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Abstract. Gabor analysis, which can be traced back to Dennis Gabor’s influential 1946 paper
”Theory of communication,” is concerned with both the theory and the applications of the approx-

imation properties of sets of time and frequency shifts of a given window function. It re-emerged
with the advent of wavelets at the end of the last century and is now at the intersection of many

fields of mathematics, applied mathematics, engineering, and science. The goal of this paper is to
give a brief introduction to Gabor analysis by elaborating on three open problems.

1. Introduction

Using the ubiquitous theory of Fourier series, one can decompose and reconstruct any 1-periodic
and square integrable function in terms of complex exponential functions with frequencies at the
integers. More specifically, for any such function f we have

f(x) =

∞
∑

n=−∞
cne

2πint

where the coefficients {cn}n∈Z are square summable and the series converges in mean square, that
is

lim
N→∞

∫ 1

0

∣

∣

∣

∣

f(t)−
N
∑

n=−N

cne
2πint

∣

∣

∣

∣

2

dt = 0.

The significance of this simple fact is that f is completely determined by the coefficients {cn}, and,
conversely, each square summable sequence gives rise to a unique 1-periodic and square integrable
function. This fact is equivalent to saying that the set {en(t) := e2πint}∞n=−∞ forms an orthonormal
basis (ONB) for L2([0, 1)). We shall consider these functions as the building blocks of Fourier
analysis on the space of 1-periodic square integrable functions.

In his celebrated work [12], Dennis Gabor sought to decompose any square integrable function
on the real line in a similar manner. To this end, he proposed to “localize” the Fourier series
decomposition of such a function, by first using translates of an appropriate window function to
restrict the function to time intervals that cover the real line. The next step in the process is to
write the Fourier series of each of the “localized functions,” and finally, one superimposes all these
local Fourier series. Putting this into practice, Gabor chose the Gaussian as a window and claimed
that every square integrable function f on R has the following (non orthogonal) expansion

(1) f(x) =
∑

n∈Z

∑

k∈Z

cnk e
−π(x−nα)2

2α2 e2πikx/α

where α > 0. Furthermore, he argued on how to find the coefficients (cnk)n,k∈Z ∈ C using successive
local approximations by Fourier series. In fact, in 1932, John von Neumann already made a related
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claim, when he stipulated that the system of functions

(2) G(ϕ, 1, 1) =
{

ϕnk(·) := e2πik·ϕ(· − n) : n, k ∈ Z
}

where ϕ(x) = e−πx2

spans a dense subspace of L2(R), see [16] for details.
Both of these claims were positively established in the 70s, and it follows that both statements

hint at the fact that any square integrable function f is completely determined in the time-frequency
plane by the coefficients {cnk}k,n∈Z, see [16] and the references therein for a historical account. In
contrast to the theory of Fourier series, the building blocks in this process are the time and frequency
shifts of a function such as the Gaussian: {ϕnk(x) = e2πik·ϕ(· − n) : n, k ∈ Z}. But as we shall see
later, we could consider time-frequency shifts of other square integrable functions along a lattice
αZ × βZ leading to {e2πiβk·g(· − αn) : k, n ∈ Z}. The main point here is that the building blocks
can depend on three parameters: α > 0 corresponding to shifts in time/space, β > 0 representing
shifts in frequency, and a square integrable window function g.

In some sense, both Gabor and von Neumann statements can also be thought of as the foundations
of what is known today as Gabor analysis, an active research field at the intersection of (quantum)
physics, signal processing, mathematics, and engineering. In broad terms, Gabor analysis seeks to
develop (discrete) joint time/space-frequency representations of functions (distributions, or signals)
initially defined only in time or frequency, and it re-emerged with the advent of wavelets [7]. For a
more complete introduction to the theory and applications of Gabor analysis we refer to [11, 13].

The goal of this paper is to give an overview of some interesting open problems in Gabor analysis
that are in need of solutions. But first, in Section 2 we review some fundamental results in Gabor
analysis. In Section 3, we consider the problem of characterizing the set of all “good” parameters
α, β for a fixed window function g. In Section 4 we consider the problem of constructing orthonormal
bases for L2(R) by taking appropriate (finitely many) linear combinations of time-frequency shifts
of g along a lattice αZ × βZ. Finally, in Section 5 we elaborate on a conjecture that asks whether
any finite set of time-frequency shifts of a square integrable function is linearly independent.

2. Gabor frame theory

We start with a motivating example based on the L2 theory of Fourier series. In particular, we
would like to exhibit a set of building blocks {gnk}k,n∈Z that can be used to decompose every square
integrable function. To this end, let g(x) = χ[0,1)(x), where χI denotes the indicator function of

the measurable set I. Any f ∈ L2(R) can be localized to the interval [n, n + 1) by considering its
restriction f(·) g(· − n) to this interval. By superimposing all these restrictions over all integers
n ∈ Z, we recover the function f . That is, we can write

(3) f(x) =

∞
∑

n=−∞
f(x)g(x− n)

with convergence L2. But since the restriction of f to [n, n + 1) is square integrable, it can be
expanded into its L2 convergent Fourier series leading to

(4) f(x) g(x− n) =
∑

k∈Z

cnke
2πixk

where for each k ∈ Z,

cnk = 〈f(·)g(· − n), e2πik·〉L2([n,n+1)) =

∫ ∞

−∞
f(x) g(x− n) e−2πikx dx = 〈f, gnk〉

with gnk(x) = g(x − n) e2πikx. Here and in the sequel, 〈·, ·〉 denotes the inner product on either
L2(R), the space Lebesgue measurable square integrable functions on R, or `2(Z2) the space of
square summable sequences on Z

