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Abstract

We consider the problem of recovering low-

rank matrices from random rank-one measure-

ments, which spans numerous applications in-

cluding phase retrieval, quantum state tomogra-

phy, and learning shallow neural networks with

quadratic activations, among others. Our ap-

proach is to directly estimate the low-rank fac-

tor by minimizing a nonconvex least-squares loss

function via vanilla gradient descent, following

a tailored spectral initialization. When the true

rank is small, this algorithm is guaranteed to con-

verge to the ground truth (up to global ambigu-

ity) with near-optimal sample and computational

complexities with respect to the problem size. To

the best of our knowledge, this is the first the-

oretical guarantee that achieves near optimality

in both metrics. In particular, the key enabler

of near-optimal computational guarantees is an

implicit regularization phenomenon: without ex-

plicit regularization, both spectral initialization

and the gradient descent iterates automatically

stay within a region incoherent with the measure-

ment vectors. This feature allows one to employ

much more aggressive step sizes compared with

the ones suggested in prior literature, without the

need of sample splitting.

1 Introduction

This paper is concerned with estimating a low-rank posi-

tive semidefinite matrix M \ ∈ R
n×n from a few rank-one

measurements. Specifically, suppose that the matrix of in-

terest can be factorized as M \ = X\X\> ∈ R
n×n, where

X\ ∈ R
n×r (r � n) denotes the low-rank factor. We

collect m measurements {yi}mi=1 of M \ taking the form

yi = a>
i M

\ai =
∥

∥a>
i X

\
∥

∥

2

2
, i = 1, · · · ,m, (1)
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where ai ∈ R
n, 1 ≤ i ≤ m, represent the measurement

vectors known a priori. One can think of {aia
>
i }mi=1 as

a set of rank-one linear sensing matrices such that yi =
〈aia

>
i ,M

\〉. The goal is to recover M \, or equivalently,

the low-rank factor X\, from a limited number of rank-one

measurements. This problem spans a variety of important

practical applications. We list a few examples below.

• Phase retrieval and mixed linear regression. The

above problem subsumes as a special case the phase

retrieval problem (Candès et al., 2015), which aims

to estimate an unknown signal x\ ∈ R
n from in-

tensity measurements (which can often be modeled

or approximated by quadratic measurements of the

form yi = (a>
i x

\)2). The phase retrieval problem

has found numerous applications in X-ray crystallog-

raphy, optical imaging, astronomy, etc. Another re-

lated task in machine learning is mixed linear regres-

sion with two components, where the data one collects

are generated from one of two unknown regressors;

see Chen et al. (2014) for a precise formulation.

• Quantum state tomography. Estimating the density

operator of a quantum system can be formulated as re-

covering a low-rank positive semidefinite matrix from

rank-one measurements, when the density operator is

almost pure (Kueng et al., 2017). A problem of sim-

ilar mathematical formulation occurs in phase space

tomography (Tian et al., 2012) in optics.

• Learning shallow polynomial neural networks.

Treating {ai, yi}mi=1 as training data, our problem

is equivalent to learning a one-hidden-layer, fully-

connected neural network with quadratic activation

functions (Livni et al., 2014; Soltanolkotabi et al.,

2017; Soltani and Hegde, 2018; Du and Lee, 2018).

Here, the output of the network is expressed as

yi =
∑r

j=1 σ(a
>
i x

\
j) with the weight matrix X\ =

[x\
1,x

\
2, · · · ,x\

r] ∈ R
n×r and the quadratic activation

function σ(z) = z2.

• Covariance sketching. Consider a zero-mean

data stream {xt}t∈T , whose covariance matrix

M \ := E[xtx
>
t ] is (approximately) low-rank.

To estimate the covariance matrix, one can col-

lect m aggregated quadratic sketches of the form
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yi = 1
|T |

∑

t∈T (a
>
i xt)

2, which converges to

E[(a>
i xt)

2] = a>
i M

\ai as the number of data in-

stances grows. This quadratic covariance sketching

scheme can be performed under minimal storage re-

quirement and low sketching cost. See Chen et al.

(2015) for detailed descriptions.

1.1 Main Contributions

To recover X\, we consider the following natural least-

squares empirical risk minimization problem

minimize
X∈Rn×r

f(X) :=
1

4m

m
∑

i=1

(

yi −
∥

∥a>
i X

∥

∥

2

2

)2
. (2)

Due to the quadratic nature of the measurements, the loss

function (2) is highly nonconvex and in general challeng-

ing to solve. The problem, however, becomes tractable un-

der certain random designs, and may even be efficiently

solved using simple methods like gradient descent. Our

main finding is the following: under i.i.d. Gaussian design

(i.e. ai ∼ N (0, In)), vanilla gradient descent with spec-

tral initialization achieves appealing performance guaran-

tees both statistically and computationally.

