU {g}. Therefore the
submodularity condition is satisfied when g3 ¢ S U {g}.

There are two remaining cases: when g3 € S, or when g = g3. For g3 € S, v;(SU{g})—vi(S) =0
for all S and g, so the condition is satisfied in this case. For g = g3, we have v;(X U{g3}) —v;(X) =
vi(M) —v;(X) and v;(Y U {g3}) —vi(Y) = v;(M) —v(Y). If X C Y, we have v;(X) < v;(Y), so
v (X U{gs}) —vi(X) > vi(Y U{g3}) — vi(Y). Therefore v; is submodular for all i. O

vi(SUA{g}) —vi(S) =

We now prove hardness for proportionality for more than two players, by reducing from envy-
freeness.

Theorem 7.2. For any n > 2 and any ¢ > 0, any randomized protocol which determines whether
a c-Prop allocation exists requires an exponential amount of communication, even for submodular
valuations. Specifically,

Rsubmod(n, 2k +n — 2, Prop, c) € Q <<2:>>

for any ¢ > 0.
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Proof. We reduce from DISJOINTNESS. Given an input (z1,x2), we define v; as in the proof of
Theorem 7.1, except using c¢/n instead of ¢. That is, for i < 2,

k if g3€8
|S|e/n if |S|<k and g3¢ S
0i(8) = ke/n if |S|>k and g3¢ S
! (k;—%)c/n if |S|=%k and g3¢S and SN My #0
ke/n if 35 S =1Tj where x;; =1 and g3 &S
(k — %)c/n if 35 S =1Tj; where x;; =0 and g3 &S

It was shown in the proof of Theorem 7.1 that these valuations are submodular.

Theorem 7.1 implies that Q((zkk)) communication is required to determine whether a =-EF
allocation exists under these valuations. We will show that under these valuations, an allocation
is c-Prop if and only if it is ~-EF. This will imply that determining whether a c-Prop allocation
exists is just as hard as whether a Z-EF allocation exists.

In order for an allocation A to be --EF or c-Prop, we must have v;(4;) > 0 for all i. Thus

assume g; € A; for all ¢ > 2, and we need only consider i < 2.
Suppose an allocation A is ¢-Prop: then for i < 2, v;(4;) > %vZ(M) = % Since v;(A;) < k for
all 7/, we have
vi(A;) >

> —v;(Ayr)

3T
Slo

for all 7', Therefore A is £-EF.
Suppose an allocation A is £-EF: then for all i and 7', v;(A;) > £v;(Ay). For i < 2, we have
vi(A3) = vi({gs}) =k, so

vi(A;) > %%(A?,) >
so A is c-Prop. O

This resolves the n > 2 case for all combinations of other parameters, so we will assume that
n = 2 for the remainder of the paper.

8 Subadditive valuations

In this section, we consider the deterministic setting for two players with subadditive valuations.
In Section 8.1, we use the Minimal Bundle Protocol from Section 4 to show that ¢-EF for ¢ < 1/2
and c-Prop for ¢ < 2/3 require only polynomial communication. This is the same protocol that
yielded the PAS for EF with submodular valuations, but the communication cost analysis will be
different. In Section 8.2, we show that this is tight, by giving an exponential lower bound for ¢-EF
and c-Prop when ¢ exceeds 1/2 and 2/3, respectively.

8.1 Upper bounds

In this section, we prove that when players have subadditive valuations, the Minimal Bundle Pro-
tocol (Protocol 2) can be used to solve FAIR DIVISION for %-EF and %-Prop with polynomial
communication. In fact, we will show that if a satisfactory allocation is not found in step 1, there
must exist a single item g where v1({g}) > v1(M\{g}). This will imply that the only minimal
bundle is {g}. Protocol 2 is restated here for the convenience of the reader.
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Protocol 2 Protocol for two players to either find a ¢-P allocation or a ¢*-P allocation.

Private inputs: vy, v9
Public inputs: P, c

1. If there exists an allocation A where player 1 is happy with both A and A, player 1 sends
that allocation to player 2. If player 2 is happy with A, she declares that A is ¢-P, otherwise
she declares that A is c-P.

2. If there is no such allocation A, player 1 sends the set S of her minimal bundles to player 2.
She also sends the bundle S*(v1) and the value ¢ (S*(v1)).

3. Player 2 first checks if there exists a bundle S € § where player 2 is happy with M\S. If so,
she declares that (S, M\S) is ¢-P.

4. If not, player 2 computes S*(vz) and i = arg max; ¢ 93 € (S*(vir)). Let A be the allocation
where A; = S*(v;) and A; = M\S*(v;). Player 2 then declares that A is ¢;(S*(v;))-P, and
that ¢* = ¢;(S*(v;)).