2. In addition, we use the notation ‖ · ‖ := ‖ · ‖2 to denote the
corresponding norm. The context will make it clear which of the two spaces we are dealing with.
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Substituting this in (4) and (3) leads to

(5) f(x) =

∞
∑

n=−∞
f(x)g(x− n) =

∞
∑

n=−∞

∞
∑

k=−∞
cnke

2πikxg(x− n) =

∞
∑

k,n=−∞
〈f, gnk〉gnk(x)

This expansion of f is similar to Gabor’s claim (1), with the the following key differences:
• The coefficients in (5) are explicitly given and are linear in f .
• (1) is based on the Gaussian while (5) is based on the indicator function of [0, 1).
• Finally, the expansion given in (5) is is an orthonormal decomposition while the one given by (1)
is not.

One of the goals of this section is to elucidate the difference in behavior between the two building
blocks appearing in (1) and (5). In addition, we shall elaborate on the existence of orthonormal
bases of the form {e2πiβk·g(· − αn) : k, n ∈ Z}.

The two systems of functions in (1) and (2) are examples of Gabor (or Weyl-Heisenberg) systems.
More specifically, for a, b ∈ R and a function g defined on R, let Mbf(x) = e2πibxf(x) and Taf(x) =
f(x− a) be, respectively, the modulation operator and the translation operator. The Gabor system
generated by a function g ∈ L2(R), and parameters α, β > 0, is the set of functions [13]

G(g, α, β) = {MkβTnαg(·) = e2πikβ·g(· − nα) : k, n ∈ Z}.
Given g ∈ L2(R), and α, β > 0, the Gabor system G(g, α, β) is called a frame for L2(R) if there

exist constants 0 < A ≤ B <∞ such that

(6) A‖f‖2 ≤
∑

k,n∈Z

|〈f,MkβTnαg〉|2 ≤ B‖f‖2 ∀f ∈ L2(R).

The constant A is called a lower frame bound, while B is called an upper frame bound. When
A = B we say that the Gabor frame is tight. In this case, the frame bound A is referred to as the
redundancy of the frame. Loosely speaking, the redundancy A measures by how much the Gabor
tight frame is overcomplete. A tight Gabor frame for which A = B = 1 is called a Parseval frame.
Clearly, if G(g, α, β) is an ONB then it is a Parseval frame, and conversely, if G(g, α, β) is a Parseval
frame and ‖g‖ = 1, then it is a Gabor ONB.

More generally, a Gabor frame is a “basis-like” system that can be used to decompose and/or
reconstruct any square integrable function. As such, it will not come as a surprise that general-
izations of certain tools from linear algebra might be useful in analyzing Gabor frames. We refer
to [7, 13] for more background on Gabor frames, and summarize below some results needed in the
sequel.

Suppose we would like to analyze f using the Gabor system G(g, α, β).We are then led to consider
the correspondence that takes any square integrable function f into the sequence {〈f,MkβTnαg〉}k,n∈Z.
This correspondence is sometimes called the analysis or decomposition operator and denoted by

Cg : f → {〈f,MkβTnαg〉}k,n∈Z.

Its (formal) adjoint C∗
g , called the synthesis or reconstruction operator, maps sequences c = {ckn}k,n∈Z

to

C∗
g c =

∑

k,n∈Z

cknMkβTnαg.

The composition of these two operators is called the (Gabor) frame operator associated to the Gabor
system G(g, α, β) is defined by

(7) Sf := Sg,α,βf = C∗
gCg(f) =

∑

n,k∈Z

〈f,MkβTnαg〉MkβTnαg

It follows that, given f ∈ L2(R), we can (formally) write that

〈Sf, f〉 = 〈C∗
gCgf, f〉 = 〈Cgf, Cgf〉 =

∑

k,n∈Z

|〈f,MkβTnαg〉|2.
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Therefore, G(g, α, β) is a frame for L2 if and only if there exist constants 0 < A ≤ B <∞ such that

A‖f‖22 ≤ 〈Sf, f〉 ≤ B‖f‖22 ∀ f ∈ L2(R).

In particular, G(g, α, β) is a frame for L2 if and only if the self-adjoint frame operator S is bounded
and positive definite. Furthermore, the optimal upper frame bound B is the largest eigenvalue of S
while the optimal lower bound A is its smallest eigenvalue. In addition, G(g, α, β) is a tight frame
for L2 if and only if S is a multiple of the identity.

Viewing a Gabor frame as an overcomplete “basis-like” object suggests that any square inte-
grable function can be written in a non-unique way as a linear combination of the Gabor atoms
{MkβTnαg}k,n∈Z. Akin to the role of the pseudo-inverse in linear algebra, we single out one
expansion that results in a somehow canonical representation of f as a linear combination of
{MkβTnαg}k,n∈Z. To obtain this decomposition we need a few basic facts about the frame op-
erator.

Suppose that G(g, α, β) is a Gabor frame for L2, and let f ∈ L2. For all (`,m) ∈ Z
2 the frame

operator S and M`βTmα commute. That is

S(M`βTmαf) =M`βTmα(S(f)) for all (`,m) ∈ Z
2.