• Statistically, we show that gradient descent converges

exactly to the true factor X\ (modulo unrecoverable

global ambiguity), as soon as the number of measure-

ments exceeds the order of O(nr4 log n). When r is

fixed and independent of n, this sample complexity is

near-optimal up to some logarithmic factor.

• Computationally, to achieve relative ε-accuracy, gra-

dient descent requires an iteration complexity of

O(r2 log(1/ε)) (up to logarithmic factors), with a per-

iteration cost of O(mnr). When r is fixed and inde-

pendent of n, the computational complexity scales lin-

early with mn, which is proportional to the time taken

to read all data.

These findings significantly improve upon existing results

that require either resampling (Zhong et al., 2015; Lin

and Ye, 2016; Soltani and Hegde, 2018)1, or high iter-

ation / computational complexity (Sanghavi et al., 2017).

In particular, our work is most related to Sanghavi et al.

(2017) which also studied the effectiveness of gradient de-

scent. The results in Sanghavi et al. (2017) require a sam-

ple complexity on the order of O(nr6 log2 n), as well as an

iteration complexity of O(n4r2 log(1/ε)) (up to logarith-

mic factors) to attain ε-accuracy. In comparison, our theory

improves the sample complexity to O(nr4 log n) and, per-

haps more importantly, establishes a much lower iteration

complexity of O(r2 log(1/ε)) (up to logarithmic factor).

1Algorithms with resampling are easier for theoretical analysis
but are not sample-efficient and rarely adopted in practice if at all.

To the best of our knowledge, this work is the first algo-

rithm (without resampling) that achieves both near-optimal

statistical and computational guarantees with respect to n,

for the problem of low-rank matrix recovery from rank-one

measurements.

1.2 Effectiveness of Gradient Descent

Recently, gradient descent has been widely employed to ad-

dress various nonconvex optimization problems, due to its

appealing statistical and computational efficiency. Despite

the nonconvexity of (2), Sanghavi et al. (2017) showed that

within a local neighborhood of X\:

{

X

∣

∣

∣

∥

∥X −X\
∥

∥

F
≤ 1

24

σ2
r(X

\)

‖X\‖F

}

, (3)

f(X) behaves like a strongly convex function, at least

along certain descent directions. Here, σi(X
\) denotes the

ith largest singular value of X\. However, strong convexity

alone is not enough to guarantee computational efficiency.

One still needs to take smoothness into account. In fact,

the smoothness parameter derived in Sanghavi et al. (2017)

is as large as n2 (even ignoring additional polynomial fac-

tors in r), thus leading to a step size as small as O(1/n4)
and an iteration complexity of O(n4 log(1/ε)). This step-

size choice is fairly conservative and leads to prohibitive

computation burdens when n is large.

One way to improve the computational guarantee is to em-

ploy appropriately designed regularization operations —

such as truncation (Chen and Candès, 2017) and projec-

tion (Chen and Wainwright, 2015). These explicit regu-

larization operations are capable of stabilizing the search

directions, and ensure the whole trajectory lies in a neigh-

borhood surrounding the ground truth with well controlled

strong convexity and smoothness properties. However,

such explicit regularizations complicate algorithm imple-

mentations, as they introduce more (and often unnecessary)

tuning parameters.

In this paper, we demonstrate that vanilla gradient descent

is almost as effective as its regularized counterparts. In fact,

even without explicit regularization, the iterates always fol-

low a path within some region with nice geometric struc-

tures, which enables fast convergence. To be more pre-

cise, we first specify the region which enjoys the desired

geometric properties. Consider a local region around X\

where X is “incoherent”2 with all sensing vectors in the

sense that

max
1≤l≤m

∥

∥a>
l

(

X −X\
)∥

∥

2
≤

√
log n

24
· σ

2
r(X

\)

‖X\‖F
. (4)

We term the intersection of (3) and (4) the Region of In-

coherence and Contraction (RIC). The nice feature of the

2This is called incoherent because if X is aligned (and hence

coherent) with the sensing vectors,
∥

∥a
>

l

(

X − X
\
)
∥

∥

2
can be

O(
√

n) times larger than the right-hand side of (4).
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RIC is that: in addition to the (restricted) strong convex-

ity, the loss function f(·) in this region enjoys a smooth-

ness parameter that scales as O(max{r, log n}) (namely,

‖∇2f(X)‖ . max{r, log n}), which is much smaller than

O(n2) provided in Sanghavi et al. (2017). This benign geo-

metric property of RIC enables gradient descent to linearly

converge to the ground truth, as long as the iterates stay

within RIC.