In Section 4, we proved correctness of this protocol for any setting, so it remains only to prove
the communication cost bound for this setting.

Let a € (0, 1] be some constant. Let " (a) be the maximum ¢ < 1 for which any allocation A is
guaranteed to be c-P, given v;(A;) > av;(4;) for both 4. For example, n®F(a) = a. We will write
n(a) = n(a) and leave P implicit. Lemma 8.1 is strongest for o = 1/2, but we find it insightful
to prove the theorem for any o < 1/2.

Also, recall that Condition 3.1 is satisfied for c-Prop with subadditive valuations, for any ¢: for
any allocation A, each player must be happy with at least one of A and A.

Lemma 8.1. For two players with subadditive valuations, o € (0,1/2], and ¢ = n(a), Protocol 2
has communication cost at most '
2(m + USZZE)

Proof. If the protocol terminates in step 1, a single allocation is communicated, which requires m
bits. Thus the claim is satisfied in this case.
If the protocol does not terminate in step 1, the only communication happens in step 3. For

v;(S) 2v;(5)
o (M\S) for EF, and ()

Thus communicating ¢1(S*(v1)) requires 2v*¢ bits. The only other information transmitted is the
bundle S*(v;) and S. Communicating S*(v;) requires m bits, and S requires |S|m bits. Thus the
communication cost of the protocol is

for Prop'.

a bundle S, c;(S5) is defined as the ratio of two values:

m(|S| + 1) + 20

It remains to show that if the protocol does not terminate in step 1, |S| = 1.

By Condition 3.1, for every allocation A, player 1 is happy with at least one of A and A. Thus
|S| > 1, so let S be a minimal bundle in S. Since player 1 is happy with S, we know that she is not
happy with M\S, or the protocol would have terminated in step 1. Suppose avi(S) < v1(M\S):

4Technically only one value is needed for Prop, since we can assume that vi(M) = 1, so only v1(S) is needed.
However, since two values are needed for EF, we ignore this.
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then player 1 is n(«)-happy with M\S. Since ¢ = n(a), this means player 1 is happy with M\S,
which is a contradiction. Therefore awvy(S) > v1(M\S). This also implies that v1(S) > 0.

Also, since S is minimal, player 1 is not happy with S\{g} for all g € S. Therefore player 1 is
happy with (M\S)U{g} for all g € S. By the same argument as above, we have av; (M\S)U{g}) >

u1(S\{g})-

Since v;(S) > 0, S must be nonempty, so let g be an arbitrary item in S. By subadditivity of
v1, we have

o1 (M\S) + v ({g}) = v1 (M\S) U {g})
Similarly,

v1(S\{g}) +v1({g}) > v1(S)
v1(S\{g}) > v1(S) —v1({g})

Therefore
v (M\S) + v ({g}) = v ((M\S) U{g})
u1(S\{g})
—1)ur(S\{g}) +v1(8) = 1({g})

SDIH

1
o

/N

Since v1(S) > Lv1(M\S), we have

~—1)u(S\gh) + 2 (M\S) ~ vi({g))
~1u(s\gh) + (5 — 1) (An\s)
——1)(nu(S\{g}) + v (M\S))

By subadditivity of vy, we have

01(S\{g}) + 01 (M\S) = v ((S U (M\S))\{g})
= u(M\{g})

Therefore,

1

ulleh) > 5 (5 = 1) (M\{g))

v1({g}) = avi(M\{g})

where the final step is due to 0 < o < 1/2.

Thus player 1 is n(a)-happy with the bundle {g} by definition. Since the protocol did not
terminate in step 1, player 1 must not be happy with M\{g}. Therefore player i is happy with a
bundle S if and only if g € S, and so the only minimal bundle is {g}. O

Theorem 8.1 is immediately implied by the combination of Lemma 4.4 (correctness) and Lemma 8.1
(communication cost).
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Theorem 8.1. For two players with subadditive valuations and ¢ = n(1/2), Protocol 2 has com-
munication cost at at most 2(m + v5*¢), and either returns a c-P allocation or a c*-P allocation.

Theorem 8.1 immediately implies the following result.

Theorem 8.2. For two players with subadditive valuations, a property P, and any constant ¢ <
n¥(1/2), there exists a deterministic protocol with communication cost 2(m + v*%*¢) which solves
Fair DivisioN. Formally, '

Dsubadd(27 m, P7 C) S 2(m + USZZG)
for any c < nf'(1/2).
Proof. Run Protocol 2 to either find a n*’(1/2)-P allocation, or to find a ¢/-P allocation where ¢’ is
the best possible. If a n'’(1/2)-P allocation exists, then a c-P allocation exists, since ¢ < nf'(1/2).

