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ABSTRACT

Energy consumption and greenhouse gas emissions
are two major concerns for data centers. Adopting
renewable energy, such as solar energy, is a potential
solution to both relieve the draw by the power grid and
reduce CO2 equivalent (CO2e) emissions. This study
quantifies the economic and environmental aspects of
data center operation, and then assesses the influence
of photovoltaic (PV)-based solar energy upon these
aspects. The study estimates data center upfront and
operating costs, and the carbon emission factor (CEF),
defined here as the carbon footprint associated with
each kWh of electricity consumption, for locations in
all 50 U.S. states. The study includes location-specific
metrics such as electricity cost, latitude and solar
irradiance. The CEF is approximated based on the
electric power production portfolio associated with each
state. The solar availability assigned to a state is
calculated using a beam and diffuse solar irradiance
model based on the hourly solar irradiance data
from the NREL TMY3 database. Recommendations
are provided regarding the locations and data center
densities with the largest economic and environmental
benefit from adding PV-based power generation.

KEY WORDS: Data Center, Renewable Energy,
Economic Analysis, Carbon Usage Effectiveness
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NOMENCLATURE

Greek Symbols

α Altitude angle, rad

β Slope of solar collector (from horizontal), rad

η Averaged overall PV system efficiency

γ Azimuth angle of collector, rad

ω Hour angle, rad

φ Observer’s latitude, rad

θ Angle of incidence, rad

Subscripts

b Beam radiation

d Diffuse radiation

j Electricity generation source

Variables

A Annualized payment

AC Alternating current

CEF Carbon emission factor, kg CO2e/kWhtot

cPV Carbon footprint from typical solar energy
system, kg CO2e/kWh

CRF Capital recovery factor

Ctot Total carbon footprint, kg

CUE Carbon usage effectiveness, kg CO2e/kWhtot

DC Direct current

DHI Diffuse horizontal irradiance, Wh/m2

DNI Direct normal irradiance, Wh/m2

EF i Emission factor, kg CO2e/kg gas

E tot Total electricity generation, kWh



Fm Maintenance factor

GHG Green house gas

n Day number

PB Payback period, yr

PDU Power distribution unit

Pe Electricity cost

PPV PV system cost

Psave Saving by implementing PV system

Ps,f Capital cost of servers and other facility

PUE Power usage effectiveness

Pupf Upfront cost of data center

QIT Data center IT equipment energy, kWh

Qtot Total data center energy, kWh

Rd Factor for diffuse radiation on a tilted plane

t Time length, h

th Time of the day, h

T L Data center tier level

UPS Uninterrupted power supply

INTRODUCTION

Published data from the Natural Resources Defense
Council (NRDC) [1] indicates that roughly 91 billion
kWh of electricity was consumed by America’s data
centers in 2013, which is projected to be almost 140
billion kWh of annual power consumption by 2020.
Utilizing solar and wind energy reduces the power
draw from the grid and consequently saves considerable
utility costs. Many studies have looked at using
renewable energy in the data center industry. Deng
et al. [2] conducted research in when and where
to apply renewable energy in cloud computing data
centers to maximize the use of available energy. It
was found that inter-data center load balancing and
migration, along with job scheduling, can reduce the
power draw from the grid and operate data centers
within an allowed budget. Dali et al. [3] provided
a theoretical study and experimental test of operating
a grid-connected hybrid system, which demonstrates
that the capability of the hybrid system to work safely
with or without power from the grid. Liu et al. [4]
integrated renewable energy supply, dynamic pricing

and cooling supply into a holistic approach that reduces
electricity cost and environmental impact. In order to
quantify the environmental impact of an operating data
center, Green Grid [5] defined a metric called the carbon
usage effectiveness (CUE) in 2010, which measures the
quantity of CO2e emitted within a specific time frame.
Unlike power usage effectiveness (PUE), which is a
unitless measurement and evaluates data center energy
efficiency, CUE considers how clean a data center is by
means of the carbon footprint of a data center’s power
sources through units of kg CO2e/kWh.