A key contribution of our work is to demonstrate that the

trajectory of vanilla gradient descent never leaves RIC as

if it is “implicitly regularized”. Such a statement is, un-

fortunately, not guaranteed by standard optimization the-

ory, which only ensures contraction of the Euclidean er-

ror. Rather, we need to exploit the statistical model of data

generation, taking into consideration of the “homogene-

ity” of the samples together with the finite-sum form of

the loss function. Specifically, we resort to the leave-one-

out trick (Ma et al., 2017; Zhong and Boumal, 2017; Chen

et al., 2017) that produces auxiliary trajectories of gradi-

ent descent that use all but one sample as a proof strategy.

This allows us to establish the incoherence condition (4)

by leveraging the statistical independence of the leave-one-

out trajectory w.r.t. the corresponding sensing vector that

has been left out. Our theory refines existing leave-one-out

arguments in Ma et al. (2017) and further establishes linear

contraction in terms of the entry-wise prediction error. In

sum, our work highlights the substantial gain of jointly con-

sidering optimization and statistics in understanding learn-

ing algorithms.

2 Algorithms and Main Results

To begin with, we present the formal problem setup. Sup-

pose we are given a set of m rank-one measurements as

given in (1), where ai ∈ R
n is the ith sensing vector

composed of i.i.d. standard Gaussian entries, i.e. ai ∼
N (0, In), for i = 1, · · · ,m. The underlying ground truth

X\ ∈ R
n×r is assumed to have full column rank but not

necessarily orthogonal columns. Define the condition num-

ber of M \ = X\X\> as κ = σ2
1(X

\)/σ2
r(X

\). Through-

out this paper, we assume the condition number is bounded

by some constant independent of n and r, i.e. κ = O(1).
Our goal is to recover X\, up to (unrecoverable) orthonor-

mal transformations, from the measurements y = {yi}mi=1

in a statistically and computationally efficient manner.

2.1 Vanilla Gradient Descent with Spectral

Initialization

The algorithm studied herein is a combination of vanilla

gradient descent and a carefully-designed spectral initial-

ization. Specifically, we attempt to minimize the noncon-

vex loss function (2) iteratively via gradient descent

Xt+1 = Xt − µt∇f (Xt) , t = 0, 1, · · · , (5)

Algorithm 1: Gradient Descent with Spectral Initial-

ization

Input: Measurements y = {yi}mi=1, and sensing

vectors {ai}mi=1.

Parameters: Step size µt, rank r, and number of

iterations T .

Initialization: Set X0 = Z0Λ
1/2
0 , where the columns

of Z0 ∈ R
n×r contain the normalized eigenvectors

corresponding to the r largest eigenvalues of the

matrix

Y =
1

2m

m
∑

i=1

yiaia
>
i , (7)

and Λ0 is an r × r diagonal matrix, with the entries

on the diagonal given as

[Λ0]i = λi

(

Y
)

− λ, i = 1, · · · , r, (8)

where λ = 1
2m

∑m
i=1 yi and λi (Y ) is the ith largest

eigenvalue of Y .

Gradient descent: For t = 0 : 1 : T − 1, do

Xt+1 = Xt−µt·
1

m

m
∑

i=1

(

∥

∥a>
i Xt

∥

∥

2

2
− yi

)

aia
>
i Xt.

(9)

Output: XT .

where Xt denotes the tth iterate, µt is the step size / learn-

ing rate, and the gradient ∇f(X) is given by

∇f (X) =
1

m

m
∑

i=1

(∥

∥a>
i X

∥

∥

2

2
− yi

)

aia
>
i X. (6)

For initialization, we apply the spectral method, which sets

the columns of X0 as the top-r eigenvectors — properly

scaled — of a matrix Y as defined in (7). The rationale is

this: the mean of Y is given by E [Y ] = 1
2

∥

∥X\
∥

∥

2

F
In +

X\X\>, and hence the principal components of Y form

a reasonable estimate of X\, provided that there are suffi-

ciently many samples. The full algorithm is described in

Algorithm 1.

2.2 Performance Guarantees

Before proceeding to our main results, we pause here to

introduce the metric used to assess the estimation error of

the running iterates. Since (X\P )(X\P )> = X\X\>

for any orthonormal matrix P ∈ R
r×r, X\ is recoverable

only up to orthonormal transforms. Hence, we define the

error of the tth iterate Xt as

dist
(

Xt,X
\
)

=
∥

∥XtQt −X\
∥

∥

F
, (10)

where Qt is the best orthonormal transformation, i.e.