If a ¢*-P allocation is returned where ¢* < n’(1/2), then by definition of c*, a c-P allocation exists
if and only if ¢* > c. U

Theorem 8.3 is a direct consequence of Theorem 8.2 since n”F' (o) = «, and Theorem 8.4 requires
only a short proof.

Theorem 8.3. For two players with subadditive valuations, P = EF, and any constant ¢ < 1/2,
there exists a deterministic protocol with communication cost 2(m + v**¢) which solves FAIR DI-
VISION. Formally,

Dgubadd(2,m, EF,c) < 2(m + USize)

for any ¢ < 1/2.

Theorem 8.4. For two players with subadditive valuations, P = Prop, and any constant ¢ <
2/3, there exists a deterministic protocol with communication cost 2(m + v5%*¢) which solves FAIR
DivisioN. Formally,

Dsubadd(27 m, Prop, C) < 2(m + ,Usize)

for any ¢ < 2/3.
Proof. By Theorem 8.1, we need only show that n’"°P(1/2) > 2/3. Suppose v1(A;1) > awvi(As).
Then vy (Az) < évl(Al), and by subadditivity of v, we have

’Ul(M)

Ul(Al U Ag)
< v (Ar) +vi(Ag)

1
< Ul(Al) + a’Ul(Al)
a—+1

= A
o ui(dy)
2 1 2
Therefore v1(Ay) > afl (51)1(M)>, so nPoP(a) > afl. Therefore n77°(1/2) > 2/3. O

Since nf"P(1/2) > 2/3, any %-EF A allocation is also %-Prop. However, a ¢/-EF allocation where
c is the maximum possible EF approximation ratio does not necessarily achieve the maximum
possible approximation ratio for Prop. Consider the case where M = {g1,¢92} and the players
valuations are given by

9 if S=M 4 if S=M
v(S) =<7 if S={g} v(S) =194 if S={g}
2 if S ={g} L if S={go}
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and v;(0) = 0 for both 7. There is no %—EF allocation or %—Prop allocation in this instance. The
allocation achieving the maximum EF approximation ratio is A = ({g2},{g1}) which is %-EF. On
the other hand, the allocation achieving the maximum Prop approximation ratio is A, which is
1

5-Prop.

2

8.2 Lower bounds

In this section, we show that %—EF and %—Prop are the best we can do deterministically for two
players with subadditive valuations. We first prove that ¢-EF is hard for any ¢ > 1/2, and then
show that the same construction also proves hardness for ¢-Prop when ¢ > 2/3.

We will use Lemma 5.4, which gives a standardized way to prove deterministic lower bounds
for EF for two players. Recall that a list of allocations 7 = (T3,T5%...) is defined where each
T; = (Tj1,Tj2) is an allocation giving each player k items. Also, for every such allocation A,
exactly one of A and A appears in 7. All that is needed to complete the reduction is to show how
to construct valuations vy, vs such that the following conditions are satisfied:

Condition 5.1. For all |S| < k and both i, v;(S) < ¢ - v;(M\S).
Condition 5.2. Whenever y;; = 1, v;(Tj;) < ¢ vi(Tj;).

Condition 5.3. Whenever y;; =0, v;(Tj;) < ¢ vi(Tj)-

Theorem 8.5. For two players with subadditive valuations and any ¢ > 1/2, any determinis-
tic protocol which determines whether a c-EF allocation exists requires an exponential amount of
communication. Formally,

1/2
Dsubadd(Z, 2k’, EF7 C) > 5 < ]f)

for any ¢ > 1/2.

Proof. Given bit strings of length %(ik) for some integer k, define M, N, (y1,y2), and T as in
Lemma 5.4. We need only to construct subadditive valuations vy, v2 such that Conditions 5.1, 5.2,
and 5.3 are met. We define each v; by

7

if |S]=0

if 0<|S|<k

if k<|S| <2k

if |S| =2k

it 3j S=1T; where y;; =1
if 45 S:Tﬁ where y;; =0
it 35 S=1Tj; where y;; =0
if 3y S:Tﬁ where y;; =1

o= NN W NN = O

When |S| =k, S falls under exactly one of the last four cases in the definition of v;.

If |S| < k, we have |[M\S| > k, so v;(S) < 1 and v;(M\S) > 2. Thus for any ¢ > 1/2,
vi(S) < ¢+ v(M\S), so Condition 5.1 is met. Suppose y;; = 1 for some 4, j: then v;(T;;) =1 and
v;(Tji) = 2, so again v;(S) < ¢ - vi(M\S) for any ¢ > 1/2. Suppose y;; = 0 for some i,j: then
similarly, v;(T};) =1 < c-2 = c-v;(I};) for any ¢ > 1/2. Thus Condition 5.3 is satisfied as well.
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It remains to show that v; is subadditive for both i. Specifically, we need to show that for any
S and T, v;(S)+v;(T) > v;(SUT). If either S = () or T = (), this trivially holds, so suppose |S| > 0
and |T'| > 0. We proceed by case analysis.

