MinJoin: Efficient Edit Similarity Joins
via Local Hash Minima’

Haoyu Zhang
hz30@umail.iu.edu
Indiana University Bloomington
Bloomington, IN, USA

ABSTRACT

We study the problem of computing similarity joins under edit
distance on a set of strings. Edit similarity joins is a fundamen-
tal problem in databases, data mining and bioinformatics. It finds
important applications in data cleaning and integration, collabo-
rative filtering, genome sequence assembly, etc. This problem has
attracted significant attention in the past two decades. However,
all previous algorithms either cannot scale well to long strings and
large similarity thresholds, or suffer from imperfect accuracy.

In this paper we propose a new algorithm for edit similarity joins
using a novel string partition based approach. We show mathemat-
ically that with high probability our algorithm achieves a perfect
accuracy, and runs in linear time plus a data-dependent verification
step. Experiments on real world datasets show that our algorithm
significantly outperforms the state-of-the-art algorithms for edit
similarity joins, and achieves perfect accuracy on all the datasets
that we have tested.

ACM Reference Format:

Haoyu Zhang and Qin Zhang. 2019. MinJoin: Efficient Edit Similarity Joins
via Local Hash Minima. In The 25th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD °19), August 4-8, 2019, Anchorage, AK, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3292500.3330853

1 INTRODUCTION

Edit similarity joins is a fundamental problem in the database
and data mining literature, and finds numerous applications in
data cleaning and integration, collaborative filtering, genome se-
quence assembly, etc. In this problem we are given a set of strings
{s1,...,sn} and a distance threshold K, and asked to output all
pairs of strings (s;, sj) such that ED(s;, sj) < K, where ED(,) is
the edit distance function, which is defined to be the minimum
number of insertions, deletions and substitutions to transfer one
string to another. There is a long line of research on edit similarity
joins [1-3, 5, 7-9, 13-16].

A major challenge for most existing algorithms, as pointed out by
the recent work [17], is that they do not scale well to long strings
and large edit thresholds. Long strings and large thresholds are
critical for applications involving long sequence data such as big

*Authors are supported in part by NSF CCF-1525024, IIS-1633215 and CCF-1844234.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD 19, August 4-8, 2019, Anchorage, AK, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6201-6/19/08...$15.00
https://doi.org/10.1145/3292500.3330853

Qin Zhang
qzhangcs@indiana.edu
Indiana University Bloomington
Bloomington, IN, USA

documents and DNA sequences, where a small threshold K may just
give zero output. For example, in the genome sequence assembly,
in which the first step is to find all pairs of similar reads under
edit distance, the third generation sequencing technology such
as single molecule real time sequencing (SMRT) [10] generates
reads of 1,000-100,000 bps long with 12-18% sequencing errors
(i.e., percentage of insertions, deletions and substitutions). Large
threshold is also identified as the main challenge in a recent string
similarity search/join competition [12], where it was reported that
“an error rate of 20%-25% pushes today’s techniques to the limit”.

Different from previous algorithms which are deterministic and
return the exact answers, in [17] the authors proposed a randomized
algorithm named EmbedJoin which is more efficient on long strings
and large thresholds. However, the accuracy (more precisely, the
recall, i.e., the number of pairs found by the algorithm divided by
the total number of similar pairs; the precision of all algorithms
discussed in this paper is always 100%) of EmbedJoin is only 95% -
99% on a number of real-world datasets tested in [17]. The imperfect
accuracy is inherent to EmbedJoin which we shall explain shortly.
The main question we are going to address in this paper is:

Can we solve edit similarity joins efficiently on long
string and large edit threshold while achieving perfect
accuracy with a good probability?

Our Contribution. We propose a novel randomized algorithm
named MinJoin to address the above question. The high level frame-
work of MinJoin is simple: it first partitions each string into a set
of substrings, and then uses hash join on these substrings to find all
pairs of strings that share at least one common substring. At the end
a verification step is used to remove all false positives. Our string
partition scheme works as follows: We first assign each letter « in
the string s a value, which is a random hash value of the g-gram
(q is a value determined by the string length, the threshold K, and
the size of the alphabet) starting from a. We then determine the
anchors of string s using the following strategy: a letter « is an
anchor if and only if its value is the smallest among all letters in a
certain neighborhood of . At the end we simply partition s at all
of its anchors.

Via a rigorous mathematical analysis we can show that under our
partition scheme, with a good probability, any pair of strings with
edit distance at most K will share at least one common partition.
We can also show that this partition procedure runs in linear time.

We have verified the effectiveness of MinJoin by an extensive
set of experiments. Though in our experiments we do not include a
parallel repetition step which is for the purpose of guaranteeing that
our algorithm achieves perfect accuracy with high probability in
theory (see the discussion in Section 2.2), our experimental results
show that MinJoin is able to achieve perfect accuracy on all datasets

https://doi.org/10.1145/3292500.3330853
https://doi.org/10.1145/3292500.3330853

that were used in [17]. Moreover, MinJoin is faster than all existing
exact (deterministic) algorithms by orders of magnitudes on datasets
of long strings and large edit thresholds, and is also faster than
EmbedJoin by a good margin.

Previous Work and Comparisons. Many of the existing algo-
rithms on edit similarity joins also follow the string partition frame-
work. The performance of the algorithm is largely determined by
the number of partitions generated for each string, and the number
of queries made to the indices (e.g., hash tables) to search for similar
strings. We discuss several state-of-the-art algorithms according to
the experimental studies in [6].