Qt := argmin
P∈Or×r

∥

∥XtP −X\
∥

∥

F
. (11)
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Here Or×r denotes the set of all r × r orthonormal matri-

ces. Accordingly, we have the following theoretical perfor-

mance guarantees of Algorithm 1.

Theorem 1. Suppose that m ≥ Cnr3(r +
√
κ)κ3 log n

for some large enough constant C > 0, and that the step

size obeys 0 < µt ≡ µ = c4
(rκ+logn)2σ2

r(X
\)

for some suf-

ficiently small constant c4 > 0. Then with probability at

least 1−O(mn−7), the iterates satisfy

dist
(

Xt,X
\
)

≤ c1

(

1− 0.5µσ2
r(X

\)
)t σ2

r(X
\)

‖X\‖F
, (12)

for all t ≥ 0. In addition,

max
1≤l≤m

∥

∥

∥
a>
l

(

XtQt −X\
)

∥

∥

∥

2

≤ c2

(

1− 0.5µσ2
r(X

\)
)t √

log n · σ
2
r(X

\)

‖X\‖F
, (13)

for all 0 ≤ t ≤ c3n
5. Here, c1, c2, c3 are some universal

positive constants.

A few remarks regarding Theorem 1 are in order.

• Near-optimal sample complexity when r is fixed: The-

orem 1 suggests that spectrally-initialized vanilla gra-

dient descent succeeds as soon as m = O(nr4 log n).
When r = O(1), this leads to near-optimal sample

complexity up to a logarithmic factor. To the best

of our knowledge, this outperforms all performance

guarantees in the literature for any nonconvex method

without requiring resampling.

• Near-optimal computational complexity: In or-

der to achieve ε-accuracy, i.e. dist(Xt,X
\) ≤

ε‖X\‖F, it suffices to run gradient descent for

T = O
(

r2polylog(n) log(1/ε)
)

iterations. This

results in a total computational complexity of

O
(

mnr3polylog(n) log(1/ε)
)

, which is proportional

to the time taken to read all data when r = O(1).

• Implicit regularization: Theorem 1 demonstrates that

both the spectral initialization and the gradient de-

scent updates provably control the sample-wise error

max1≤l≤m ‖a>
l

(

XtQt −X\
)

‖2, and the iterates re-

main incoherent with respect to all the sensing vec-

tors. In fact, the sample-wise error decreases linearly

as well, which is not characterized in earlier work for

phase retrieval (Ma et al., 2017).

3 Related Work

Instead of directly estimating X\, the problem of interest

can be also solved by estimating M \ = X\X\> in higher

dimension via nuclear norm minimization, which requires

O(nr) measurements for exact recovery (Chen et al., 2015;

Cai and Zhang, 2015; Kueng et al., 2017; Li et al., 2017).

See also Candès et al. (2013); Candès and Li (2014); De-

manet and Hand (2014); Waldspurger et al. (2015) for the

phase retrieval problem. However, nuclear norm minimiza-

tion, often cast as the semidefinite programming, is in gen-

eral computationally expensive when dealing with large-

scale data.

On the other hand, nonconvex approaches have drawn in-

tense attention in the past decade due to their ability to

achieve computational and statistical efficiency all at once

Chi et al. (2018). Specifically, for the phase retrieval prob-

lem, Wirtinger Flow (WF) and its variants (Candès et al.,

2015; Chen and Candès, 2017; Cai et al., 2016; Ma et al.,

2017; Zhang et al., 2017; Soltanolkotabi, 2017; Wang et al.,

2017) have been proposed. As a two-stage algorithm, it

consists of spectral initialization and iterative gradient up-

dates. This strategy has found enormous success in solving

other problems such as low-rank matrix recovery and com-

pletion (Chen and Wainwright, 2015; Tu et al., 2016), blind

deconvolution (Li et al., 2016), and spectral compressed

sensing (Cai et al., 2017). We follow a similar route but an-

alyze a more general problem that includes phase retrieval

as a special case.

The paper by Sanghavi et al. (2017) is most close to our

work, which studied the local convexity of the same loss

function and developed performance guarantees for gradi-

ent descent using a similar, but different spectral initializa-

tion scheme. As discussed earlier, due to the pessimistic

estimate of the smoothness parameter, they only allow a

diminishing learning rate (or step size) of O(1/n4), lead-

ing to a high iteration complexity. We not only provide

stronger computational guarantees, but also improve the

sample complexity, compared with Sanghavi et al. (2017).