It follows that S−1 andM`βTmα also commute for all (`,m) ∈ Z
2. As a consequence, given f ∈ L2(R)

we have

f = S(S−1f) =
∑

k,n∈Z

〈S−1f,MkβTnαg〉MkβTnαg

=
∑

k,n∈Z

〈f, S−1MkβTnαg〉MkβTnαg =
∑

k,n∈Z

〈f,MkβTnαg̃〉MkβTnαg

where g̃ = S−1g ∈ L2(R) is called the canonical dual of g. Similarly, by writing f = S−1(Sf) we
get that

f =
∑

k,n∈Z

〈f,MkβTnαg〉MkβTnαg̃.

The coefficients {〈f,MkβTnαg̃〉}k,n∈Z give the least square approximation of f . Indeed, for f ∈ L2,
let c̃ = (〈f,MkβTnαg̃〉)k,n∈Z ∈ `2(Z2). Given any (other) sequence (ck,n)k,n∈Z ∈ `2(Z2) such that

f =
∑

k,n∈Z

c̃k,nMnβTkαg =
∑

k,n∈Z

ck,nMkβTnαg,

we have

‖c̃‖22 =
∑

k,n∈Z

|〈f,MkβTnαg̃〉|2 = 〈S−1f, f〉 =
∑

k,n∈Z

ck,n〈S−1MkβTnαg, f〉 =
∑

k,n∈Z

ck,nc̃k,n = 〈c, c̃〉.

Consequently, 〈c− c̃, c̃〉 = 0, leading to

‖c‖22 = ‖c− c̃‖22 + ‖c̃‖22 ≥ ‖c̃‖22
with equality if and only if c = c̃. In other words, for a Gabor frame G(g, α, β), and given f ∈ L2,
among all expansions f =

∑

k,n∈Z
ck,nMkβTnαg, with c = (ck,n)k,n∈Z ∈ `2(Z2), the coefficient

c̃ = (〈f,MkβTnαg̃〉)k,n∈Z ∈ `2(Z2) has the least norm.

Because the frame operator S is positive definite, S1/2 is well defined and positive definite as
well. Thus, we can write

f = S−1/2SS−1/2f =
∑

k,n

〈f, S−1/2MkβTnαg〉S−1/2MkβTnαg =
∑

k,n

〈f,MkβTnαg
†〉MkβTnαg

†

where g† = S−1/2g ∈ L2. In other words, G(g†, α, β) is a Parseval frame.
Finally, assume that A,B are the optimal frame bounds for G(g, α, β). Then, for all f ∈ L2, we

have
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∑

k,n∈Z

|〈f,MkβTnαg̃〉|2 = 〈S−1f, f〉 = 〈S−1f, S(S−1f)〉 ≤ B‖S−1f‖2 ≤ B̃‖f‖2

and similarly, we have the lower bound

〈S−1f, f〉 = 〈S−1f, S(S−1f)〉 ≥ A‖S−1f‖2 ≥ Ã‖f‖2

Therefore, if G(g, α, β) is Gabor frame for L2(R), then so is G(g̃, α, β) where g̃ = S−1g ∈ L2(R). We
summarize all these facts in the following result.

Proposition 1 (Reconstruction formulas for Gabor frame). Let g ∈ L2(R) and α, β > 0. Suppose
that G(g, α, β) is a frame for L2(R) with frame bounds A,B. Then the following statements hold.

(a) The Gabor system G(g̃, α, β) with g̃ = S−1g ∈ L2 is also a frame for L2 with frame bounds
1/B, 1/A. Furthermore, for each f ∈ L2 we have the following reconstruction formulas:

f =
∑

k,n∈Z

〈f,MkβTnαg̃〉MkβTnαg =
∑

k,n∈Z

〈f,MkβTnαg〉MkβTnαg̃.

In addition, among all sequences c = (ck,n)k,n∈Z ∈ `2(Z2) such that f =
∑

k,n∈Z
ck,nMkβTnαg,

the sequence c̃ = (〈f,MkβTnαg̃〉)k,n∈Z ∈ `2(Z2) satisfies

‖c̃‖22 =
∑

k,n∈Z

|〈f,MkβTnαg̃〉|2 ≥
∑

k,n∈Z

|ck,n|2 = ‖c‖22

with equality if and only if c = c̃.
(b) The Gabor system G(g†, α, β), where g† = S−1/2g ∈ L2, is a Parseval frame. In particular,

each f ∈ L2 has the following expansion

f =
∑

k,n

〈f,MkβTnαg
†〉MkβTnαg

†.

It is worth pointing out that the coefficients (〈f,MkβTnαg〉)k,n appearing in (6) or in (7) are
samples of the Short-Time Fourier Transform (STFT) of f with respect to g. This is the function
Vg defined on R

2 by

Vgf(x, ξ) = 〈f,MξTxg〉 =
∫

R

f(t)g(t− x)e−2πitξ dt.

When g ∈ L2(R) is chosen such that ‖g‖ = 1, then Vg is an isometry from L2(R) onto a closed
subspace of L2(R2) and for all f ∈ L2(R)

(8)

∫

R

|f(t)|2 dt =
∫∫

R2

|Vgf(x, ξ)|2 dx dξ.

Furthermore, for any h ∈ L2 such that 〈g, h〉 6= 0

(9) f(t) = 1
〈g,h〉

∫∫

R2

Vgf(x, ξ)MξTxh(t) dx dξ

where the integral is interpreted in the weak sense. We refer to [13, Chapter 3] for more on the
STFT and related phase-space or time-frequency transformations.