Case 1: |SUT| < 2k. Then v;(SUT) < 2. Since |S| > 0 and |T'| > 0, we have

Ui(S)—l-’Ui(T) >1+12>2 Z’L)i(SUT)

Case 2: |[SUT| = 2k. Then v;(SUT) = 3. Since v;(S) > 1 and v;(T) > 1, it remains to
show that at least one of v;(S) > 2 and v;(T") > 2 is true. Since SUT = M in this case, we have
M\S C T. Observe that under these valuations, for any allocation A where v;(4;) < 1, we have
vi(A4;) > 2. Thus if v;(S) < 1, then v;(M\S) > 2, so v;(T") > 2. Since v; only takes on integer
values in this proof, if v;(S) > 1, we have v;(S) > 2. Thus at least one of v;(S) > 2 and v;(T") > 2
is true, so the claim is satisfied in this case. Thus v; is subadditive for both 4. O

To prove hardness for proportionality, we reduce from envy-freeness.

Theorem 8.6. For two players with subadditive valuations and any ¢ > 2/3, any deterministic
protocol which determines whether a c-Prop allocation exists requires an exponential amount of
communication. Formally,

1 /2k
Dsubadd(Z, 21{7, P’/“Op7 c) > 5 < . >

for any ¢ > 2/3.

Proof. We reduce from EQUALITY. Given an input (z1,z2), we define v; as in the proof of Theo-
rem 8.5. By Theorem 8.5, for any ¢ > 1/2, at least %(2: ) communication is required to determine
whether a ¢/-EF allocation exists under these valuations. We will show that under these valuations,
for any ¢ > 2/3 and any ¢ > 1/2, an allocation A is ¢-Prop if and only if is ¢-EF: thus the lower
bound of Theorem 8.5 will apply to c-Prop for ¢ > 1/2 as well.'?

Suppose an allocation A is ¢-EF for some ¢ > 1/2: then v;(4;) > dv;(4;) > %UZ(A;) Under
these valuations, for any allocation A where v;(A4;) < 1, we have v;(A4;) > 2. Thus v;(A4;) must

be strictly greater than 1. Since these valuations only take on integer values, this implies that
vi(A;) > 2 for both i. Therefore

for every ¢ > 2/3, so A is ¢-Prop for every ¢ > 2/3.

Now suppose that A is ¢-Prop for some ¢ > 2/3: then v;(4;) > gvl(M) = % > 1 for both 4.
Thus we again have v;(A;) > 2 for both i, since these valuations only take on integer values. This
also implies that |A;] > 0 for both ¢, which means that |A;| < 2k for both i. Therefore v;(A4;) < 2
for both 4, so we have

vi(Ai) = 2 2 vi(47) > vi(4y)
for any ¢ > 1/2. Therefore A is ¢-EF for every ¢ > 1/2.
U

Theorems 8.5 and 8.6 resolve the deterministic subadditive case. We now move on to general
valuations, and give the last few results we need to complete Table 1.

151t is actually sufficient to show that for any ¢ > 2/3, there exists such a ¢’ > 1/2, but we prove that this holds
for any ¢ > 1/2.
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9 General valuations

This section covers the remaining settings for envy-freeness and proportionality. In Section 9.1,
we show that c-Prop is hard for general valuations for any ¢ > 0, in both the randomized and
deterministic settings. Section 9.2 gives a similar lower bound for ¢-EF for any ¢ > 0, but only for
deterministic protocols. In Section 9.3, we show that there actually exists an efficient randomized
protocol for ¢-EF for any ¢ € [0,1]. We also show that this protocol works for proportionality in
the subadditive case, again for any ¢ € [0, 1]. These results conclude our study of envy-freeness and
proportionality.

9.1 Proportionality randomized lower bound

Recall that DISJOINTNESS on bit strings of length ¢ has randomized communication complexity
Q(¢). (Lemma 5.1).

Theorem 9.1. For two players with general valuations and any ¢ > 0, any randomized protocol
which determines whether a c-Prop allocation exists requires an exponential amount of commumni-

cation. Specifically
2k
R(2,2k, Prop,c) € Q << f >>

Proof. We reduce from DISJOINTNESS. Given bit strings z; and xo of length (2:

an instance of FAIR DIVISION as follows. Let N = [2] be the set of players, and let M = [2k] be
the set of items. Let 7 = (71, T...T}7|) be an arbitrary ordering of all of the allocations which give
each player k items: for any allocation A = (A, As) where |A;| = |Ag| = k, there exists j where
A; = Tj; for both i. Both A and A appear in 7. Note that |T| = (2:> Each player i’s valuation
is defined by

for any ¢ > 0.