Several other existing works have suggested different ap-

proaches for low-rank matrix factorization from rank-one

measurements, of which the statistical and computational

guarantees to reach ε-accuracy are summarized in Table 1.

We note our guarantee is the only one that achieves simulta-

neous near-optimal sample complexity and computational

complexity. Iterative algorithms based on alternating mini-

mization or noisy power iterations (Zhong et al., 2015; Lin

and Ye, 2016; Soltani and Hegde, 2018) require a fresh set

of samples at every iteration, which is never executed in

practice and usually leads to much easier analysis due to

statistical independence, and the sample complexity grows

unbounded for exact recovery.

Our model is also related to learning shallow neural net-

works. Zhong et al. (2017) studied the performance of

gradient descent with resampling and an initialization pro-

vided by the tensor method for various activation func-

tions, however their analysis did not cover quadratic activa-

tions. For quadratic activations, Livni et al. (2014) adopts

a greedy learning strategy, and can only guarantee sub-

linear convergence rate. Moreover, Soltanolkotabi et al.
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Algorithms with resampling Sample complexity Computational complexity

AltMin-LRROM (Zhong et al., 2015) O(nr4 log2 n log ( 1ε )) O(mnr log ( 1ε ))
gFM (Lin and Ye, 2016) O(nr3 log ( 1ε )) O(mnr log ( 1ε ))

EP-ROM (Soltani and Hegde, 2018) O(nr2 log4 n log ( 1ε )) O(mn2 log ( 1ε ))

AP-ROM (Soltani and Hegde, 2018) O(nr3 log4 n log ( 1ε )) O(mnr log n log ( 1ε ))

Algorithms without resampling Sample complexity Computational complexity

Convex (Chen et al., 2015) O(nr) O(mn2 1√
ε
)

GD (Sanghavi et al., 2017) O(nr6 log2 n) O(mn5r3 log4 n log ( 1ε ))

GD (Algorithm 1, Ours) O(nr4 log n) O(mnrmax{log2 n, r2} log ( 1ε ))

Table 1: Comparisons with existing results in terms of sample complexity and computational complexity to reach ε-
accuracy. The top half of the table is concerned with algorithms that require resampling, while the bottom half of the table

covers algorithms without resampling.
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(a) Relative estimation error (b) Relative incoherence condition

Figure 1: Performance of the proposed algorithm in regard to (a) relative estimation error, and (b) relative incoherence

condition with respect to the iteration count using different problem sizes, when m = 5nr.

(2017); Du and Lee (2018) studied the optimization land-

scape for an over-parameterized shallow neural network

with quadratic activation, where r is larger than n.

4 Numerical Experiments

In this section, we provide several numerical experiments

to validate the effective and efficient performance of the

proposed algorithm. During each experiment, given a pair

of (n, r), the ground truth X\ ∈ R
n×r is generated with

i.i.d. N (0, 1
n ) entries. We first examine the relative estima-

tion error dist
(

Xt,X
\
)

/‖X\‖F and the relative incoher-

ence condition max1≤l≤m ‖a>
l

(

XtQt − X\
)

‖2/‖X\‖F
with respect to the iteration count using a constant step size

µt = 0.03, where the number of measurements is set as

m = 5nr. The convergence rates in Figure 1 are approxi-

mately linear, validating our theory.

We then examine the phase transitions of the proposed al-

gorithm with respect to the number of measurements. Mul-

tiple Monte Carlo trials are conducted, and each trial is

deemed a success if the relative estimation error is less than

10−6 within T = 1000 iterations. Figure 2 depicts the

success rate over 20 trials, where the proposed algorithm

successfully recovers the ground truth as soon as the num-

ber of measurements is about 4 times above the degrees of

freedom nr. These results suggest that the required sample

complexity scales linearly with the degrees of freedom, and

our theoretical guarantees are near-optimal up to logarith-

mic factors.
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Figure 2: The success rate of the proposed algorithm with

respect to the number of measurements m/(nr) using dif-

ferent problem sizes.
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Figure 3: Relative estimation error with respect to iteration

count in different noisy levels, when n = 500, r = 5 and

m = 5nr.

Next, we numerically verify the stability of the proposed

algorithm against additive noise, where each measurement

is given as yi =
∥

∥a>
i X

\
∥

∥

2

2
+ εi, where the noise εi is gen-

erated i.i.d. from N (0, σ2). Figure 3 shows the estimation

error with respect to the iteration count at different noise

levels when n = 500, r = 5 and m = 5nr. As the noise

variance σ2 increases, the performance of the proposed al-

gorithm degenerates smoothly.