The reconstruction formulas in Proposition 1 can be viewed as discretizations of the inversion
formula for the STFT (9). In particular, sampling the STFT on the lattice αZ× βZ and using the
weights c̃ = (〈f,MkβTnαg̃〉)k,n∈Z = (Vg̃f(αk, βn))k,n∈Z ∈ `2(Z2) perfectly reconstructs f . As such
one can expect that in addition to the quality of the window g (and hence g̃), the density of the
lattice must play a role in establishing these formulas. Thus, it must not come as a surprise that
the following results hold.

Proposition 2 (Density theorems for Gabor frames). Let g ∈ L2(R) and α, β > 0.

(a) If G(g, α, β) is a Gabor frame for L2(R) then 0 < αβ ≤ 1
(b) If αβ > 1, then G(g, α, β) is incomplete in L2(R).
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(c) G(g, α, β) is an orthonormal basis for L2(R) if and only if G(g, α, β) is a tight frame for
L2(R), ‖g‖ = 1, and αβ = 1.

These results were proved using various techniques ranging from operator theory to signal analysis
illustrating the multi-origin of Gabor frame theory. For a complete historical perspective on these
density results we refer to [16].

At this point some questions arise naturally. For example, can one classify g ∈ L2(R) and the
parameters α, β > 0 such that G(g, α, β) generates a frame or an ONB for L2(R)? Despite some
spectacular results both in the theory and the applications of Gabor frames [11], these problems
have not been completely resolved. Section 3 will be devoted to addressing the frame set problem for
Gabor frames. That is, given g ∈ L2(R), characterize the set of all (α, β) ∈ R

2
+ such that G(g, α, β)

is a frame. On the other hand, and as seen from part (c) of Proposition 2, Gabor ONB can only
occur when αβ = 1. In addition to this restriction, there does not exist a Gabor ONB with g ∈ L2

such that
∫ ∞

−∞
|x|2 |g(x)|2 dx

∫ ∞

−∞
|ξ|2 |ĝ(ξ)|2 dξ <∞

where

ĝ(ξ) =

∫ ∞

−∞
g(t)e−2πitξdt

is the Fourier transform of g. This uncertainty principle-type result known as the Balian-Low
Theorem (BLT) precludes the existence of Gabor ONBs with well-localized windows. We refer to
[2] and the references therein for a complete overview and the history of the BLT. We use the term
well-localized window to describe functions g that behave well in both time/space and frequency.
For example, functions in certain Sobolev spaces, and more generally in the so-called modulation
spaces, can be thought of as well-localized [13, Chapter 11]. With this in mind, the following result
holds.

Proposition 3 (The Balian-Low Theorem). Let g ∈ L2(R) and α > 0. If G(g, α, 1/α) is an
orthonormal basis for L2(R) then

∫ ∞

−∞
|x|2 |g(x)|2 dx

∫ ∞

−∞
|ξ|2 |ĝ(ξ)|2 dξ = ∞.

In Section 4 we will introduce a modification of Gabor frames that will result in an ONB called
Wilson basis with well-localized (or regular) window functions g. These ONBs were introduced
by K. G. Wilson [20] under the name of Generalized Warnnier functions. The fact that these
are indeed ONBs was later established by Daubechies, Jaffard, and Journé [9] who developed a
systematic construction method for these kinds of systems. The method starts with constructing a
tight Gabor frame of redundancy A = 2 and a well-localized window g. By then taking appropriate
linear combinations of at most two Gabor atoms from this tight Gabor frame, the author removed
the original redundancy and obtained an ONB. While it is clear that tight Gabor frame with well-
localized generators and arbitrary redundancy can be constructed, it remains an open question how
or if one can get ONBs from these systems. We survey this question in Section 4, and mention that
an interesting application involving the Wilson bases is the recent detection of the gravitational
waves [4].

3. The frame set problem for Gabor frames

As mentioned in the Introduction, a Gabor system is determined by three parameters: the shift
parameters α, β, and the window function g. Ideally, one would like to classify the set of all these
three parameters for which the resulting system is a frame. However, and in general, this is a
difficult question and we shall only consider the special case in which the window function g is fixed
and one seeks the set of all parameters α, β > 0 for which the resulting system is a frame.

In this setting, the frame set of a function g ∈ L2(R) is defined as

F(g) =
{

(α, β) ∈ R
2
+ : G(g, α, β) is a frame

}

.
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In general, determining F(g) for a given function g is also an open problem. However, it is known
that F(g) is an open subset of R2

+ if g ∈ L2(R) belongs to the modulation space M1(R) ([13]), i.e.,
∫∫

R2

|Vgg(x, ξ)| dxdξ <∞.

Examples of functions in this space include g(x) = e−π|x|2 or g(x) = 1
cosh x . In fact, for these specific

functions more is known. Indeed,

F(g) =
{

(α, β) ∈ R
2
+ : αβ < 1

}

if g ∈ {e−πx2

, 1
cosh x , e

−xχ[0,+∞](x), e
−|x|}, [14]. On the other hand when g(x) = χ[0,c](x), c > 0,

F(g) is a rather complicated set that has only been fully described in recent years by Dai and Sun
[6].