) , we construct

if |S|<k
if |S|>k
it 35 S=1T; where z;; =1
it 3j S=1T; where x;; =0

’UZ(S) =

O = = O

Exactly one of the last two cases occur when |S| = k, and any such j is unique.

Suppose that (21, z2) is a no-instance of DISJOINTNESS: then there exists j where z1; = 9 = 1.
Consider the allocation T; = (T}j1,Tj2). Then for both 4, v;(Tj;) = 1 = v;(M) > % -v;(M), so the
allocation T satisfies c-Prop.

Suppose that (z1,z2) is a yes-instance of DISJOINTNESS: then for every j, there exists ¢ where
xj; = 0. Suppose that a c-Prop allocation A = (A1, A) exists: then v;(A4;) > g ~v;(M) > 0 for
both i. Suppose a player ¢ receives strictly more than k items in A;: then the other player receives
strictly fewer than k items, and has value zero, which is impossible. Thus |A;| = |A2| = k. Since
T contains all of the allocations which give each player k items, there must exist j where A; = T};
for both i. But that implies that x1; = z2; = 1, which is a contradiction. Therefore no allocation
is c-Prop. O

This lower bound is actually much more general than just c-Prop. It holds for any imaginable
fairness property (not just c-EF or ¢-Prop) where (1) player i is always unhappy if v;(4;) = 0, even
if v;(A;) is also 0, and (2) player 7 is always happy if v;(4;) = v;(M). Both c-EF and c-Prop satisfy
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the first condition. The second condition is satisfied by c-Prop for any ¢, but ¢-EF violates this for
every c¢: player i is always happy if v;(A;) = v;(A7) = 0. We will see in Section 9.3 that this leads

i
to an efficient randomized protocol for ¢-EF, for any ¢ € [0, 1].

9.2 Envy-freeness deterministic lower bound

In this section we prove that for general valuations, c-EF is hard in the deterministic setting for
any ¢ > 0. We will use Lemma 5.4; recall that we need only show how to construct valuations that
satisfy the following conditions:

Condition 5.1. For all |S| < k and both i, v;(S) < ¢ - v;(M\S).
Condition 5.2. Whenever y;; = 1, v;(Tj;) < ¢ vi(Tj;).

Condition 5.3. Whenever y;; =0, v;(Tj;) < c¢-vi(Tj).

Theorem 9.2. For two players with general valuations and any ¢ > 0, any deterministic protocol
which determines whether a c-EF allocation exists requires an exponential amount of communica-
tion. Specifically,

1/2k
>
D(2,2k, EF,c) > 2<1<;>

for any ¢ > 0.

Proof. We use Lemma 5.4. Given bit strings of length % (2:> for some integer k, define M, N, (y1, y2),
and 7 as in Lemma 5.4. We need only to construct valuations v, v such that Conditions 5.1, 5.2,
and 5.3 are met. We define each v; by

7

if [S|<k
if |S|>k
it dj S=1Tj where y;; =1
if 3y S:Tﬁ where y;; =0
it 35 S=1Tj; where y;; =0
if g5 S:Tﬁ where y;; =1

S O = = = O

\

Recall that for every allocation A which gives each player k items, 7 (as defined by Lemma 5.4)
contains exactly one of A and A. Thus if |S| = k, S falls under exactly one of the last four cases
in the definition of v;.

If |S| < k, we have |[M\S| > k, so v;(S) =0 < ¢ = c-v;(M\S). This satisfies Condition 5.1.
Suppose y;; = 1 for some 4, j: then v;(Tj;) = 0 < ¢ = ¢ v;(T};), so Condition 5.2 is satisfied.
Suppose y;; = 0 for some i, j: then similarly, v;(Tj;) =0 < c=c- vi(Tﬁ). Thus Condition 5.3 is
satisfied as well. O

9.3 A randomized upper bound

Although c-EF is hard for general valuations in the deterministic setting, it admits an efficient
randomized protocol for any ¢ < 1. Fundamentally, this is because the randomized communication
complexity of EQUALITY is constant, while its deterministic complexity is the length of the string.
Our deterministic lower bound in Section 9.2 was based on a reduction from EQUALITY: in this
section, we reduce to EQUALITY.