QChunk [9] is an exact edit similarity join algorithm based on
string partition. QChunk first obtains a global order o of g-grams.
It then partitions each string into a set of chunks with starting
positions 1,q + 1,2q + 1,.. ., and stores the first K + 1 chunks
(according to the order o) in a hash table. Next, for each string the
algorithm queries the hash table with the string’s first N — ([(N —
K)/q]—K)+1 g-grams according to o to check if there is any match,

where N is the string length. !

PassJoin [8] is another exact algorithm based on string partition.
The algorithm partitions each string s into K + 1 equal-length
segments, and records the i-th segment into an inverted index Llis B
Next, for each string the algorithm queries some of the inverted
indices to find similar strings; the number of queries made for each
string is ©(K>), which is ©(N?) when K is a fixed percentage of N.

VChunk [15] is the one that is closest to MinJoin among all algo-
rithms that we are aware of. In VChunk each string is partitioned
into at least 2K + 1 chunks of possibly different lengths, determined
by a chunk boundary dictionary (CBD). More precisely, each string
is cut at positions of appearances of each word in CBD to obtain its
chunks. The CBD is data dependent and the optimal one is NP-hard
to compute. In [15] the authors proposed a greedy algorithm for
computing a CBD in time O(n>N?/K), where n is the number of
input strings, and N is the maximum string length.

The recently proposed algorithm EmbedJoin [17] uses a very
different approach. EmbedJoin first embeds each string from the
edit distance metric space to the Hamming distance metric space,
translating the original problem to finding all pairs of strings that
are close under Hamming distance. It then uses Locality Sensitive
Hashing to compute (approximate) similarity joins in the Hamming
space. However, the embedding algorithm employed by EmbedJoin
has a worst case distance distortion K, which can be very large. Al-
though in practice the distortion is much smaller, it still contributes
a non-negligible percentage of false negatives which prevent a
perfect accuracy.

Compared with these existing algorithms, MinJoin has the fol-
lowing major advantages.

e For each string MinJoin only generates O(K) partitions, and
makes the same amount of queries (for searching similar
strings), which are significantly smaller than QChunk and
PassJoin.

e MinJoin can compute partitions of all strings in time O(nN),
i.e., linear in the input size, which is even faster than the
computation of CBD in VChunk.

! Alternatively, for each string we can store the first N — ([(N — K)/q] - K) + 1
g-grams in the hash table, and make queries with the first K + 1 chunks.

e MinJoin is able to reach perfect accuracy on tested datasets,
compared with 95%-99% of EmbedJoin.

A Comparison with MinHash Based Approach. We would like
to note that MinJoin is quite different from the folklore algorithm
using MinHash, in which for each string we collect all its g-grams
and hash them to numbers, and then pick the one with the smallest
hash value as the signature for the subsequent hash join; to increase
the accuracy we can pick multiple signatures using different hash
functions for each string.

To see the difference, in MinJoin the hash values of the g-grams
are used to partition a string to substrings/signatures, while in the
MinHash based approach the g-grams are the signatures themselves.
In MinJoin we set g to be a small number (more precisely, g =
@(loglz‘(N/K)) where X is the alphabet of the string) in order
to make all g-grams distinct in every small neighborhood of the
string. And one partition will give us all the signatures of the string.
While in the MinHash based approach, it is not clear how to find
the best combination of the value q and the number of signatures
(or, hash functions) to use, for the purpose of achieving a perfect
accuracy under a small running time. We are not aware of any
theory for guiding the choices of ¢ and the number of signatures in
the MinHash based approach for edit similarity joins. In Section 4.3
we will show experimentally that MinJoin significantly performs
the MinHash based approach in both accuracy and running time.

More Related Work. There is a large body of work on similarity
joins under edit distance. A large number of the existing algo-
rithms fall into the category called the signature-based approach,
in which we compute for each string a set of signatures, and then
apply various filtering methods to those signatures to select a set
of candidate pairs for verification. All the string partition based
algorithms that we have discussed can be thought as special cases
of the signature-based approach. Other algorithms in this category
include GramCount [5], A11Pair [2], FastSS [3], ListMerger [7],
EDJoin [16], and AdaptJoin [14].

There are a few algorithms that use different approaches, includ-
ing the embedding-based algorithm EmbedJoin discussed previ-
ously, the tree-based algorithm M-Tree [4], the enumeration-based
algorithm PartEnum [1], and the trie-based algorithm TrieJoin [13].
However, except EmbedJoin, others’ performance is not as good as
the best partition-based approaches.

Notations. We have listed a set of notations to be used in this paper
in Table 1.

2 A STRING PARTITION SCHEME USING
LOCAL HASH MINIMA

In this section we present the string partition algorithm and analyze
its properties.