Any active changes in reducing CUE will impact
a data center’s capital and operating costs. Data
center designers must examine the cost of space
and construction, as well as the cost of large
scale utility power and critical facility installation.
Also, the heating, ventilation and air conditioning
(HVAC) system, which is used to cool the servers
and other networking equipment, can be particularly
expensive. Plenty of literature is available regarding
data economics. Turner IV et al. [6, 7] published a
dollars per kW model to predict the capital cost of a
data center. Xu et al. [8] built a model that studied
the environmental, energy and economic performance
of an operational data center. Finally, Wang et al. [9]
declared an interplay between data center distributed
systems and economics when analyzing the Amazon
EC2 cloud service and a local cloud computing testbed.

One means to reduce a data center’s CUE is
to replace a portion of the grid energy with on-site
photovoltaic (PV) power sources. The use of PV
power results in a higher capital cost but reduces
the annual power cost. Therefore, the influence of
on-site PV power needs to be examined to ascertain its
influence on the CUE and to determine its economic
payback period. These values also depend on location
due to the availability of solar irradiation and the
cost of grid-based energy. Environmental impact and
data center costs have become two major concerns
in the data center industry. Even though CUE has
been proposed for several years, few studies have
discussed the calculation of this metric. Furthermore,
the interaction between CUE and economics is barely
documented. This study therefore illustrates a simple
methodology to estimate the carbon footprint of
data centers by considering the power sources (coal,
natural gas, petroleum, nuclear and renewable energy)
associated with their geographical locations. This paper
also presents a cost model for data centers based on
physical location, solar energy availability and potential
carbon and economic savings. Recommendations for
data center location and the use of PV sources are
provided.



Table 1: U.S. Electricity Production Portfolio (Thousand Megawatt hours) [12]

States Coal Natural Gas Biomass Hydropower Petroleum Solar PV Wind Nuclear Total Fossil Fuel
Percentage

Alabama 34,186 56,731 265 6,985 31 39 0 39,902 138,139 65.8%
Alaska 487 2,977 0 1,491 780 1 169 0 5,905 71.9%
Arizona 30,403 34,042 214 7,168 52 4,725 542 32,377 109,523 58.9%
Arkansas 23,750 17,853 108 3,570 39 33 0 13,421 58,774 70.9%
California 0 84,476 4,498 28,930 40 24,616 13,498 18,908 174,966 48.3%
Colorado 29,941 12,658 162 1,891 7 999 9,417 0 55,075 77.4%
Connecticut 177 17,044 856 224 87 345 13 16,575 35,321 49.0%
Delaware 479 6,792 52 0 63 118 0 0 7,504 97.7%
Florida 39,255 157,012 2,570 175 746 354 0 29,320 229,432 85.9%
Georgia 37,674 52,420 719 3,357 84 1,076 0 34,481 129,811 69.5%
Hawaii 1,492 0 88 53 6,442 849 639 0 9,563 83.0%
Idaho 0 3,142 156 9,033 0 40 2,578 0 14,949 21.0%
Illinois 57,816 16,472 467 131 68 86 10,659 98,607 184,306 40.3%
Indiana 72,481 19,320 338 426 101 243 4,899 0 97,808 94.0%
Iowa 23,480 2,661 150 917 239 59 20,068 4,703 52,277 50.5%
Kansas 23,096 1,975 59 31 28 10 14,111 8,246 47,556 52.8%
Kentucky 66,822 7,975 105 3,478 88 32 0 0 78,500 95.4%
Louisiana 12,014 39,835 80 1,103 15 191 0 17,152 70,390 73.7%
Maine 60 3,157 1,623 2,678 99 29 1,667 0 9,313 35.6%
Maryland 13,751 4,919 417 1,392 157 728 527 14,760 36,651 51.4%
Massachusetts 1,875 20,464 1,177 708 403 1,863 194 5,414 32,098 70.9%
Michigan 40,433 28,402 1,646 1,539 116 64 4,696 31,552 108,448 63.6%
Minnesota 22,806 8,628 1,235 1,078 30 47 9,905 13,861 57,590 54.6%
Mississippi 5,342 49,680 10 0 15 6 0 5,897 60,950 90.3%
Missouri 60,269 5,890 88 1,268 78 200 1,122 9,430 78,345 84.5%
Montana 14,263 472 0 10,083 17 11 2,140 0 26,986 54.7%
Nebraska 21,551 536 80 856 0 7 3,798 9,351 36,161 61.1%
Nevada 2,167 28,578 55 1,789 11 3,252 344 0 36,196 85.0%
New Hampshire 422 4,689 1,654 1,146 22 52 432 10,761 19,178 26.8%
New Jersey 1,315 43,277 815 9 80 2,220 21 29,885 77,622 57.6%
New Mexico 18,365 9,840 18 148 52 909 3,603 0 32,935 85.8%
New York 1,437 55,677 1,828 26,827 595 1,013 3,939 41,571 132,887 43.4%
North Carolina 37,186 39,134 1,217 4,403 243 3,588 6 42,786 128,563 59.6%
North Dakota 26,472 1,051 0 1,912 30 0 8,172 0 37,637 73.2%
Ohio 68,662 28,627 463 500 212 174 1,191 16,817 116,646 83.6%
Oklahoma 18,791 36,359 15 2,573 17 9 20,069 0 77,833 70.9%
Oregon 1,898 15,199 459 34,550 5 192 7,157 0 59,460 28.8%
Pennsylvania 54,294 66,611 1,723 2,374 264 362 3,476 82,924 212,028 57.1%
Rhode Island 0 6,241 205 2 25 45 20 0 6,538 95.8%
South Carolina 20,900 16,304 829 2,224 97 41 0 55,826 96,221 38.8%
South Dakota 2,083 919 0 4,806 3 1 3,714 0 11,526 26.1%
Tennessee 30,293 10,779 84 6,774 119 165 38 29,578 77,830 52.9%
Texas 121,231 185,014 704 1,342 78 1,122 57,483 42,079 409,053 74.9%
Utah 25,502 8,210 68 759 32 1,204 822 0 36,597 92.2%
Vermont 0 1 475 1,077 4 135 291 0 1,983 0.3%
Virginia 16,214 40,266 2,331 1,463 529 62 0 29,732 90,597 62.9%
Washington 4,569 10,873 612 78,345 13 90 8,041 9,626 112,169 13.8%
West Virginia 71,401 980 0 1,143 123 6 1,432 0 75,085 96.6%
Wisconsin 32,927 15,032 835 2,620 26 38 1,508 10,151 63,137 76.0%
Wyoming 39,629 186 0 974 45 3 4,389 0 45,226 88.1%