Let g(x) = e−|x| and observe that ĝ(ξ) = 2
1+4π2ξ2 , which makes g(x) = e−|x| an example of a

totally positive function of type 2. More generally, g ∈ L2(R) is a totally positive function of type M ,

whereM is a natural number, if its Fourier transform has the form ĝ(ξ) =
∏M

k=1(1+2πiδkξ)
−1 where

δk 6= δ` ∈ R for k 6= `. It was proved that for all such functions g, F(g) =
{

(α, β) ∈ R
2
+ : αβ < 1

}

.
A similar result holds for the class of totally positive functions of Gaussian type, which are functions

whose Fourier transforms have the form ĝ(ξ) =
∏M

k=1(1 + 2πiδkξ)
−1e−cξ2 where δ1 6= δ2 6= . . . 6=

δM ∈ R and c > 0. We refer to [14] for a survey of the structure of F(g) not only for the rectangular
lattices we consider here, but more general Gabor frame on discrete (countable) sets Λ ⊂ R

2.
However, there are other “simple” functions g for which determining F(g) remains largely a

mystery. In the rest of this section we consider the frame set for the B splines gN given by
{

g1(x) = χ[−1/2,1/2], and

gN (x) = g1 ∗ gN−1(x) for N ≥ 2.

The characterization of F(gN ) for N ≥ 2 is considered as one of the six main problems in frame
theory. Due to the fact that gN ∈M1(R) for N ≥ 2, we know that F(gN ) is an open subset of R2

+.
The current description of points in this set can be found in [1, 5, 18].

For example, consider the case N = 2 where

g2(x) = χ[−1/2,1/2] ∗ χ[−1/2,1/2](x) = max (1− |x|, 0) =
{

1 + x if x ∈ [−1, 0]
1− x if x ∈ [0, 1]

The known results on F(g2) can be summarized as follows.

Proposition 4 (Frame set of the 2−spline, g2). The following statements hold.

(a) If (α, β) ∈ F(g2), then αβ < 1 and α < 2 [8]. This is illustrated by the green region in
Figure 1.

(b) Assume that 1 ≤ α < 2 and 0 < β < 1
α . Then, (α, β) ∈ F(g2) [5]. This is illustrated by part

of the Yellow region in Figure 1.
(c) Assume that 0 < α < 2, and 0 < β ≤ 2

2+α . Then, (α, β) ∈ F(g2), and there is a unique dual

h ∈ L2(R)∩L∞(R) such that supph ⊆
[

−α
2 ,

α
2

]

[5]. This is illustrated by the blue region in
Figure 1.

(d) Assume that 0 < α < 2, and 2
2+α < β ≤ 4

2+3α . Then, (α, β) ∈ F(g2), and there is a

unique dual h ∈ L2(R) ∩ L∞(R) such that supph ⊆
[

− 3α
2 ,

3α
2

]

[18]. This is illustrated by
the magenta region in Figure 1.

(e) Assume that 0 < α < 1/2, and 4
2+3α < β ≤ 2

1+α . Then, (α, β) ∈ F(g2), and there is a

unique dual h ∈ L2(R) ∩L∞(R) such that supph ⊆
[

− 5α
2 ,

5α
2

]

[1]. This is illustrated by the
cyan region in Figure 1.

(f) Assume that 1
2 ≤ α ≤ 4

5 , and 4
2+3α < β ≤ 6

2+5α , with β > 1. Then, (α, β) ∈ F(g2),

and there is a unique dual h ∈ L2(R) ∩ L∞(R) such that supph ⊆
[

− 5α
2 ,

5α
2

]

[1]. This is
illustrated by the cyan region in Figure 1.
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(g) Assume that 2
3 ≤ α ≤ 1, and 4

2+3α < β < 1. Then, (α, β) ∈ F(g2), and there is a unique

compactly supported dual h ∈ L2(R) ∩ L∞(R) [1]. This is illustrated by the cyan region in
Figure 1.

(h) If 0 < α < 2, β = 2, 3, . . ., and αβ < 1, then, (α, β) 6∈ F(g2) [14]. This is illustrated by the
red horizontal lines in Figure 1.

These results are illustrated in Figure 1, where except for the red regions, all other regions are
contained in F(g2). For the proofs we refer to [1, 5, 14, 18], and the references therein. But we
point out that the main idea in establishing parts (c–g) is based on the following result. Before
stating it we recall that for α, β > 0 and g ∈ L2(R), the Gabor system G(g, α, β) is called a Bessel
sequence if only the upper bound in (6) is satisfied for some B > 0.

Proposition 5 (Sufficient and necessary condition for dual Gabor frames). Let α, β > 0 and
g, h ∈ L2(R). The Bessel sequences G(g, α, β) and G(h, α, β) are dual Gabor frames if and only if

∑

k∈Z

g(x− n/β − kα)h(x− kα) = βδn,0 a.e.x ∈ [0, α].

Using this result with g = gN and imposing that h is also compactly supported leads one to seek
an appropriate (finite) square matrix from the (infinite) linear system

∑

k∈Z

gN (x− `
β + kα)h(x+ kα) = βδ` for almost everyx ∈ [−α

2 ,
α
2 ].

In particular, the region {(α, β) ∈ R
2
+ : 0 < αβ < 1} can be partitioned in subregions Rm, m ≥ 1,

such that a (2m− 1)× (2m− 1) matrix Gm can be extracted from the above system leading to

Gm(x)

















h(x+ (1−m)α)
...

h(x)
...

h(x+ (m− 1)α)

















=

















0
...
β
...
0

















for almost every x ∈ [−α/2, α/2].