2.1 The Algorithm

We start by giving some high level ideas of our partition scheme.
As mentioned, in MinJoin we first partition each string to a set
of substrings, and then find pairs of strings that share at least
one common partition as candidates for verification. Consider a
pair of strings x and y (|x| = |y| = N) with edit distance k. Let
p : [N] = [N]U {1} be the optimal alignment between x and
y, where p(i) = j € [N] means that either x[i] = y[j] or x[i] is

Notation Definition

[n] [n] ={1,2,...,n}

K edit distance threshold

S set of input strings

Si i-th string in S

n number of input strings, i.e., n = |S]|

Is| length of string s

Si..j substring of s starting from the i-th
letter to the j-th letter

N maximum string length

)y alphabet of strings in S

q length of g-gram

I random hash function %7 — (0, 1)

T number of targeted partitions; T = ©(K)

r radius for computing local minimum

Table 1: Summary of Notations

Algorithm 1 Partition-String (s, T, IT)

Input: Input string s, number of targeted partitions T, random
hash function IT : 9 — (0, 1)
Output: Partitions of s: P = {(pos, len)}, where (pos, len) refers a
substring of s starting at the pos-th position with length len
:Pe—0
2 A={ay,...,ap} < Find-Anchor(s, T, II)
3: for eachi e [1,p—1] do
4 P — P U(ap,ap+1 — ap)
s: end for

Algorithm 2 Find-Anchor(s, T, IT)

Input: Input string s, number of targeted substrings T, random
hash function IT : 9 — (0, 1)
Output: The set of anchors Aon s
A« {1}

s|-q+1-T
2 r | |2%+z |

3. Initialize an empty array h with |s| — g + 1 elements
4: for eachie€ [|s|— g+ 1] do

50 h[i] « I(si..i+q-1)

6: end for

7. foreachie€ [1+r,|s|-g+1-r]do

8 Label <« 1

9 foreachje[i—r,i+r]andj #ido
10: if h[i] > h[j] then

11 Label < 0

12: Exit the for loop

13: end if

14: end for

15: if Label = 1 then

16: A— AU {i}

17: end if

18: end for

19: A— AU {|s|}

substituted by y[j] in the optimal transformation, and p(i) =L
means that x[i] is deleted in the optimal transformation. If we pick

3-gram | Value | 3-gram | Value | 3-gram | Value
CTA 0.01 ACG 0.39 GAA 0.69
GCT 0.05 AAA 0.42 AAT 0.74
TGC 0.12 AAC 0.46 ATC 0.77
TAA 0.21 CCT 0.53 GTC 0.83
ACC 0.25 TCG 0.58 TGG 0.89
CGT 0.31 ATC 0.62 GGA 0.91
GTG 0.33 CGA 0.64 GCG 0.97

Table 2: Hash values of 3-grams

any k indices 1 < i; < --- < i < N such that p(iy) #L (¢ € [k]),
partition x at indices i, . . ., i to k+ 1 substrings, and partition y at
indices p(i1), . . ., p(ig) to k + 1 substrings, then by the pigeonhole
principle x and y must share at least one common partition.

Of course obtaining an optimal alignment between x and y before
the partition is unrealistic. Our goal is to partition each string
independently, while still guarantee that with a good probability,
any pair of similar strings will share at least one common partition.

We present our partition algorithm in Algorithm 1 and Algo-
rithm 2. Let us briefly describe them in words. Algorithm 1 first
calls Algorithm 2 to obtain all anchors (to be defined shortly) of the
input string s, and then cuts s at each anchor into a set of substrings.
To compute all anchors, Algorithm 2 first hashes all the substrings
of s of length q (i.e., s[1..q], s[2..q + 1], . . .) into values in (0, 1). Now
we have effectively transferred s to an array h[] of size |s| — g + 1,
with each coordinate taking a value in (0, 1). We call a coordinate i
in h[] a local minimum if its value is strictly smaller than all other
coordinates within a distance r of i (for a pre-specified parameter r,
call it the neighborhood size). Algorithm 2 outputs the correspond-
ing i-th letter in string s as an anchor. For convenience, in the rest of
the paper we also call a local minimum coordinate in h[] an anchor.

We will show that for a pair of strings x, y, if they share a common

substring ¢ that is long enough, then there must be at least two
letters u, v in o such that u and v are two adjacent anchors in both
x and y, which means that if we use anchors to partition x and y,
then they must share at least one common partition. On the other
hand, we know that for two strings of length N and edit distance at
most K, they must share at least one common substring of length
(N —K)/(K + 1). Thus by properly choosing the neighborhood size
r (as a function of the string length and the number of targeted
substrings T), we can guarantee that two similar strings will share
at least one common partition.
A Running Example. Before analyzing Algorithm 1 we first give
a running example. Table 2 presents the hash values of all 3-grams
in S under the hash function II. Table 3 presents a collection of
input strings S = {s1, s2, $3, 54, 55} and their lengths. We want to
find all pairs of strings with edit distance less than or equal to K = 4.
Table 4 presents the partitions of strings obtained by Algorithm 2
under parameter T = 3. We also calculate the neighborhood size r
for each string based on its string length and the parameter T.