METHOD

Carbon Footprint

The Uptime Institute’s Top 10 Data Center Industry
Trends for 2019 [10] have indicated that “governments
viewed [IT] as a positive force”, and that “any
downside... on energy use or carbon emissions...

had largely been downplayed. But the pendulum has
swung,” meaning that governments are starting to show
concern regarding data center carbon emissions. Thus,
carbon emission calculations are needed as observable
effects from climate change have indicated severe
damage to the environment. This study evaluates
CO2e emissions for data centers in all 50 U.S. states.
The notion here is that the power requirements for



any newly built hyperscale data center will likely
call for additional power generation, and a location’s
existing regulations will likely favor a specific type of
power generation source. Therefore, it is hypothesized
that the location’s current power generation portfolio
provides a good indicator for the likely type of power
generation that would be used for any new data center
construction. This enables a reasonable prediction of
the carbon emissions associated with a new data center.
Furthermore, existing data centers most likely draw
from local power generation sources, so the local power
generation portfolio also provides a means to estimate
a current data center’s carbon footprint. Finally, some
data center owners have local utility contracts to draw
from renewable power, which is important in pushing
the utility industry to have more renewable sources in
the long term, however the short term consequence is
merely to redistribute the nonrenewable power to other
utility customers.

CUE is defined as the ratio of total CO2e emissions
compared to the data center IT equipment energy
consumption. By its definition, one has to consider the
energy production portfolio of that specific location and
their associated emissions to perform this calculation.
The U.S. electricity generation information in 2016
[12] shows that 35.4% of power generation stems from
nuclear and renewable sources, which generates a small
amount of CO2e compared to fossil fuel-based sources.
The fossil fuels coal, natural gas and petroleum occupy
64.6% of total generation. However, Table 1 [12] shows
that the electricity production portfolio depends heavily
on location. In Vermont, for example, only 0.25% of
generated energy is by fossil fuel in 2016, whereas in
Delaware, over 97.7% of electricity stems from fossil
fuel in the same year.