Finally, we test the performance of the proposed algorithm

when the measurement vectors ai’s are i.i.d. generated

from a sub-Gaussian distribution under random initializa-

tion. Specifically, we consider a case where each entry in

ai is drawn i.i.d. from a uniform distribution U [−1, 1]. We

then implement gradient descent with a constant step size

µt = 0.5 starting from a random initialization, whose en-

tries are generated i.i.d. following N (0, 1
n ). Figure 4 shows

the appealing convergence performance of the proposed al-

gorithm.

5 Outline of Theoretical Analysis

This section provides the proof sketch of the main results.

Our theoretical analysis is inspired by the work of Ma et al.

(2017) for phase retrieval and follows the general recipe

outlined therein. However, significant changes and efforts

are needed when dealing with rank-r matrices, compared

with rank-one matrices in Ma et al. (2017). In addition, we

refine the analysis to show that both the signal reconstruc-

tion error (see (12)) and the entry-wise error (see (13)) con-

tract linearly, where the latter is not revealed by Ma et al.

(2017). In below, we first characterize a region of incoher-

ence and contraction that enjoys both strong convexity and

smoothness along certain directions. We then demonstrate

— via an induction argument — that the iterates always

stay within this nice region. Finally, the proof is complete

by validating the desired properties of spectral initializa-

tion.
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Figure 4: Relative estimation error with respect to the iter-

ation count using different problem sizes when the sensing

vectors are generated from sub-Gaussian distributions and

a random initialization is employed, when m = 5nr.

5.1 Local Geometry and Error Contraction

We start with characterizing a local region around X\,

within which the loss function enjoys desired restricted

strong convexity and smoothness properties. This requires

exploring the property of the Hessian of f(X), which is

given by

∇2f(X) =
1

m

m
∑

i=1

[(

∥

∥a>
i X

∥

∥

2

2
− yi

)

Ir + 2X>aia
>
i X

]

⊗
(

aia
>
i

)

. (14)

Here, we use ⊗ to denote the Kronecker product and hence

∇2f(X) ∈ R
nr×nr. Now we are ready to state the fol-

lowing lemma regarding the properties of the Hessian in a

local region around X\, which will be referred to as the re-

gion of incoherence and contraction (RIC) throughout this

paper.

Lemma 1. Suppose the sample size obeys m ≥
c

‖X\‖4

F

σ4
r(X\)

nr log (nκ) for some sufficiently large constant

c > 0. Then with probability at least 1 − c1n
−12 −

me−1.5n −mn−12, we have

vec (V )
> ∇2f(X)vec (V ) ≥ 1.026σ2

r(X
\) ‖V ‖2

F
,
(15)

and

∥

∥∇2f(X)
∥

∥ ≤ 1.5σ2
r(X

\) log n+ 6
∥

∥X\
∥

∥

2

F
(16)

hold simultaneously for all matrices X and V satisfying

the following constraints:

∥

∥X −X\
∥

∥

F
≤ 1

24

σ2
r(X

\)

‖X\‖F
, (17a)

max
1≤l≤m

∥

∥

∥
a>
l

(

X −X\
)

∥

∥

∥

2
≤ 1

24

√

log n · σ
2
r(X

\)

‖X\‖F
, (17b)
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and V = T 1QT
−T 2 satisfying

∥

∥T 2−X\
∥

∥ ≤ 1
24

σ2

r(X
\)

‖X\‖ ,

where Q
T

:= argmin
P∈Or×r ‖T 1P − T 2‖F. Here, c1 is

some absolute positive constant.

The condition (17) on X formally characterizes the RIC,

which enjoys the claimed restricted strong convexity (see

(15)) and smoothness (see (16)). With Lemma 1 in mind, it

is easy to see that if Xt lies within the RIC, the estimation

error shrinks in the presence of a properly chosen step size.

This is given in the lemma below.

Lemma 2. Suppose the sample size obeys m ≥
c

‖X\‖4

F

σ4
r(X\)

nr log (nκ) for some sufficiently large constant

c > 0. Then with probability at least 1 − c1n
−12 −

me−1.5n−mn−12, if Xt falls within the RIC as described

in (17), we have

dist
(

Xt+1,X
\
)

≤
(

1− 0.513µσ2
r(X

\)
)

dist
(

Xt,X
\
)

,

provided that the step size obeys 0 < µt ≡ µ ≤
1.026σ2

r(X
\)

(

1.5σ2
r(X

\) logn+6‖X\‖2

F

)

2 . Here, c1 > 0 is some univer-

sal constant.