Considering string s; as an example, its 6-th 3-gram “CTA” has
a smaller hash value than all its neighbors within distance r = 2
(i.e., “TGC”, “GCT”, “TAA”, “AAC”). Thus “CTA” is selected as an an-
chor of s1. Same to the 14-th 3-gram “CTA”. We then partition s; to
{ACGTG, CTAACGTG, CTAACGTA}. We next find that the strings

ID String Length
s1 | ACGTGCTAACGTGCTAACGTG 21
s2 | AAACGTGCTAACGTGCTAACCT 22
s3 | TCGAATCGTCGAATCGTCGAA 21
s4 | TCGAATCGTCGAATCGTGGAA 21
s5 | GTGCGAATCGTCGAATCGTCG 21

Table 3: Input strings

ID Partitions of string

s1 | ACGTG, CTAACGTG, CTAACGTA
s2 | AAACGTG, CTAACGTG, CTAACCT
s3 | TCGAAT, CGTCGAAT, CGTCGAA
ss | TCGAAT, CGTCGAAT, CGTGGAA
s5 | GTGCGAAT, CGTCGAAT, CGTCG | 2

Table 4: Partitions of strings by Algorithm 1 (T = 3)

NN DNy

s1, 82 share a common partition “CTAACGTG”, s3, s4 share a com-
mon partition “TCGAAT”, and s3, s4, s5 share a common partition
“CGTCGAAT”, which give the following candidate pairs: (s, s2),
(s3, 54), (53, 55), (54, S5). After computing the exact edit distance of
each pair, we output (s1, s2), (53, $4), (53, s5) as the final answer (i.e.,
those whose edit distances are no more than K = 4).

Discussions. We would like to discuss two items in more detail.
First, we require the value of an anchor in the hash array h[] to be
strictly smaller than its 2r neighbors. The purpose of this is to reduce
the number of false positives generated by periodic substrings
with short periods; false positives will increase the running time
of the verification step of the MinJoin algorithm. In real world
datasets, periodic substrings are often caused by systematic errors,
and may be shared among different strings. For example, consider
the following periodic substring on genome data “... AAAAAAAA
..” produced by sequencing errors, if we allow the value of an
anchor to be equal to its neighbors, then we may have many anchors
in this substring. Consequently, two strings both containing such a
substring will be considered as a candidate pair even that they are
very different elsewhere.
Second, we use different neighborhood size r for strings of dif-

ferent lengths. More precisely, we set r = Llslg%—i;_ﬂ where
T = O(K) is an input parameter standing for the number of targeted
partitions. The purpose of doing this, instead of choosing a fixed r
for all strings, is again to reduce false positives. Indeed, if we choose
the same r for all strings, then long strings will generate many par-
titions, since in order to achieve perfect accuracy we cannot set r
to be too large at the presence of short strings. Consequently, the
large number of partitions generated by long strings will contribute
to many false positives. This is in contrast to VChunk, who cuts the
string whenever it finds a word in CBD appearing on the string.
Consequently two strings of very different length but sharing a
relatively long substring are likely to be considered as a candidate
pair, producing a false positive for the verification.

2.2 The Analysis

We now analyze the properties of Algorithm 1. Our goal is to un-
derstand how many partitions Algorithm 1 will generate (which

Fregency
o
3
Fregency
o
o

0 | !
0.8 0.9 1 1.1 1.2 0.5 1 1.5
Number of Partitions (xT') Number of Partitions (x7')

GEN50kS UNIREF

Figure 1: The CDFs of numbers of partitions on each string
returned by Algorithm 1 on GEN50kS and UNIREF datasets,
with parameters T = 100 and T = 25 respectively.

will contribute to the running time of MinJoin as we shall see in
Section 3), and what is the probability for two similar strings to
share a common partition.

To keep the analysis clean, we assume that in any r-neighborhood
of the array h[] all the coordinates are distinct, which is true if (1)
we assume that all corresponding g-grams are different, and (2) the
hash function IT : 9 — (0, 1) does not produce a collision when
applying to g-grams. The later can be easily satisfied if we keep
an O(log N)-bit precision (N is the maximum string length) in the
range of I1, in which case there is no hash collision with probability
1 - 1/N9W_ For the former, we set q= 310g‘2|(N/T). Note that
by our choice of r we have r » N/(2T). If all letters in a substring
of size r are random, then the probability that two g-grams in this

3
substring are the same is 1/|2|7 = (%) . By a union bound with

probability 1 —o(1) all g-grams in a substring of size 2r are different.
We emphasize that this assumption is only used for the convenience
of the analysis, and Algorithm 1 works without this constraint.

The following lemma states that the number of anchors pro-
duced by Algorithm 2 is concentrated around T, the number of
targeted partitions. The proof is a bit technical, and we leave it to
Appendix A.1 due to the space constraints.

LEMMA 2.1. Given an input string and a parameter T, for any
¢ > 0, the number of anchors generated by Algorithm 2, denoted by
X, satisfies Pr[|X — T| = VcT] < 1/c.

We have empirically verified the concentration result in Lemma 2.1
on two real world datasets (to be introduced in Section 4); see Fig-
ure 1. It is clear that the number of partitions Algorithm 1 generates
are tightly concentrated around the number of target partitions 7.

We next analyze another key property of our local minimum
based partition: Given two similar strings, what is the probability
that they share a common partition? We give the following lemma.
Again due to the space constraints, we leave the technical proof to
Appendix A.2.

LEMMA 2.2. For two stringss, t with ED(s, t) < K, let Ps and P;
be the partitions outputted by Algorithm 1 (setting T = 120K) on s
and t respectively. Assume |s| = w(Kq). The probability that Ps and
P; share a common partition is at least 0.98.