The analysis here assumes that CO2e comes from
multiple sources, such as petroleum, coal, natural
gas, biomass, hydropower, solar photovoltaic, wind
and nuclear energy. Each generation source produces
largely divergent greenhouse gas (GHG) emissions
through construction, operation and abandonment
processes. Thus, evaluating the lifecycle CO2e
emissions of each source is extremely important. The
mathematical definition of CUE is

CUE =
Ctot

QIT
(1)

where Ctot is the total annual carbon footprint of the data
center in kg CO2e, and QIT is the annual data center IT
equipment energy consumption in kWh. The approach
introduced here for calculating CUE is to multiply the
PUE by a carbon emission factor (CEF):

CUE =
Ctot

Qtot
· Qtot

QIT
=CEF ·PUE (2)

where Qtot is the total energy that data center consumed
in kWh. CEF is defined here as the ratio of CO2e
emissions per kWh of facility electricity consumption:

CEF =
∑ j CO2e j

∑ j Qtot j
(3)

where CO2e j is the total CO2e production from one
source in kg, Qtot j is the total electricity generation
from that specific source in kWh, and the subscript
j represents different generation sources. Then, the
equation can be written as:

CEF =
∑ j EFj ×Qtot j

Qtot
(4)

where EFj is the emission factor, which represents the
lifecycle GHG emissions from the selected electricity
generation source in kg CO2e per kWh. Figure 1 shows
the GHG emissions of multiple electricity generation
sources according to the Intergovernmental Panel on
Climate Change (IPCC) [23] and the World Nuclear
Association (WNA) [24]. The median values of GHG
emissions from each source are used in this study. It
is worth noting that the lifecycle analysis of nuclear
power from their research includes uranium mining,
enrichment and fuel fabrication, site construction,
combustion and waste management.

Figure 1: Lifecycle GHG emissions of Multiple
Electricity Generation Sources [23, 24]

The above calculation sequence illustrates that the
CEF is a simple multiplier that estimates CUE for
data centers assuming that each state independently
produces and consumes its own power (i.e. no power
crosses state borders). Since in reality power does in
fact cross state borders, the CEF as defined here is only
a rough approximation. However, it is reasonable to



believe that the majority of power consumed in a state
was produced in that same state, so the CEF provides
a reasonable first approximation for CUE calculations.
Table 2 shows the calculated CEF for all 50 states.
One can easily observe that Vermont has the lowest
CEF (0.075 kg/kWh), meaning that data centers built
in Vermont will likely have lower CO2e emissions
compared with data centers built in other states for
a given PUE. The states with the second and third
lowest CEF value are Washington and Idaho due to
their low fossil fuel consumption and large renewable
or nuclear energy supply. On the other hand, West
Virginia, Kentucky and Wyoming are the three states
with the highest CEF (≈0.75 kg/kWh), with 96.56%,
95.39% and 88.14% of electricity generated in those
three states, respectively, stemming from fossil fuel.
West Virginia, a major coal producer in the nation,
undoubtedly has the highest CEF because coal is their
major source of power. However, Delaware, that has
97.73% of electricity comes from fossil fuel, is the state
with highest percentage of fossil fuel usage but only
has a medium CEF (0.504 kg/kWh) because the most
of the fossil fuel burnt in Delaware is natural gas, which
has a lower GHG emission factor than coal. Similar
phenomena can also be observed from Rhode Island.

Table 2: CEF Values for All 50 States

State CEF (kg/kWh) State CEF (kg/kWh)

Alabama 0.409 Montana 0.452

Alaska 0.418 Nebraska 0.501

Arizona 0.388 Nevada 0.442

Arkansas 0.485 New Hampshire 0.167

California 0.256 New Jersey 0.296

Colorado 0.563 New Mexico 0.608

Connecticut 0.254 New York 0.230

Delaware 0.504 North Carolina 0.396

Florida 0.482 North Dakota 0.595

Georgia 0.442 Ohio 0.607

Hawaii 0.629 Oklahoma 0.431

Idaho 0.122 Oregon 0.169

Illinois 0.309 Pennsylvania 0.372

Indiana 0.707 Rhode Island 0.478

Iowa 0.403 South Carolina 0.271

Kansas 0.425 South Dakota 0.201

Kentucky 0.750 Tennessee 0.395

Louisiana 0.421 Texas 0.468

Maine 0.228 Utah 0.685

Maryland 0.386 Vermont 0.075

Massachusetts 0.383 Virginia 0.379

Michigan 0.443 Washington 0.101

Minnesota 0.409 West Virginia 0.788

Mississippi 0.473 Wisconsin 0.551

Missouri 0.671 Wyoming 0.723

Solar Energy Integration

Traditional data center power systems include AC
transformers, rectifiers, power distribution units (PDUs)
and uninterrupted power supplies (PSUs). For energy
conservation and carbon footprint reduction purposes,
PV arrays and associated boost converters can be
integrated to provide on-site power generation. The
standalone power distribution system modeled in this
study follows the layout shown in Figure 2.