Choosing N = 2 results in parts (c–g) of Proposition 4, for the cases m = 1, 2, and 3. For these
cases, one proves that the matrix Gm(x) is invertible for almost everyx ∈ [−α/2, α/2]. However,
only a subregion for the case m = 3 has been settled in [1]. It is also known that the remaining
part of this subregion contains some obstruction points, for example the line β = 2 in Figure 1.
Nonetheless, it seems that one should be able to prove that the region

{(α, β) : 1
2 ≤ α < 1, 6

2+5α ≤ β < 2
1+α , β > 1}

is also contained in F(g2). But this is still open.
We end this section by observing that the frame set problem is a special case of the more general

question of characterizing the full frame set Ffull(g) of a function g, where

Ffull(g) = {Λ ⊂ R
2 : G(g,Λ) is a frame}

where Λ is the lattice Λ = AZ2 ⊂ R
2 with detA 6= 0. The only general result known in this case is

for g(x) = e−a|x|2 with a > 0 in which case

Ffull(g) = {Λ ⊂ R
2 : VolΛ < 1},

where the volume of Λ is defined by Vol(Λ) = |detA|, see [14].
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Figure 1. A sketch of F(g2). The red region contains points (α, β) for which
G (g2, α, β) is not a frame. All other colors indicate the frame property. The green
region is the classical: “painless expansions” [8]. For the yellow and magenta regions
see [5]. The blue and the cyan regions are respectively from [18] and [1].

4. Wilson Bases

By the BLT (Proposition 3) and Proposition 2(iii), we know that G(g, α, 1/α) cannot be an ONB
if g is well-localized in the time-frequency plane. To overcome the BLT, K. G. Wilson introduced
an ONB {ψn,`, n ∈ N0, ` ∈ Z}, where ψ0,`(x) = ψ`(x) and for n ≥ 1, ψn,`(x) = ψ`(x− n), and such

that ψ̂n,` is localized around ±n, that is, ψn,` is a bimodal function. Wilson presented numerical
evidences that this system of functions is an ONB for L2(R). In 1992, Daubechies, Jaffard, and
Journé formalized Wilson’s ideas and constructed examples of bimodal Wilson bases generated by
smooth functions. To be specific, the Wilson system associated with a given function g ∈ L2 is
W(g) = {ψj,m : j ∈ Z,m ∈ N0} where

ψj,m(x) =







g(x− j) if j ∈ Z

1√
2
T j

2

(Mm + (−1)j+mM−m)g(x) if (j,m) ∈ Z× N,
(10)

which can simply be rewritten as

ψj,m(x) =

{√
2 cos 2πmx g(x− j

2 ), if j +m is even√
2 sin 2πmx g(x− j

2 ), if j +m is odd.

It is not hard to see {ψj,m} is an ONB for L2(R) if and only if
{

‖ψj,m‖ = 1 for all (j,m) ∈ N0 × Z

〈f, h〉 =
∑

j,m〈f, ψj,m〉〈h, ψj,m〉 for all f, h ∈ L2.

Assuming that g and ĝ are smooth enough, ĝ real-valued, one can show that this is equivalent to

∑

m∈Z

ĝ(ξ −m)ĝ(ξ −m+ 2j) = δj,0 for almost every ξ, and for each j ∈ Z.

It follows that one can construct compactly supported ĝ that will solve this system of equations. On
the other hand, one can convert these equations into a single one by using another time-frequency
analysis tool, the Zak transform which we now define. For f ∈ L2(R) we let Zf : [0, 1)× [0, 1) → C

be given by

Zf(x, ξ) =
√
2
∑

j∈Z

f(2(x− j))e2πijξ
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Z is a unitary map from L2(R) onto L2([0, 1)2) and enjoys some periodicity-like properties [13,
Chapter 8]. Using the Zak transform, and under suitable regularity assumptions on g and ĝ, one
can show that {ψj,m} is an ONB if and only if

|Zĝ(x, ξ)|2 + |Zĝ(x, ξ + 1
2 )|

2 = 2 for almost every (x, ξ) ∈ [0, 1]2.

Real-valued functions g solving this equation can be constructed with the additional requirement
that both g and ĝ have exponential decay.

To connect this Wilson system to Gabor frame, we use once again the Zak transform, and observe
that the frame operator of the Gabor system G(g, 1, 1/2) is a multiplication operator in the Zak
transform domain, that is

ZSgf(x, ξ) =M(x, ξ)Zf(x, ξ)

where M(x, ξ) = |Zg(x, ξ)|2+ |Zg(x, ξ− 1
2 )|2. Consequently, G(g, 1, 1/2) is a tight frame if and only

if

M(x, ξ) = |Zg(x, ξ)|2 + |Zg(x, ξ − 1
2 )|

2 = A for almost every (x, ξ) ∈ [0, 1]2,

where A is a constant. These ideas were used in [9] resulting in the following.

Proposition 6 ([9]). There exist unit-norm real-valued functions g ∈ L2(R) with the property that
both g and ĝ have exponential decay and such that the Gabor system G(g, 1, 1/2) is a tight frame for
L2(R) if and only if the associated Wilson system W(g) is an orthonormal basis for L2(R).