REMARK 1 (CHOICE OF T). We note that the choice of T (= 120K)
in Lemma 2.2 is overly “pessimistic” — it is just for the convenience of
analysis. Moreover, we only considered one pair of common substring
of length L =~ |s| /K, while the average length of the (at most) K + 1

pairs of common substrings between s and t in the optimal alignment
is at least ;{5 ~ |s| /K. A finer analysis which considers all pairs of
common substrings in the optimal alignment can reduce the value of
T all the way down to a value close to K, while still guarantee that Ps
and Py share a common partition with a good probability. However,
the analysis is a bit cumbersome and we will leave it to the full version
of this paper. The main point of this remark is that in practice we can
Jjust set T =~ K, or even smaller since in real-world datasets multiple
edits may occur in the same location, which effectively increases the
average length of common substrings. In our experiments we find that
T € [K/5,K] are good choices for all the datasets we have tested.

Parallel repetitions for boosting the success probability. Though
the success probability in Lemma 2.2 is only 0.98, and it is only for
each pair of similar strings, we can easily boost it to high probability
for all pairs of similar strings using parallel repetitions. We can
repeat the partition process for each string for log n times using
independent randomness, and then union all the partitions of the
string. Now for each pair of similar strings, the probability that they
share a common partition is at least 1—0.021°8" > 1—1/n°. We then
use a union bound on the at most n? pairs of similar strings, and get
that the probability that all pairs of similar strings share at least one
common partition is at least 1 — 1/n3. We note in our experiments
that we do not need this boosting procedure since a single run of
the partition process already achieves perfect accuracy.

THEOREM 2.3. If we apply Algorithm 1 augmented by the parallel
repetition discussed above on all input strings, then with probability
1-n~90), all pair of strings with edit distances at most K will share
at least one common partition. The expected running time of the
algorithm is log n times the input size, and the space needed is also

log n times the input size.

Proof: The correctness follows directly from Lemma 2.2 and the
discussion of parallel repetition above. In the rest of the proof we
focus on the time and space. In fact, to show the claimed time
and space usage we can just show that the time and space for
partitioning one string s (by Algorithm 1) is linear in terms of the
string length [s].

The running time of Algorithm 1 is dominated by that of its
subroutine Algorithm 2. The hash values of all g-grams of s can be
computed by the Rabin-Karp algorithm (the rolling hash) in O(|s|)
time. For Line 7-18 of Algorithm 2, since each number in h[] is a
random hash value, the inner for-loop (Line 9-14) runs in O(1) time
in expectation. Therefore the total running time of Algorithm 1 is
O(s]) in expectation.

Clearly, the space usage of Algorithm 1 is also O(|s]). O

3 THE MINJOIN ALGORITHM

We now present our main algorithm MinJoin, depicted in Algo-
rithm 3. We briefly explain it in words below.

The MinJoin algorithm has three stages: initialization (Line 1 -
4), join and filtering (Line 5 - 20) and verification (Line 21 - 25). In
the first stage, we initialize an empty set C for candidate pairs and
an empty hash table D, generate a random hash function II, and
sort all strings according to their lengths for the pruning.

In the join and filtering stage, we compute the partitions for
each input string using Algorithm 1. For each partition (pos, len),
which refers the substring of s; with length len and pos is the

Algorithm 3 MinJoin (S, K, T)

Input: Set of input strings S = {s1, ..., s}, distance threshold K,
number of targeted partitions T
Output: O « {(si,s)) | si,sj € S;i # j;ED(s;,s7) < K}
:0«—0,C—0 > C : collection of candidate pairs
2: Pick a hash function f : * — N and initialize an empty hash
table D
3. Generate a random hash function IT : 9 — (0, 1)
4: Sort strings in S first by string length increasingly, and second
by the alphabetical order
: for each s; € S (in the sorted order) do
P « Partition-String(s;, T, IT)
for each (pos, len) € P do
for each (j, posj, len;) in the f((si)pos..pos+len—1)'th
bucket of D do > f(-) is the hash function picked at Line 2

[~ IS B~ NS |

9 if ||s,-| - |Sj|| < K then

10: if |pos —posji + |(|si| — pos) — (|sj| —posj)| <K
then

11: C < CU(si,s5)

12: end if

13: else

14: Remove (j, pos;, len;) from D

15: end if

16: end for

17: Store (i, pos, len) in the f((si)pos..pos+len—1)-th bucket
of D

18: end for

19: end for

20: Remove duplicate pairs in C
21: for each (x,y) € C do
22: if ED(x,y) < K then

23: O —0U(x,y)
24: end if
25: end for

index of its first character on s;, we find all tuples (j, posj, len;) in
f((si)pos..pos+ien—1)-th bucket of hash table D (that is, we perform
a hash join). We use two rules to prune the candidate pairs we have
found. The first condition (Line 9) says that if the lengths of s; and s;
differ by larger than K, then it is impossible to have ED(s;, sj) < K.
Consequently it is impossible to have ED(sj, si7) < K for any i’ > i.

The second condition (Line 10) concerns the following scenario:
if s; and s; match at indices pos and pos;, which divides both
strings into two substrings v1 = (si)1..pos—1, V2 = (s,-)pos_.|si [, and
g1 = (Sj)l_.posj_l, o = (s]-)posj_.|sj|. If pos and pos; are indeed
matched in the optimal alignment, then we must have ED(vy, p1) +
ED(vg, pi2) < K, in which case we have |(|sl-| — pos) — (|3j| —pOSj)‘ +
|pos —posﬂ <K.

We add all pairs of strings that pass the two filtering conditions
to the candidate set C, and then perform a deduplication step at the
end since each pair can potentially be added into C multiple times.