Assuming that the iterates {Xt}, stay within the RIC (see

(17)) for the first Tc iterations, according to Lemma 2, we

have, by induction, that

dist
(

XTc+1,X
\
)

≤
(

1− 0.513µσ2
r(X

\)
)Tc+1

dist
(

X0,X
\
)

≤ 1

24
√
6
·
√
log n√
n

· σ
2
r(X

\)

‖X\‖F
as soon as

Tc ≥ cmax

{

log2 n,
‖X\‖4

F

σ4
r(X

\)

}

log n, (18)

for some large enough constant c. The iterates after t ≥ Tc

are easier to deal with; in fact, it is easily seen that Xt+1

stays in the RIC since

max
1≤l≤m

∥

∥

∥
a>
l

(

Xt+1Qt+1 −X\
)

∥

∥

∥

2

≤ max
1≤l≤m

∥

∥al

∥

∥

2
‖Xt+1Qt+1 −X\‖

≤
√
6n · 1

24
√
6
·
√
log n√
n

· σ
2
r(X

\)

‖X\‖F

=
1

24

√

log n · σ
2
r(X

\)

‖X\‖F
,

where the second line follows from the Gaussian concen-

tration inequalities. Consequently, contraction of the esti-

mation error dist
(

Xt,X
\
)

can be guaranteed by Lemma 1

for all t ≥ Tc.

Algorithm 2: Leave-One-Out Versions

Input: Measurements {yi}i:i 6=l, and sensing vectors

{ai}i:i 6=l.

Parameters: Step size µt, rank r, and number of

iterations T .

Initialization: X
(l)
0 = Z

(l)
0 Λ

(l)1/2
0 , where the

columns of Z
(l)
0 ∈ R

n×r contain the normalized

eigenvectors corresponding to the r largest

eigenvalues of the matrix Y (l) = 1
2m

∑

i:i 6=l yiaia
>
i ,

and Λ
(l)
0 is an r × r diagonal matrix, with diagonal

entries given as
[

Λ
(l)
0

]

i
= λi

(

Y (l)
)

− λ(l), for

i = 1, · · · , r, where λ(l) = 1
2m

∑

i:i 6=l yi and

λi

(

Y (l)
)

is the ith largest eigenvalue of Y (l).

Gradient descent: For t = 0 : 1 : T − 1, do

X
(l)
t+1 = X

(l)
t −µt·

1

m

∑

i:i 6=l

(

∥

∥a>
i X

(l)
t

∥

∥

2

2
− yi

)

aia
>
i X

(l)
t .

(20)

Output: X
(l)
T .

5.2 Introducing Leave-One-Out Sequences

It now becomes clear that the key remaining step is to ver-

ify that the iterates {Xt} satisfy (17) for the first Tc iter-

ations, where Tc is on the order of (18). Verifying (17b)

is conceptually hard since the iterates {Xt} are statisti-

cally dependent with all the sensing vectors {ai}mi=1. To

tackle this problem, for each 1 ≤ l ≤ m, we introduce an

auxiliary leave-one-out sequence {X(l)
t }, which discards a

single measurement from consideration. Specifically, the

sequence {X(l)
t } is the gradient iterates operating on the

following leave-one-out function

f (l) (X) :=
1

4m

∑

i:i 6=l

(

yi −
∥

∥a>
i X

∥

∥

2

2

)2

. (19)

See Algorithm 2 for a formal definition of the leave-one-out

sequences. Again, we want to emphasize that Algorithm 2

is just an auxiliary procedure useful for the theoretical anal-

ysis, and it does not need to be implemented in practice.

5.3 Establishing Incoherence via Induction

Our proof is inductive in nature with the following induc-

tion hypotheses:

‖XtQt −X\‖F ≤ C1

(

1− 0.5σ2
r(X

\)µ
)t σ2

r(X
\)

‖X\‖F
,

(21a)

max
1≤l≤m

∥

∥

∥
XtQt −X

(l)
t R

(l)
t

∥

∥

∥

F

≤ C3

(

1− 0.5σ2
r(X

\)µ
)t

√

log n

n
· σ

2
r(X

\)

κ‖X\‖F
, (21b)



Nonconvex Matrix Factorization from Rank-One Measurements

max
1≤l≤m

∥

∥

∥
a>
l

(

XtQt −X\
)∥

∥

∥

2

≤ C2

(

1− 0.5σ2
r(X

\)µ
)t √

log n · σ
2
r(X

\)

‖X\‖F
, (21c)

where R
(l)
t = argmin

P∈Or×r

∥

∥XtQt−X
(l)
t P

∥

∥

F
, and the

positive constants C1, C2 and C3 satisfy

C1 + C3 ≤ 1

24
, C2 +

√
6C3 ≤ 1

24
, (22a)

5.86C1 + 29.3C3 + 5
√
6C3 ≤ C2. (22b)

Furthermore, the step size µ is chosen as

µ =
c0σ

2
r(X

\)
(

σ2
r(X

\) log n+ ‖X\‖2
F

)2 (23)

with appropriate universal constant c0 > 0.