Figure 2: Integrated PV Array Model in a DC Power
Distribution System

The data center draws power partially from the
power grid, which goes through an AC transformer,
UPS, rectifier, and PDU before reaching the racks,
where the power is distributed to the servers. Another
data center power source is the solar PV system, whose
output DC voltage is boosted up to 480V DC and
merged into 480V DC power within the UPS. The
electricity generated from the PV system feeds data
center energy demands during the peak loading period.
If any extra electricity is generated during the data
center low loading period, then it is stored in a battery
bank for future use.

The solar availability for different locations is
determined using the declination angle (δ ), hour angle
(ω) and latitude angle (φ ) [15] and hourly solar
radiation data from the NREL Typical Meteorological
Year database (TMY3) [16]. The following equations
are used in this study:

δ = 23.45
π

180
sin

(
2π

(
284+n
36.25

))
(5)

where δ is the declination angle (rad) and n is the day
number. The hour angle (ω), in radians, is

ω = 15◦(th −12)
π

180
(6)

where th is the time of day in hours, with th = 0
occurring at midnight. The altitude angle (α) is found



using

sinα = sinδ sinφ + cosδ cosω cosφ (7)

where α and φ are both in radians. The azimuth angle
(γ) is calculated using

γ =
sinω cosδ

cosα
(8)

The angle of incidence (θ ) is

cosθ = sinδ sinφ cosβ − sinδ cosφ sinβ cosγ

+ cosδ cosφ cosβ cosω

+ cosδ sinφ sinβ cosγ cosω

+ cosδ sinβ sinγ sinω

(9)

Here, solar collectors are placed horizontally facing up,
with slope angle β = 0◦. Finally, the solar availability
(S), defined as the maximum solar energy that can be
utilized, is

S = η(Ib cosθ + IdRd) (10)

where Ib and Id are the hourly mean solar irradiance
of beam and diffuse components, respectively, which
are calculated based on hourly data of direct normal
irradiance (DNI) and diffuse horizontal irradiance
(DHI) for different locations in the TMY3 database. Rd
is a factor used to adjust the diffuse radiation quantity
for a tilted plane as

Rd =
1+ cosβ

2
(11)

and η is the overall average efficiency of the PV system,
which is assumed to be a typical value of 18% [25].

Table 3 shows the annually accumulated solar
availability for the most populous cities in all 50 states.
The solar availability of these cities is considered to be
a rough representation for the entire state they reside
in for purposes of this study. As expected, Anchorage,
AK has the lowest solar availability among all other
cities considered here. Seattle, WA, Manchester, NH,
and Portland, OR are also low solar availability cities
with slightly over 220 kWh/m2/year. On the other hand,
Phoenix, AZ, Albuquerque, NM, Honolulu, HI and Las
Vegas, NV are the 4 cities with most sunlight. It is worth
noting that Charleston, WV, the state with largest CEF,
has an intermediate value of 259 kWh/m2/year solar
energy available.

Economics Calculations

Building a data center is extremely expensive, and
the cost varies widely for different data center densities
and tier levels [17]. In this study, the upfront cost of a

Table 3: Yearly Solar Availability in U.S.

State City Solar Availability (kWh/m2)
Alabama Birmingham 293
Alaska Anchorage 156
Arizona Phoenix 369
Arkansas Little Rock 292
California Los Angeles 325
Colorado Denver 301

Connecticut Bridgeport 254
Delaware Wilmington 264
Florida Jacksonville 294
Georgia Atlanta 297
Hawaii Honolulu 349
Idaho Boise 284

Illinois Chicago 252
Indiana Indianapolis 263

Iowa Des Moines 273
Kansas Wichita 296

Kentucky Louisville 268
Louisiana New Orleans 292

Maine Portland 254
Maryland Baltimore 266

Massachusetts Boston 253
Michigan Detroit 245
Minnesota Minneapolis 249
Mississippi Jackson 301