In the verification stage, we verify whether each pair of strings in
C indeed have edit distance at most K, using the standard dynamic
programming algorithm by Ukkonen [11]. Due to this verification
step our algorithm will never output any false positive. On the
other hand, by Theorem 2.3, if we augment the string partition
scheme with parallel repetition, then MinJoin will not produce any

false negative with probability 1 — 1/ n2(1) Therefore MinJoin will

achieve perfect accuracy with probability 1 — 1/ nf2(1),

Time and Space Analysis. Let N be the maximum string length
in the set of input strings S, and n = |S|. By Theorem 2.3 the
running time of the partition (without the parallel repetition) is
bounded by O(nN).

The total number of pairs that are fed into the filtering steps
(Line 9, 10) inherently depends on the concrete dataset. Suppose
partitions of all strings are evenly distributed into |D| buckets of
the hash table D (this is indeed what we have observed in our

2
experiments), then we can upper bound this number by O (l%(l)

with probability 0.99. To see this, by the proof in Lemma 2.1 we
know that the expected number of partitions of each string is T =
O(K). By linearity of expectation, the expected number of partitions
of all n strings is nT. Therefore the total number of actual partitions
is bounded by O(nK) with probability 0.99 by a Markov inequality.
The verification step can be done in O(|C| NK) where C is the set
of the candidate pairs.

The space usage is clearly bounded by O(nN), that is, the size of
the input.

THEOREM 3.1. TheMinJoin algorithm has the following theoreti-
cal properties. Consider the case that we augment the string partition
procedure at Line 6 with log n parallel repetitions.

o [t achieves 100% accuracy with probability 1 — 1/n2D),

o Assuming that the partitions of all strings are evenly dis-
tributed into the buckets of the hash table, the running time of
MinJoin is bounded by

O(nNlo n+(nK)2+|C|NK
SRE]

with probability 0.99, where C is the set of the candidate pairs
MinJoin produces before the verification step.
o The space usage of MinJoin islog n times the size of input.

4 EXPERIMENTS

In this section we present our experimental studies. We start by
describing the datasets and algorithms used in our experiments.
We then provide a detailed study of the performance of MinJoin.
Finally, we compare MinJoin with the state-of-the-art algorithms
for edit similarity joins.

4.1 Setup of Experiments

We implemented our algorithms in C++ and performed experiments
on a Dell PowerEdge T630 server with 2 Intel Xeon E5-2667 v4
3.2GHz CPU with 8 cores each, and 256GB memory.

Datasets. We use the datasets in [17] which are publicly available.?
Table 5 describes the statistics of tested datasets.

UNIREF: A dataset consists of UniRef90 protein sequence data
obtained from UniProt Project.? The sequences whose lengths
are smaller than 200 are removed, and the first 400,000 pro-
tein sequences are extracted.

2See the documentation from the project website of [17]: https://github.com/kedayuge/
Embedjoin
3http://www.uniprot.org/

Datasets n Avglen MinLen MaxLen [3|
UNIREF 400000 445 200 35213 25
TREC 233435 1217 80 3947 37
GEN50kS 50000 5000 4829 5152 4
GEN20kS 20000 5000 4829 5109 4
GEN20kM 20000 10000 9843 10154 4
GEN20kL 20000 20000 19821 20109 4
GEN80KS 80000 5000 4814 5109 4
GEN320kS 320000 5000 4811 5154 4

Table 5: Statistics of tested datasets (from [17])

TREC: A dataset consists of titles and abstracts from 270 medical
journals. The title, author, and abstract fields are extracted
and concatenated. Punctuation marks are converted into
white space and all letters are in uppercase.

GEN-X-Y’s: Datasets contain 50 human genomes obtained from
the Personal Genomes Project,4 where X denotes the num-
ber of strings (range from 20k to 320k), and Y denotes the
string length (S = 5k, M = 10k, L ~ 20k). Each string is a
substring randomly sampled from the Chromosome 20 of
human genome.

Algorithms. We compare MinJoin with the state-of-the-art algo-
rithms for edit similarity joins discussed in the introduction, in-
cluding PassJoin[8], QChunk[9], VChunk[15], EmbedJoin[17]. All
codes are downloaded from the corresponding project websites.

Measurements and Choices of Parameters. We use three met-
rics to measure the performance of tested algorithms: time, space,
and accuracy.

We note that except MinJoin and EmbedJoin which are random-
ized and may have false negatives, all other tested algorithms are
deterministic and output the exact number of similar pairs, and
thus their accuracy is always 100%. According to our theoretical
analysis (Theorem 2.3 and Remark 1), by setting T appropriately
and using log n repetitions of the string partition procedure (Algo-
rithm 1), MinJoin can output all similar pairs with a high proba-
bility. In practice, we found that a single execution of Algorithm 1
with T € [K/5, K] can already achieve 100% accuracy on all tested
datasets.® In fact, as we shall see in Figure 2 and Figure 3, varying
T in this range will not change the accuracy by much, but it does
slightly affect the running time since larger T will introduce more
false positives for verification.

In the rest of this section we will always write the accuracy for
EmbedJoin on the plots, and omit that for MinJoin if it is 100%.