32



Our protocol will actually be much more general than just c-EF. For example, it will also work
for ¢-Prop for subadditive valuations, for any ¢ € [0,1]. More generally, it solves FAIR DIVISION
with two players when (c, P) satisfies two conditions:

Condition 3.1. For every allocation A, each player is happy with at least one of A and A.
Condition 9.1. Whether player i is happy does not depend on any valuation other than v;.

All of the fairness properties we consider satisfy Condition 9.1. The c-EF property satisfies
Condition 3.1 for any ¢ < 1. As mentioned before, c-Prop satisfies this for any ¢ < 1 for subadditive
valuations.

Despite being hard in the deterministic setting, EQUALITY admits an efficient randomized
protocol (Lemma 5.3), as described in Section 5. This protocol (let us call it I'gg) enables the
FAIR DivisioN randomized protocol that we present in this section.

The standard EQUALITY problem is a decision problem, but FAIR DIVISION is a search problem:
we must output a satisfactory allocation if one exists. The search version of EQUALITY is to
determine whether two bit strings are equal, and if they are not, to return an index where they
differ.

Lemma 9.1 ([20]). There exists a randomized protocol which solves the search version of EQUAL-
ITY for two players and has communication cost O(logt), where ¢ is the length of the bit strings.

The protocol uses a binary search approach. The players first use I'gg to check if their strings
are equal. If so, the protocol terminates. If not, the players split their strings into a left half and a
right half. They again use I'gg to check if their left halves are equal: if they are not, the players
recurse on the left half, otherwise they recurse on the right half. This process continues until players
isolate a single bit which differs in their bit strings'6.

Since I'gg is a randomized protocol, it may return an incorrect answer with probability up to
1/3 (say) each time it is run. If we use I'gg many times, as required by the above binary search
argument, the probability I'gg returns the correct answer every time may be less than 2/3, which
is unacceptable. This makes the protocol a sort of “noisy binary” search. This can be done with
total communication O(log ¢loglog¢) using a standard Chernoff bound argument, but [13] shows
how this can be done with total communication just O(log ¢). We refer to protocol from Lemma 9.1
as I’ EQS-

We now present our randomized protocol (Protocol 3). Let T = (11,T5...) be a list of every
possible allocation (not just those with bundles of a fixed size) in an arbitrary order. Condition 9.1
is necessary for Protocol 3 to be well-defined (step 1 in particular), but will not appear in the proof
of Theorem 9.3.

The protocol uses a similar construction to the previous lower bounds in that players have
exponentially long bit strings, with each index representing a possible allocation, and where y;; = 1
if player 7 is happy with 7). Similarly to the EQUALITY lower bounds, an index where y1; = y2;
implies the existence of a c-P allocation: if y;; = y2; = 1, both players are happy with that
allocation, and if y1; = y2; = 0, both players are happy with the reverse allocation by Condition 3.1.
This is made formal by the following theorem:

Theorem 9.3. If (¢, P) satisfies Conditions 3.1 and 9.1, then Procotol 3 either finds a c-P alloca-
tion or shows that none exists, and uses communication O(m).

16The protocol described in [20] is actually slightly stronger: they find the most significant bit where the two strings
differ. This is because they have a slightly different goal in that paper, for which finding any bit that differs is not
sufficient.
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Protocol 3 Randomized protocol for two players to either find an P allocation or determines that
none exists, assuming P satisfies Conditions 3.1 and 9.1.

Private inputs: vy, v

Public inputs: P,c, T

1. Each player i constructs a bit string y; as follows: for all j where player ¢ is happy with T},
player ¢ sets y;; = 1. For all j where player 7 is unhappy with T}, player i sets y;; = 0.

2. Player 1 sets x1 = y1 and player 2 sets o = 75.

3. The players run I'gggs on (x1,x2), which either returns an index j where x1; # x9j, or
determines that the two strings are equal.

4. If the two bit strings are equal, the players declare that no ¢-P allocation exists.

5. If an index j is returned where xz1; = 1 and x; = 0, the players declare that T} is a c-P
allocation.

6. If an index j is returned where x1; = 0 and z2; = 1, the players declare that Tj is a c-P
allocation.

Proof. Suppose Protocol 3 declares that no c-P allocation exists: then xz1; = xg; for all j. This
implies that yi; # yo; for all j. Therefore whenever player 1 is happy with T}, player 2 is unhappy
with T}, so no c-P allocation exists.

Suppose Protocol 3 returns an index j where x1; # x2;. If 21; = 1 and z9; = 0, then y1; = y9; =
1. Thus both players are happy with 7T}, so T} is ¢-P. If x1; = 0 and x9; = 1, then y1; = y2; = 0,
so neither player is happy with 7. Then by Condition 3.1, both players are happy with Tj, SO Tj
is ¢-P. Therefore Protocol 3 correctly finds a ¢-P allocation or determines that none exist.

