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ABSTRACT
We develop an Evolutionary Markov Chain Monte Carlo (EMCMC) algo-
rithm for sampling from large multi-modal state spaces. Our algorithm
combines the advantages of evolutionary algorithms (EAs) as optimization
heuristics and the theoretical convergence properties of Markov Chain
Monte Carlo (MCMC) algorithms for sampling from unknown distributions.
We harness massive computational power with a parallel EA framework
that guides a large set of Markov chains. Our algorithm has applications in
many different fields of science. We demonstrate its effectiveness with an
application to political redistricting.
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1 INTRODUCTION
MCMC originated in statistical physics [7] and has migrated to
applications in many disciplines for sampling from unknown dis-
tributions. Theoretically, MCMC ensures sampling from unknown
distributions, but this theoretical result is asymptotic. In large ap-
plications, the time required for convergence can be prohibitive.

Markov transitions are commonly devised as small random
changes in the current state for two reasons. First, small changes
are conceptually and operationally simple—easy to define and rel-
atively simple to implement. Second, they likely result in a large
Metropolis-Hastings (MH) ratio which leads to a fluidMarkov chain.
However, because these are small moves in a very large state space,
the chain converges slowly and is likely to become trapped in lo-
calized regions. Performance is compromised for conceptual ease.
Large moves may provide more efficient and effective state space
traversal, leading to faster convergence of the chain. However, how
to devise effective large movements is not straightforward. Simply
“large” movements often result in small MH ratios, which lead to
rejected proposals, and a non-fluid and ineffective Markov chain.
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EA and MCMC algorithms have the same goal—to effectively
and efficiently traverse the state space. Insights from the optimiza-
tion heuristics literature can improve the performance of MCMC
algorithms. The main task in marrying these two literatures is to
fit the mechanics of the optimization search within the theoretical
MCMC framework that enables sampling.

2 GUIDING MARKOV CHAINS WITH EAs
We focus on EAs that evolve an initial population through mutation
and crossover to produce subsequent populations [2]. EAs enable
a diversified search, which improves the mixing time of a Markov
chain and lend themselves easily to parallelization, which enables
greater computing power for large applications.

EAs and MCMC are not simple to harmonize. The moves that
define a Markov chain need to satisfy particular criteria; and, incor-
porating the mechanics of EA operators introduces constraints on
the movement of the chain, which may compromise convergence
to the stationary distribution.

Adaptation of EAs to an MCMC framework have been proposed
for Bayesian mixture models,Cp model sampling, and change point
problems [3–5]. We build on this literature to propose a new EM-
CMC algorithm that adapts an EA for a very large spatially encoded
application to an MCMC framework.

2.1 Adapting EAs and MCMC
We wish to sample from a distribution

f (x) =
exp{−H (x)}

Z
(1)

where x = (β1, β2, . . . , βk ) is a k-dimensional vector, and Z =∑N
i=1 exp{−H (xi )} is a normalizing constant. In an EA, H (x) is the

fitness function, x is a chromosome, and the βi are the alleles. For
each chromosome, we can assign a weight that is proportional to
its Boltzmann probability.

In a real-encoded EA, βi ∈ R. Adapting a k-point or uni-
form mutation operator to MCMC can be accomplished in a fash-
ion similar to the binary-encoded case [5]. A new population,
y = {x1, . . . ,yk , . . . ,xn }, is proposed where xk is replaced in
the population with yk . The proposal is accepted with probability,
min(1, rm ), where

rm =
f (y)T (x | y)
f (x)T (y | x)

= exp{−[H (yk ) − H (xk )]/tk }
T (x | y)
T (y | x)

(2)

is the MH ratio, and T (· | ·) is the transition probability between
two populations. If the proposal is accepted, then y becomes the
population. Otherwise, the population is unchanged.
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For a symmetric mutation operator, T (x | y) = T (y | x), allowing
the MH ratio to be computed simply from the fitness values of the
chromosomes. While mutation operators are often easily adapted
in this way, crossover operators are not as malleable, and must be
carefully devised to preserve constraints.

2.2 Adaptive Direction Sampling (ADS)
For EA and MCMC, performance is predicated on random and
purposeful moves. A Gibbs sampler is a sequence of conditional
distributions along a set of directions that follows the local dynam-
ics of the target distribution. However, it is difficult to construct
univariate sampling directions that ensure rapid movement around
the support of the distribution.

ADS generalizes the Gibbs sampler [8] so that

x
(t+1)
c = x

(t )
c + r (v

(t ) + u(t )x
(t )
c ), (3)

where v(t ), an n-vector, and u(t ), a scalar, are any functions of
the current set, S(t), excluding x (t )c . The snooker algorithm arises
when u(t ) = −1 and v(t ) = x

(t )
a , where x (t )a is a randomly chosen

point from S(t), excluding x (t )c . Ifv(t ) is the difference between two
points in the current set, parallel ADS emerges. If v(t ) is a random
coordinate direction with u(t ) = 0, we have the Gibbs sampler.

MCMC has been proposed for sampling the space of redistricting
maps wheren geographic units,u1,u2, . . . ,un are partitioned into k
districts,d1,d2, . . . ,dk , that satisfy legal constraints. The problem is
challenging for MCMC because the state space is both multimodal
and very large.We demonstrate with a data set (with 141,197,991,025
possible solutions) that is small enough so that we can enumerate
all possible solutions, but large enough to be non-trivial.

Figure 1: EMCMC uniformly samples, but simple MCMC
and Monte Carlo algorithms do not uniformly sample in
these large multimodal state spaces.

None of the blue lines provide a close outline of the gray area
(Fig. 1), illustrating the difficulty of a simple MCMC implementation
in traversing a multimodal state space. We propose a more intel-
ligent EA-guided spatial neighborhood search [6]. Our mutation
operator alters a small number of “mutable” alleles (where change
does not result in an infeasible solution) from a randomly chosen
chromosome. Our crossover, a variant of ADS, is a spatial path
relinking operator that performs recombination while respecting
spatial constraints in the neighborhood space [1]:

(1) Randomly choose two chromosomes, a source solution, xs ,
and a target solution, xt , s , t , from the population x.

Figure 2: Scalability of Parallel EMCMC

(2) The relinking process is comprised of a “walk” between the
two solutions. Each step in the path converts a random allele
from its value in xs to its value in xt .

(3) If a feasible solution, yk is found on the path, replace chro-
mosome xs with yk to produce a new population, y.

Our EMCMC implementation uniformly samples the state space
(right plot in Fig. 1). In our small data set with known answers,
there is substantial overlap between the true distribution (shown
in red). and EMCMC sampled solutions (shown in blue).

In actual redistricting applications which are much larger, mas-
sive computing power is essential. Our directed crossover operator
guides intelligent and efficient space traversal while parallel chains
aid in reaching the different modes and harnessing more computing
power. As we enlist more processors, our EMCMC, which uniformly
samples, reaches more of the underlying space. Figure 2 shows the
number of unique solutions found in 10 minutes of computing
time on the Blue Waters supercomputer. With 8192 processors, we
sample among almost 17 million unique solutions.

3 DISCUSSION
We have devised a massively parallel Evolutionary Markov Chain
Monte Carlo (EMCMC) algorithm for astronomically large, idiosyn-
cratic, and multimodal state spaces. We have demonstrated the
applicability of our algorithm to the substantive problem of redis-
tricting. The methods are general in nature and have applications
to many fields of science.
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