Proposition 6 also provides an alternate view of the Wilson ONB. Indeed, each function in (10)
is a linear combination of at most two Gabor functions from a tight Gabor frame G(g, 1, 1/2) of
redundancy 2. Furthermore, such Gabor systems can be constructed so as the generators are well-
localized in the time-frequency plane. Suppose now that we are given a tight Gabor system G(g, α, β)
where (αβ)−1 = N ∈ N where N > 2. Hence, the redundancy of this tight frame is N . Can a
Wilson-type ONB (generated by well-localized window) be constructed from this system by taking
appropriate linear combinations? This problem was posed by Gröchenig for the case α = 1 and
β = 1/3 [13, Section 8.5], and to the best of our knowledge it is still open. If one is willing to
give up on the orthogonality, one can prove the existence of Parseval Wilson-type frames for L2(R)
from Gabor tight frames of redundancy 3. More recently, explicit examples have been constructed
starting from Gabor tight frames of redundancy 1

β ∈ N where N ≥ 3.

Proposition 7. [3] For any β ∈ [1/4, 1/2) there exists a real-valued function g ∈ S(R) such that
the following equivalent statements hold.

(i) G(g, 1, β) is a tight Gabor frame of redundancy β−1.
(ii) The associated Wilson system given by

(11) W(g, β) = {ψj,m : j ∈ Z,m ∈ N0}
where

ψj,m(x) =

{√
2βg2j,0(x) =

√
2βg(x− 2βj) if j ∈ Z,m = 0,√

β
[

e−2πiβjmgj,m(x) + (−1)j+me2πiβjmgj,−m(x)
]

if (j,m) ∈ Z× N
(12)

is a Parseval frame for L2(R).

If in addition β = 1
2n where n is any odd natural number, then we can choose g to be real-valued

such that both g and ĝ have exponential decay.

To turn these Parseval (Wilson) systems in ONBs, one needs to ensure that ‖ψj,m‖2 = 1 for
all j,m. This requires in particular that ‖g‖ = 1√

2β
, which seems to be incompatible with all

the other conditions imposed g. It has then been suggested in [3] that to obtain a Wilson ONB
with redundancy different from 2, one must modify in a fundamental way (12). For example,
if we want to have a Wilson ONB with α = 1, β = 1/3, it seems that one should take linear
combinations of three Gabor atoms instead of the two in Proposition 7. While we have no proof of
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this claim, it seems to be supported by a recent construction of multivariate Wilson ONBs that is
not a tensor product on 1-Wilson ONBs. In this new approach a relationship between these bases
and the theory of Generalized Shift Invariant Spaces (GSIS) was used to construct (non-separable)
well-localized Wilson ONB for L2(Rd) starting from tight Gabor frames of redundancy 2k where
k = 0, 1, 2, . . . d − 1. In particular, the functions in the corresponding Wilson systems are linear
combinations of 2k elements from the tight Gabor frame.

5. HRT

In any application involving Gabor frames, a truncation is needed, and one considers only a finite
number of Gabor atoms. As such, and from a numerical point of view, determining the condition
number of the projection matrix

PN,K =
N
∑

n=−N

K
∑

k=−K

〈·,MkβTnαg〉MkβTnαg

for N,K ≥ 1 is useful. In fact, and beyond any numerical considerations, one could ask if this oper-
ator is invertible, which will be the case if {MkβTnαg, |n| ≤ N, |k| ≤ K} was linearly independent.
Clearly this is the case if the starting Gabor frame was an ONB. However, and in general, this is
not known. In fact, this is a special case of a broader problem that we consider in this last section.
This fascinating (due in part to the simplicity of its statement) open problem that was posed in
1990 by C. Heil, J. Ramanathan, and P. Topiwala, and is now referred to as the HRT conjecture
[17].

Conjecture 1 (The HRT Conjecture). Given any 0 6= g ∈ L2(R) and Λ = {(ak, bk)}Nk=1 ⊂ R
2,

G(g,Λ) is a linearly independent set in L2(R), where

G(g,Λ) = {e2πibk·g(· − ak), k = 1, 2, . . . , N}.
To be more explicit, the conjecture claims the following: Given c1, c2, . . . , cN ∈ C such that

(13)
N
∑

k=1

ckMbkTak
g(x) =

N
∑

k=1

cke
2πibkxg(x−ak) = 0 for almost everyx ∈ R =⇒ c1 = c2 = . . . = cN = 0.

The conjecture is still generally open even if one assumes that g ∈ S(R), the space of C∞ functions
that decay faster than any polynomial.

Observe that for a given Λ = {(ak, bk)}Nk=1 ⊂ R
2, and g ∈ L2(R), we can always assume that

(a1, b1) = (0, 0), if not, applying M−b1T−a1
to G(g,Λ) results in G(M−b1T−a1

g,Λ′) where Λ′ will
include the origin. In addition, by rotating and scaling if necessary, we may also assume that Λ
contains (0, 1). This will result in unitarily changing g. Finally, by applying a shear matrix, we may
assume that Λ contains (a, 0) for some a 6= 0. Consequently, given Λ = {(ak, bk)}Nk=1 ⊂ R

2 with
N ≥ 3, we shall assume that {(0, 0), (0, 1), (a, 0)} ⊆ Λ, for some a 6= 0.

To illustrate some of the difficulties arising in investigating this problem, we would like to give
some ideas of the proof of the conjecture when N ≤ 3 and 0 6= g ∈ L2(R). Let us first consider the
case N = 2, and from the above observations we can assume that Λ = {(0, 0), (0, 1)}. Suppose that
c1, c2 ∈ C such that c1g + c2M1g = 0. This is equivalent to

(c1 + c2e
2πix)g(x) = 0

Since g 6= 0 and c1 + c2e
2πix is a trigonometric polynomial, we see that c1 = c2 = 0.