Since the total number of allocations is O(2™) when n = 2, x; and x3 have length O(2™). Thus
I'os has communication cost O (log(2™)) = O(m). Since all other steps require no communication,
Protocol 3 uses communication O(m). O

Theorem 9.3 immediately implies the following two theorems:

Theorem 9.4. For any c € [0,1], Protocol 3 finds an c-EF allocation or shows that none exists,
and has communication cost O(m). Formally,

R(2,m,EF,c) € O(m)

Theorem 9.5. For subadditive valuations and any c € [0, 1], Protocol 3 finds an c-Prop allocation
or shows that none exists, and has communication cost O(m). Formally,

Rsubadd(Za m, P?"Op, C) € O(m)

Since Rsupmod(n, m, P,¢) < Rgsypadd(n, m, P,c) < R(n,m, P, c), this settles the randomized com-
munication complexities for all settings with two players. The reader can verify that Table 1 is now
complete.
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10 Maximin share

Finally, we consider a different fairness property: maximin share. A player’s maximin share (MMS)
is the maximum value as she could guarantee herself if she gets to divide the items into n bundles,
but chooses last. An allocation A is ¢-MMS for ¢ € [0, 1] if each player receives at least a c-fraction
of her MMS. We use “MMS” to refer to both each player’s maxmin share and the fairness property
itself. Formally,

Definition 10.1. An allocation A is c-MMS if for every player 1,

v; (A4;) > max min v; (A"
(4 A'=(A}.. A7) jeEm] “45)

where A" ranges over all possible allocations.

In this section, we prove exponential lower bounds for MMS in two settings: for general valu-
ations and any ¢ > 0, and for submodular valuations when ¢ = 1. Both lower bounds hold even
for two players, and for randomized protocols. Both lower bounds will rely on reductions from
DISJOINTNESS.

10.1 Lower bound for general valuations and any ¢ > 0

In this section we show that for general valuations, c-MMS is hard for any ¢ > 0, even for randomized
protocols and even if there are only two players. We will reduce from 1-Prop, which we know to
be hard in this setting (randomized, n = 2, general valuations) from Theorem 9.1. We say that an
allocation A is over a set of items M to mean that A; U Ay = M. Also, we say that an allocation A

is ¢-Prop for valuations vy, vy if v;(A;) > %’L)Z(M ) for both 7. Since we will be reducing between two

different FAIR DIVISION instances, we will be dealing with allocations over different sets of items
and different sets of valuations.

Theorem 10.1. For two players with general valuations and any ¢ > 0, any randomized protocol
which determines whether a c-MMS allocation exists requires an exponential amount of communi-

cation. Specifically,
ok s <o (%))

for any ¢ > 0.

Proof. Consider an arbitrary instance of FAIR DIVISION for two players with general valuations
v1, V9, any ¢ > 0, and some set of items M. We want to know whether there exists an allocation A
over M which is 1-Prop for v1,vs. Let a; = %UZ(M) then A is 1-Prop if and only if v;(4;) > cqy
for both 1.

We will create a second instance of FAIR DIVISION as follows. Add four items g1, g2, g3, g4, let
X =1{91,92,93,94}, and define M' = M U X. Let Y1 = {g1,92}, Yo = {93, 94}, Z1 = {1,953}, and
Zy ={g2,94}. The set of players is the same. Define the following valuations v} and v} over M":

a1 ilegS or YQQS
v1(9) = < min(vy (S\X),car) if {g1,94} €S and gs,93 ¢ S
0 otherwise
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(65) ifZlgS or ZQQS
vp(S) = { min(va(S\X),caz) if {g2,93} €S and g1,94 ¢S
0 otherwise

We first claim that each player i’s MMS is exactly «;. Since ¢ < 1, we have v}(A4]) < «; for all
7 and for every allocation A’ over M’. Thus each player’s MMS is at most «;. In the partition
(Y1,Y2 U M), player 1 has value oy for both bundles, so player 1’s MMS is at least ;. Similarly,
player 2 has value ag for both bundles in the partition (Z;, Zo U M). Thus each player i’'s MMS is
exactly a;.

Therefore an allocation A’ over M’ is ¢-MMS for v}, v4 if and only if v}(A}) > ca; for both i.
It remains to show that there exists such an allocation A’ over M’ if and only if an there exists a
1-Prop allocation for v, vy over M.

Suppose A is 1-Prop allocation over M for vy, vy: then v;(A;) > ca; for both i. Let A’ =
(A1 U X, Ay): then vj(A}) > v;(A4;) > cay, so A’ is ¢-MMS for v}, vy over M.