Our goal is to show that if the tth iteration Xt satisfies the

induction hypotheses (21), then the (t+1)th iteration Xt+1

also satisfies (21). It is straightforward to see that the hy-

pothesis (21a) has already been established by Lemma 2,

and we are left with (21b) and (21c). We first establish

(21b) in the following lemma, which measures the proxim-

ity between Xt and the leave-one-out versions X
(l)
t .

Lemma 3. Suppose the sample size obeys m ≥
c

‖X\‖4

F

σ4
r(X\)

nr log (nκ) for some sufficiently large constant

c > 0. If the induction hypotheses (21) hold for the tth
iteration, with probability at least 1−c1n

−12−me−1.5n−
mn−12, we have

max
1≤l≤m

∥

∥

∥
Xt+1Qt+1 −X

(l)
t+1R

(l)
t+1

∥

∥

∥

F

≤ C3

(

1− 0.5σ2
r(X

\)µ
)t+1

√

log n

n
· σ

2
r(X

\)

κ‖X\‖F
,

as long as the step size obeys (23). Here, c1 > 0 is some

absolute constant.

In addition, the incoherence property of X
(l)
t+1 with respect

to the lth sensing vector al is relatively easier to establish,

due to their statistical independence. Combined with the

proximity bound from Lemma 3, this allows us to justify

the incoherence property of the original iterates Xt+1, as

summarized in the lemma below.

Lemma 4. Suppose the sample size obeys m ≥
c

‖X\‖4

F

σ4
r(X\)

nr log (nκ) for some sufficiently large constant

c > 0. If the induction hypotheses (21) hold for the tth iter-

ation, with probability exceeding 1− c1n
−12−me−1.5n−

2mn−12,

max
1≤l≤m

‖a>
l (Xt+1Qt+1 −X\)‖2

≤ C2

(

1− 0.5σ2
r(X

\)µ
)t+1 √

log n · σ
2
r(X

\)

‖X\‖F
holds as long as the step size satisfies (23). Here, c1 > 0 is

some universal constant.

5.4 Spectral Initialization

Finally, it remains to verify that the induction hypotheses

hold for the initialization, i.e. the base case when t = 0.

This is supplied by the following lemma.

Lemma 5. Suppose that the sample size exceeds m ≥
cmax{ ‖X\‖

F

σr(X\)

√
r, κ} ‖X\‖5

F

σ5
r(X\)

n
√
r log n for some suffi-

ciently large constant c > 0. Then X0 satisfies (21) with

probability at least 1−c1n
−12−me−1.5n−3mn−12, where

c1 is some absolute positive constant.

6 Conclusions

In this paper, we show that low-rank positive semidefinite

matrices can be recovered from a near-minimal number of

random rank-one measurements, via the vanilla gradient

descent algorithm following spectral initialization. Our re-

sults significantly improve upon existing ones in terms of

both computational and statistical complexities. In partic-

ular, our algorithm does not require resampling at every

iteration (and hence requires fewer samples). The gradient

iteration can provably employ a much more aggressive step

size than what was suggested in prior literature (e.g. Sang-

havi et al. (2017)), thus resulting in a much smaller itera-

tion complexity and hence lower computational cost. All of

these are enabled by establishing the implicit regularization

feature of gradient descent for nonconvex statistical estima-

tion, where the iterates remain incoherent with the sensing

vectors throughout the execution of the whole algorithm.

There are several problems that are worth exploring in the

future. For example, our theory reveals the typical size

of the fitting error of Xt (i.e. yi − ‖a>
i Xt‖2) in the ab-

sence of noise, which would serve as a helpful benchmark

when separating sparse outliers in the more realistic sce-

nario. Another direction is to explore whether implicit reg-

ularization remains valid for learning shallow neural net-

works (Zhong et al., 2017). Since the current work can

be viewed as learning a one-hidden-layer fully-connected

network with quadratic activation functions, it would be of

great interest to study if the techniques utilized herein can

be used to develop strong guarantees when the activation

function takes other forms. Finally, it will be worthwhile

to investigate the performance of vanilla gradient descent

under random initializations (Chen et al., 2018).
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