Missouri Kansas City 281
Montana Billings 269
Nebraska Omaha 254
Nevada Las Vegas 342

New Hampshire Manchester 227
New Jersey Newark 255

New Mexico Albuquerque 355
New York New York City 257

North Carolina Charlotte 289
North Dakota Fargo 249

Ohio Columbus 247
Oklahoma Oklahoma City 292

Oregon Portland 228
Pennsylvania Philadelphia 263
Rhode Island Providence 249

South Carolina Columbia 290
South Dakota Sioux Falls 260

Tennessee Nashville 283
Texas Houston 288
Utah Salt Lake City 295

Vermont Burlington 240
Virginia Richmond 277

Washington Seattle 221
West Virginia Charleston 259

Wisconsin Milwaukee 252
Wyoming Cheyenne 289

data center (Pupf) is estimated by the “dollars per kW
model [18]”:

Pupf = QITL ·T L (12)

where QITL is the data center IT load in kW. T L is
the data center tier level described in Table 7. Data
center tier level classification is used in the model and
can be found in Table 4. The operating expenses of
a data center are also significant. Based on research



Table 4: Tier Level Classification [17]

Tier Level Performance Standard Cost Model

Tier 1 Basic Site Infrastructure $11,500/kW

Tier 2 Redundant Capacity Components Site Infrastructure $12,500/kW

Tier 3 Concurrently Maintainable Site Infrastructure $23,000/kW

Tier 4 Fault Tolerant Site Infrastructure $25,000/kW

published by the Uptime Institute [19], 22% of data
center managers prefer to refresh their servers every five
years and other facility equipment every 15 years. Thus,
this study estimates the operating cost by breaking the
total upfront cost into two parts (servers and other
equipment) and amortizing them over 5 years for
servers and 15 years for all other equipment, assuming
a constant annual interest rate (a typical value of 5% is
used in this study). The annualized operating expenses
take advantage of the capital recovery factor (CRF),
which converts these costs into annual values using
compounding:

CRF(i,n) =
i(1+ i)n

i(1+ i)n −1
(13)

where i is the annual interest rate, and n is the number
of years. Power and maintenance expenses are also
incorporated in this model. The electricity price for
different states was retrieved from the U.S. Energy
Information Administration [20]. The maintenance cost
is difficult to ascertain since it is owner-driven. Here, a
2% maintenance factor (Fm) is assumed. Therefore, the
annualized cost of servers (As) and other equipment (Af)
are calculated using

As,f = Ps,f ·CRFs,f(i,ns,f) (14)

Annualized costs of power (Ap) and maintenance (Am)
are calculated using following equations:

Ap = Qtot ·Pe · t (15)

Am = Fm ·Pupf (16)

where Ecost is the average electricity price [20]. Then,
the total annualized operating cost is computed using

Atot = As +Af +Ap +Am (17)

In this study, a data center with a typical floor
area of 300 m2 and a typical PUE of 1.85 is modeled.
Different data center densities (high density 150
W/sq.ft., medium density 100 W/sq.ft., and low density
50 W/sq.ft.) and different tier levels are compared.

Figure 3 shows the data center upfront cost versus
tier levels and densities. It is clear that upfront cost

Figure 3: Data center Upfront Cost versus Tier Levels
and Densities (non-PV)

Figure 4: Annual Payment for Different States at Tier 2
& 3 (non-PV)

increases with data center density and tier level. A tier
4, high density data center costs over 6 times than a tier
1, low density data center for a given location.

The annualized operating expense varies with
location and tier level as shown in Figure 4. Only the
3 states with the highest annualized payment and the 3
states with the lowest annualized payment are shown.
Hawaii is the state with the highest annual payment due
to its high electricity cost. On the contrast, Oklahoma
has the lowest annual payment because of the its cheap
electricity price. It should be noticed that Idaho may be
a good data center location since the state has a clean
energy production portfolio (ranked the 3rd lowest CEF
state) and inexpensive electricity.