Now suppose A’ is a ¢-MMS allocation for v}, vy over M’. Since ¢ > 0, we have v}(A}) > ca; > 0
for all 4. For all j and j’, we have Y; N Z;s # (). Thus if player 1 receives Y7 or Ya: then player 2
player 2 cannot receive Z; or Zy. Furthermore, player 2 cannot receives {g2, g3}, so v4(A5) = 0,
which is a contradiction. Therefore player 1 cannot receive either Y; or Ys. Similarly, if player 2
receives Z1 and Zs, player 1 will have value 0. Thus player 2 does not receive Z; or Zs.

Therefore v1(A1) = 0 unless {g1,94} C A, and v2(Ag) = 0 unless {go2, 93} C Ay. Therefore
{91,94} € A; and {g2,93} C Ay. Thus v;(A}) = min(v;(A,\X), ca;) for both . Since v}(A}) > ca;
for all 4, we have v;(A\X) > ca; for both i.

Define an allocation A where A; = A\X. It is clear that A is an allocation over M. Then
vi(A;) > ca; for both i, so A is a 1-Prop allocation for vy, ve over M.

Therefore there exists a ¢-MMS allocation for v}, v5 over M’ if and only if there exists 1-Prop
allocation over for vi,v9 over M. This completes the reduction, and shows that for any ¢ > 0 and
any number of items m,

R(2,m + 4,MMS, ¢) > R(2,m,Prop, 1)

Therefore by Theorem 9.1, we have R(2,2k + 4, MMS, ¢) € Q2 ((2:» O

10.2 Lower bound for submodular valuations and ¢ =1

We now show that even for two players with submodular valuations, 1-MMS is hard. This does not
hold for ¢-MMS for any c: in fact, a %-MMS is guaranteed to exist for submodular valuations [14].

Theorem 10.2. For two players with submodular valuations, any randomized protocol which de-
termines whether a 1-MMS allocation exists requires an exponential amount of communication.

Specifically
waan sy <o (%)

. . . 2k
Proof. We reduce from DISJOINTNESS. Given bit strings 1 and x5 of length ( . ), we construct

an instance of FAIR DIVISION as follows. Let N = [2] be the set of players, and let M = [2k] be the
set of items. We define Y7 = {1...k}, Z1 = {k+1..2k},Ys = {2..k+1}, and Zy = {1}U{k+2...2k}.

Let T = (T1,T3...Tj7|) be an arbitrary ordering of all of the allocations which give each player
k items: for any allocation A = (Aj, A2) where |A1| = |A2| = k, there exists j where 4; = T};
for both i. Note that |7T| = (2:) One exception: none of (Y1, 21),(Z1,Y1), (Yo, Z2), or (Z2,Y3)
appear in 7.
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Player i’s valuation is given by:

3|5 if |S| <k

3k if [S| >k

3k if S=Y;, or S=12;

3k—1 if S=Y; or §S=2;

3k it dj S=1T; where x;; =1
3k—1 if dj S=1Tj where x;; =0

’UZ(S) =

These valuations are submodular by the same argument as in the proof of Theorem 6.1. Observe
that when |S| = k, exactly one of the last four cases occur.

Since v;(S) < 3k for all S, player i’'s MMS is at most 3k. For both 4, (Y3, Z;) is a valid allocation.
Furthermore, player ¢ has value 3k for both bundles in that allocation. Thus each player i’s MMS
is at least 3k, so both players” MMS are exactly 3k.

Suppose that (x1, x2) is a no-instance of DISJOINTNESS: then there exists j where x1; = x9; = 1.
Consider the allocation T; = (T}1,T}j2). Then for both i, v;(T};) = 3k, so the allocation Tj satisfies
1-MMS.

Suppose that (z1,z2) is a yes-instance of DISJOINTNESS: then for every j, there exists ¢ where
xi; = 0. Suppose a 1-MMS allocation A exists. We first claim that for both i, A # (Y;, Z;) and
A # (Z;,Y;) for both i. This is because player i will have value 3k — 1, which is less than her
MMS. Suppose there is a player ¢ where |A;| < k: then v;(4;) < 3k, which is impossible. Thus
|A1] = [Az] = k.

Therefore there exists j where A = Tj. But since (x1,x2) is a yes-instance of DISJOINTNESS,
there exists ¢ where x;; = 0, so v;(T};) = 3k — 1. This is a contradiction, so no 1-MMS allocation
exists. U

11 Conclusion

In this paper, we proposed a simple model for the communication complexity of fair division, and
solved it completely, for every combination of five parameters: number of players, valuation class,
fairness property P, constant ¢, and deterministic vs. randomized complexity.

More broadly, communication complexity is an example of topic that has been well-studied in
algorithmic game theory but not in fair division, despite having a natural fair division analog. We
wonder if there are other such topics.
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