Now consider the case N = 3, and assume that Λ = {(0, 0), (0, 1), (a, 0)} where a > 0 is such that
G(g,Λ) is linearly dependent. Thus there are non-zero complex numbers c1, c2 such that

g(x− a) = (c1 + c2e
2πix)g(x) = P (x)g(x) ∀x ∈ S

where S ⊂ supp(g) ∩ (0, 1) has positive Lebesgue measure. Note that P (x) is a 1-periodic trigono-
metric polynomial that is nonzero almost everywhere. We can now iterate (5) along ±na for n > 0
to obtain
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is linearly independent, the Gramian of this set of functions is a positive definite matrix. We recall
that the Gramian of a set of N vectors {fk}Nk=1 ⊂ L2(R) is the (positive semi-definite N ×N matrix
(〈fk, f`〉)Nk,`=1. In the case at hand, the 4 × 4 Gramian matrix G := Gg(a, b) of G(g,Λ′) can be
written in the following block structure:

(16) G =

[

A u(a, b)
u(a, b)∗ 1

]

where A is the 3× 3 Gramian of G(g,Λ) and

u(a, b) =





Vgg(a, b)
Vgg(a, b− 1)

e−2πia0bVgg(a− a0, b)





and u(a, b)∗ is the adjoint of u(a, b). By construction G is positive semi-definite for all (a, b) ∈ R
2,

and we seek the set of points (a, b) ∈ R
2 \ Λ such that G is positive definite. We can encode this

information into the determinant of this matrix, or into a related function F : R2 → [0,∞) given by

(17) F (a, b) = 〈A−1u(a, b), u(a, b)〉.
The following was proved in [19].

Proposition 12 (The HRT Extension function). Given the above notations the function F satisfies
the following properties.

(i) 0 ≤ F (a, b) ≤ 1 for all (a, b) ∈ R
2, and moreover, F (a, b) = 1 if (a, b) ∈ Λ.

(ii) F is uniformly continuous and lim|(a,b)|→∞ F (a, b) = 0.

(iii)
∫∫

R2 F (a, b)dadb = 3.
(iv) detGg(a, b) = (1− F (a, b)) detA.

Consequently, there exists R > 0 such that the HRT conjecture holds for g and Λ′ = Λ∪{(a, b)} =
{(0, 0), (0, 1), (a0, 0), (a, b)} whenever |(a, b)| > R.

We conclude the paper by elaborating on the case Λ = 4. Let Λ ⊂ R
2 contain 4 distinct points,

and assume without loss of generality that Λ = {(0, 0), (0, 1), (a0, 0), (a, b)}.
When b = 0 and a = −a0 or a = 2a0, then Λ is a (1, 3) configuration with the additional fact that

its three collinear points are equi-spaced. This case is handled by Fourier methods as was done in
[17]; see Proposition 9 (d). But, for general (1, 3) configurations, the Fourier methods are ineffective.
Nonetheless, this case was considered by Demeter [10], who proved that the HRT conjecture holds
for all (1, 3) configurations when g ∈ S(R), and for a family of (1, 3) configurations when g ∈ L2(R).
It was later proved that in fact, the HRT holds for all functions g ∈ L2(R) and for almost all (in
the sense of Lebesgue measure) (1, 3) configurations. In fact, more is true, in the sense that for
g ∈ L2(R), there exists at most one (equivalence class of) (1, 3) configuration Λ0 such that G(g,Λ0)
is linearly dependent [19]. Here, we say that two sets Λ1 and Λ2 are equivalent if there exists a
symplectic matrix A ∈ SL(2,R) (the determinant of A is 1) such that Λ2 = AΛ1. However, it is
still not known if the HRT holds for all (1, 3) configurations when g ∈ L2.

Next if b = 1 with a 6∈ {0, a0}, or if a = a0 with b 6= 0 then Λ is a (2, 2) configuration, for which
the HRT was established, see [10].

Consequently, to establish the HRT conjecture for all sets of four distinct points and all L2 func-
tions, one needs to focus on
• showing that there is no equivalence class of (1, 3) configurations for which the HRT fails; and
• proving the HRT for sets of four points that are neither (1, 3) configurations nor (2, 2) configura-
tions.

For illustrative purposes we pose the following question.

Question 1. Let 0 6= g ∈ L2(R). Prove that G(G,Λ) is linearly independent in each of the following
cases

(a) Λ = {(0, 0), (0, 1), (1, 0), (
√
2,
√
2)}.
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(b) Λ = {(0, 0), (0, 1), (1, 0), (
√
2,
√
3)}.

To be more explicit, the question is to prove that each of the following two sets are linearly
independent

{g(x), g(x− 1), e2πixg(x), e2πi
√
2xg(x−

√
2)}

and

{g(x), g(x− 1), e2πixg(x), e2πi
√
3xg(x−

√
2)}

When g is real-valued, then part (a) was proved in [19], but nothing can be said for part (b). On
the other hand, [19, Theorem 7] establishes part (b) when g ∈ S(R).
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14. K. Gröchenig, The mystery of Gabor frames, J. Fourier Anal. Appl. 20 (2014), 865–895.
15. C. Heil, Linear independence of finite Gabor systems, Harmonic Analysis and Applications (Christopher Heil,

ed.), Applied and Numerical Harmonic Analysis, Birkhäuser, Boston, MA, 2006, Chapter 9.
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