Obviously, investing in a PV system will lead to a
higher upfront cost. The payback analysis for a typical
PV system installation is

PB =
PPV

Psave
(18)

The PV arrays, with an averaged overall efficiency
18%, are sized to fully capture the average daily solar
energy within 7 hours sunlight time. Solar panels are
expensive, especially when considering the large power
requirements of data centers. The average PV panel
cost in the U.S. is 3.14 $/W [21]. However, a 30%
federal solar tax credit with no cap on its value, also
known as an investment tax credit (ITC), gives solar
system owners a significant deduction on the total cost
of solar energy system installation. For a given data
center with 300 m2 roof area for PV panels, the payback
calculation result is seen in Figure 5. The figure shows
that the payback period is not favorable, ranging from
roughly 20-60 years. It is obvious that the payback
period is negatively correlated with electricity cost.
Hawaii is the state with fastest payback for PV solar
energy applications due to its expensive electricity and
relatively high solar energy availability. On the contrast,
Oklahoma, whose electricity is the cheapest among all
states, has the longest payback period. The results in
the figure only consider the 30% federal tax credit, so
the payback period shown is still conservative when
considering financing, incentives and rebates from their
own state.

Figure 5: Payback Period & Electricity Cost Among
States (30% Federal Tax Credits Included)

RESULTS AND COMPARISON

Influence of PV System

The CUE for a PV system implemented data center
(CUEw/PV) is calculated using:

CUEw/PV =
E tot,grid ·CEF +E tot,PV · cPV

QIT
(19)

with an inherent carbon footprint 0.048 kg CO2e/kWh
[23] PV system (cPV). Table 5 shows the calculated

Table 5: CUE Comparison

State CUE (kg/kWh) CUE w/PV (kg/kWh) Percentage Difference
Alabama 0.758 0.736 2.89%
Alaska 0.773 0.762 1.44%
Arizona 0.718 0.693 3.47%

Arkansas 0.898 0.872 2.89%
California 0.473 0.460 2.65%
Colorado 1.041 1.011 2.91%

Connecticut 0.470 0.460 2.28%
Delaware 0.933 0.909 2.63%
Florida 0.892 0.867 2.88%
Georgia 0.817 0.795 2.80%
Hawaii 1.164 1.124 3.46%
Idaho 0.226 0.222 1.77%

Illinois 0.572 0.559 2.27%
Indiana 1.308 1.274 2.59%

Iowa 0.746 0.727 2.58%
Kansas 0.786 0.764 2.74%

Kentucky 1.388 1.351 2.68%
Louisiana 0.779 0.758 2.79%

Maine 0.422 0.413 2.27%
Maryland 0.714 0.696 2.50%

Massachusetts 0.709 0.692 2.46%
Michigan 0.819 0.801 2.26%
Minnesota 0.756 0.739 2.28%
Mississippi 0.874 0.850 2.82%

Missouri 1.241 1.207 2.76%
Montana 0.837 0.815 2.64%
Nebraska 0.927 0.904 2.52%
Nevada 0.818 0.791 3.31%

New Hampshire 0.309 0.304 1.77%
New Jersey 0.548 0.535 2.37%

New Mexico 1.124 1.086 3.44%
New York 0.425 0.416 2.13%

North Carolina 0.733 0.713 2.74%
North Dakota 1.100 1.074 2.39%

Ohio 1.123 1.096 2.46%
Oklahoma 0.797 0.775 2.72%

Oregon 0.312 0.307 1.56%
Pennsylvania 0.688 0.672 2.43%
Rhode Island 0.885 0.863 2.43%

South Carolina 0.502 0.489 2.70%
South Dakota 0.372 0.364 2.11%

Tennessee 0.731 0.712 2.70%
Texas 0.866 0.842 2.81%
Utah 1.267 1.231 2.90%

Vermont 0.138 0.137 0.57%
Virginia 0.701 0.683 2.62%

Washington 0.187 0.185 1.09%
West Virginia 1.458 1.420 2.60%

Wisconsin 1.019 0.995 2.44%
Wyoming 1.337 1.299 2.88%

CUE and CUE w/PV of a typical data center that has
PUE = 1.85 and roof area 300 m2 for PV panels. The
percentage difference is also given. It is observed that
Arizona, which has 3.47% of GHG emissions saved,
is the state that would get most benefits from solar PV
applications due to their huge solar energy availability.
In Vermont, only 0.57% of GHG emissions can be
saved because it has a clean energy production portfolio
(lowest CEF state) and small solar energy (ranked 4th
lowest solar availability state).