We always choose the best parameters of other tested algorithms.
QChunk has two parameters: g (the size of g-gram) and indexing
method. We found that the indexchunk always performs better than
indexgram on all datasets, and we always choose the best g for each
experiment. VChunk has a parameter scale to tune. PassJoin has
no parameter. EmbedJoin has three parameters m, r, z. We choose
the parameters based on the recommendation of [17]: We select the
best combinations of parameters to achieve at least 95% accuracy
on UNIREF and TREC datasets, and at least 99% accuracy on GEN50kS

*https://www.personalgenomes.org/us
SWhenever there is an exact algorithm that finishes in a reasonable amount of time so
that we get to know the ground truth.

https://github.com/kedayuge/Embedjoin
https://github.com/kedayuge/Embedjoin
http://www.uniprot.org/
https://www.personalgenomes.org/us

08
)
gos
3
§ 0.4

02

K = 150
0 0
10 15 20 25 10 20 30 40 50
T T
UNIREF GEN50kS

Figure 2: Influence of T on accuracy

Time (s)

——K =75

Time (s)

K =100
——K =125
— K =150
0 -
10 20 30 40 50
T

GEN50kS

UNIREF

Figure 3: Influence of T on running time

10
1 Read) Read
[Partition | g| 1 Partition
mm Filtering and Join 1
[Verification

. Filtering and Join
[Verification
6

8
7
6
3° |
g |
F3 | 4 |
2
2 {
1)
0 -] 0
5 10 15 20 2 50 75 100 125 150

Threshold (K)

Time (s)

Threshold (K)

UNIREF GEN50kS

Figure 4: Running time of different parts of MinJoin, varying
K.

dataset; and we select r = z = 7,m = 15 — |log, x] on the rest of
datasets, where x% is the edit threshold.

Each result is an average of 5 independent runs. For MinJoin
we fix the randomness at the beginning so that all runs return the
same result on the same dataset.

4.2 Experiments for MinJoin

We first show the performance of MinJoin. We will start by investi-
gating the influence of parameter T on running time and accuracy,
and then present the running time of different stages of MinJoin.

Influence of Parameter T. We study empirically how parameter
T influences the accuracy and the running time of MinJoin. We
present the influence of T on the accuracy and running time in
Figure 2 and 3 respectively. As predicted by theory, both time and
accuracy increase when T increase. We also tested different edit
thresholds K. We observe that when K is larger, we need a larger
T to maintain the 100% accuracy, which is also consistent with
the theory where we need to pick T = ©(K). As mentioned in
Section 4.1, we found that setting T in the range [K/5, K] is good
for all the tested datasets.

Running Time of Different Parts of MinJoin. We have also
measured the running time of different parts of MinJoin, including

—o—#Hash functions = 1 .
30 —o—#Hash functions= 2 09!
#Hash functions= 5 :
—e—#Hash functions= 10 08

—e—#Hash functions = 1
—o—#Hash functions= 2
—— 06/ #Hash functions= 5

—e—#Hash functions= 10

Accuracy
)
3

Time (IMinJoin with 100% accuracy)

50 100 150 260 08 50 100 150 260
Length of signature Length of signature

(a) Running time (b) Accuracy

Figure 5: Performance of the MinHash based algorithm on
GEN50kS dataset with K = 100. (a) The running time of the
MinHash based algorithm as a multiple of that of MinJoin at
100% accuracy. (b) The accuracy of the MinHash based algo-
rithm.

input read, string partition, hash join and filtering, and verification.
We present in Figure 4 the running time of MinJoin on (1) reading
the input strings, (2) partitioning strings, (3) performing the hash
join and filtering, and (4) verification varying the edit threshold K.
Certainly, the input read time will not change for different K. We
observe that the time for join and filtering increases slightly when
K increases, that for partition is stable, and that for verification
increases considerably when K increases. On UNIREF dataset, the
string partitioning as well as join and filtering steps are bottleneck,
and on GEN50kS dataset, the string partition step is bottleneck. The
verification step takes the smallest amount of time in most cases.

4.3 A Comparison with MinHash

Before going to the main body of the experimental study, we try to
argue that the folklore MinHash based algorithm is not competitive
with MinJoin. The reason that we discuss it separately is that this
folklore algorithm has two parameters for which we do not have
any guideline for the tuning. We thus try to present its performance
by testing different combinations of these parameters.

As mentioned in the introduction, the MinHash based algorithm
is straightforward: we convert each string into a set which consists
of the hash values of all g-grams of the string, and then pick the
smallest value as the signature of the string for the subsequent hash
join. To boost the accuracy, we can use £ such MinHash functions,
and get ¢ signatures for each string. Applying ¢ hash functions to get
the signatures is expensive. A standard optimization method is to
use only one hash function, and then select the top-£ smallest hash
values as the signatures. This is what we use in our experiments.

Figure 5 shows the running time and accuracy of the MinHash
based algorithm when varying the number of hash signatures ¢
and the length of signature ¢q. The running time is shown as a
multiple of MinJoin at 100% accuracy. We find that the running
time and accuracy of the MinHash based algorithm depend on
the two parameters q and £: When increasing parameter ¢, both
running time and accuracy increase; when increasing parameter g,
the running time first decreases and then increases a little bit, and
the accuracy decreases. We observe the accuracy and running time
are sensitive to parameters, and there is no principle on how to
select them for edit similarity joins. This is in contrast to MinJoin
where the only parameter is T (the targeted number of partitions),
and we have already discussed how to choose T both theoretically
and practically. Moreover, even we choose the best combination

of ¢ and g, the running time of the MinHash based algorithm is
still at least 5 times of that of MinJoin at 100% accuracy. We thus
conclude that MinJoin outperforms the MinHash based algorithm
in all aspects.