Influence of PV Array Size

PV array size has a significant impact on data
center power consumption, payback period and carbon
footprint. This subsection examines these aspects of
a medium density data center (100 W/sq.ft.) built
in Philadelphia, PA. The PV arrays are sized to have
100%, 80%, 60% and 40% of the maximum solar
energy availability capacity in order to compare the
carbon footprint and data center expenses under the
influence of various PV array sizes.

Table 6 shows that as PV array size increases, then
the solar energy absorbed increases, which reduces the
grid power consumption. It is observed that the large
payback time is insensitive to the PV array size, because
increasing the PV array size increases the cost of the PV
yet reduces the power draw from the grid. The carbon
footprint slightly decreases with increasing PV array
size: For Philadelphia, PA, assuming 100% solar energy
captured, the CUE drops from 0.688 kg CO2e/kWh to
0.672 kg CO2e/kWh, saving roughly 2.35% of CO2e
emissions.

Table 6: Calculations for Different PV Array Sizes

Solar energy absorbed (MWh/year) 79 63 47 32
Percentage of total availability 100% 80% 60% 40%

PV array size (kW) 171.4 137.1 102.8 68.5
Power consumption (grid) (GWh) 2.76 2.78 2.79 2.81

Payback (Year) 51.8 51.8 51.8 51.8
CUE w/o PV(kg/kWh) 0.688
CUE w/ PV(kg/kWh) 0.672 0.675 0.678 0.682

Influence of Location

This subsection examines the carbon footprint
associated with an installed PV system and annualized
expenses for various locations. A Tier 2, medium
density (100 W/sq.ft.) data center with 300 m2 floor
area is used. Figure 6 shows the correlation of CUEw/ PV
and the annualized payment. The figure shows that most
states allow for an annualized cost below $0.95M/yr,
but some specific locations (e.g., ID, VT and WA)
can maintain this cost with a CUEw/PV below 0.25 kg
CO2e/kWh, and therefore these locations are favorable
both economically and environmentally for data center
construction. On the other hand, Honolulu, HI has
the highest annual payment because the abundant solar
energy available requires a large power output from the
PV system, which drives the PV expenses higher. The
high electricity cost of Hawaii also plays an important
role in the economics of installing PV systems there..

The CO2e emission savings by implementing PV
solar energy in various locations, and the associated
payback time, are shown in Figure 7. The figure shows

that generally a greater reduction in carbon footprint is
associated with a larger payback period, with the most
favorable exception being HI due to the high electricity
cost, large solar availability, and high CEF. Therefore,
an existing data center in HI would most benefit from
the addition of on-site PV power. Furthermore, the
figure shows that one could save 3.47% in total CO2e
emissions in AZ by utilizing PV based solar energy
due to that state’s abundant solar energy and original
‘unclean’ power production portfolio. On the other
hand, only a small decrease in CUE of 0.57% for VT
is seen due to the fact that the inherent on-site PV
carbon footprint does not help that much from reducing
the power draw from the state’s clean portfolio. Clean
portfolio states like WA, AK and OR also show small
amount of CO2e savings from roughly 1.5% of CUE
decreasing.

CONCLUSIONS

This study addresses the carbon footprint and
economic aspects of data centers built in the United
States. A simple method for estimating CUE of
data centers, and for including on-site PV power, is
proposed. The results show that Idaho is a favorable
location for data centers when factoring annualized cost
and carbon footprint, and Washington is also favorable
when the data center is supplemented with on-site PV
power. It also suggests that data centers in Vermont
and West Virginia have the lowest and highest CO2e
emissions, respectively, and that Oklahoma has the
lowest annualized cost. Existing data centers in HI
would most benefit from PV installation, providing
the lowest payback period and second largest CUE
reduction. The CEF calculation should be refined to
allow for power transfer across state borders. Finally,
data centers in VT, WA, and ID would have least benefit
environmentally from on-site PV installation due to
their existing clean energy production.

Future work should also consider more flexible
PV systems, such as fixed power output with varying
floor area. Incorporating state tax incentives and
benefits are needed to provide a more accurate payback
estimation. Finally, the balance of available wind
energy (with associated tax incentives), solar energy,
and airside/waterside economization potential should
be examined for each location to determine the strategy
that optimizes economic and environmental benefit.



Figure 6: Annualized Payment & CUEw/PV for Various Locations1

HI has CUE w/PV = 1.124 kg/kWh and annualized payment $1.28M

Figure 7: CO2e Savings & Payback Period for from PV Installation Various Locations
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