4.4 A Comparison with the State-of-the-Art

We now compare MinJoin with the state-of-the-art algorithms for
edit similarity joins (QChunk, PassJoin, VChunk and EmbedJoin).
We will make use of UNIREF, TREC and GEN50kS for a basic compar-
ison. These datasets are of modest size so that all algorithms can
finish within 24 hours. We then use larger genome datasets to test
the scalability of all algorithms.

Effects of the Edit Threshold K. Figure 6 presents the running
time of different algorithms on UNIREF, TREC and GEN50kS when
varying the edit threshold K. Compared with EmbedJoin, MinJoin
clearly has the advantage on the accuracy (100% versus 95-99%). The
running time of MinJoin is similar to EmbedJoin on UNIREF and
TREC, and is better than EmbedJoin by a factor of 4.5 on GEN50kS
(K = 150). We observe that MinJoin has a significant advantage
over all the exact algorithms on running time: MinJoin outperforms
the best exact algorithm by a factor of 2.3 in UNIREF (K = 25), 12.3
on TREC (K = 50), and 26.7 on GEN50kS (K = 150). The running
time of PassJoin increases quickly when K becomes large; this is
consistent to the theory that the query time in PassJoin for each
string is proportional to K3. VChunk performs relatively well on
UNIREF, but much worse on TREC and GEN50kS. This may be because
the preprocessing time of VChunk has a quadratic dependence on
string length N, which is larger in TREC and GEN50@kS than UNIREF.

Effects of the Input Size n. Figure 7 presents the running time
of different algorithms on UNIREF, TREC and GEN50kS when vary-
ing the number of input strings n. MinJoin again has similar run-
ning time as EmbedJoin on UNIREF and TREC, and much better
on GEN50KS (plus the accuracy advantage). The running time of
MinJoin is better than the best exact algorithm by a factor of 2.2
on UNIREF (n = 400, 000), 9.5 on TREC (n = 200, 000), and 16.2
on GEN50kKS (n = 50, 000). The trends of running time of all algo-
rithms increase near linearly in terms of n, except VChunk whose
performance deteriorates significantly when n increases on TREC
and GEN50kS, which may again due to the expensive preprocessing
step.

Scalability of the Algorithms. Finally we test all algorithms on
larger datasets. Figure 8 presents the results of the running time
when we scale string length up to 20,000 and the edit threshold K
up to 20% of the string length. Figure 9 presents the results when
we scale the number of strings up to 320,000, and K up to 20% of
the string length. The first plot of Figure 9 is just a repeat of that of
Figure 8. For MinJoin we always set the number of targeted parti-
tion T to be K/5, which already makes the accuracy of MinJoin to
be 100% on those points where there is at least one exact algorithm
that can finish.

We note that some algorithms cannot produce some of the points,
which may be because they cannot finish within 24 hours, or there
are some implementation issues (e.g., memory overflow). In cases
when there is no exact algorithm that can finish in time, the accuracy
of EmbedJoin is computed using the result returned by MinJoin as
the ground truth.

We observe that MinJoin generally outperforms EmbedJoin by
2 ~ 5 times on the running time. The advantage slightly decreases
when the number of strings n or the string length N increases. This
is because when n or N increases, the verification time (O(NK) per
pair where K is also proportional to N in our plots) will increase
faster than other parts of the algorithm. On the other hand, the
accuracy of EmbedJoin, using MinJoin as the baseline, is about
96%-99%.

All the exact algorithms do not scale well on these large datasets.
On the smallest dataset GEN20kS, PassJoin and QChunk can run
up to the 8% edit threshold, while VChunk can only go up to the
4% threshold. Their running times deteriorate significantly when
K increases. Only PassJoin can produce some points on GEN20kL
and GEN80kS. On GEN320kS none of the exact algorithms can finish
within 24 hours.

Memory Usage. We have also compared the memory usage of all
tested algorithms. Again MinJoin has the best performance. Due
to the space constraints we leave the details to Appendix B.1.

5 CONCLUSION

In this paper we have presented MinJoin, an algorithm for edit
similarity joins based on string partition using local hash min-
ima. MinJoin has rigorous mathematical properties, and signifi-
cantly outperforms previous methods on long strings with large
edit thresholds. We feel that local hash minima based string par-
tition is a natural and elegant way for solving the edit similarity
join problem: it can be applied to each string independently by a
linear scan, without any synchronization between strings or global
statistics of the datasets. It also works very well with a simple
hash join data structure for computing the candidate string pairs.
Moreover, even MinJoin is a randomized algorithm, it can easily
achieve perfect accuracy on all of the datasets that we have tested.
We believe MinJoin is the right choice for edit similarity joins in
many applications.

REFERENCES

[1] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient Exact
Set-Similarity Joins. In VLDB. 918-929.

[2] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up all
pairs similarity search. In WWW. 131-140.

[3] Thomas Bocek, Ela Hunt, Burkhard Stiller, and Fabio Hecht. 2007. Fast similarity
search in large dictionaries. University.

[4] Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces. In VLDB. 426-435.

[5] Luis Gravano, Panagiotis G. Ipeirotis, H. V. Jagadish, Nick Koudas, S. Muthukr-

ishnan, and Divesh Srivastava. 2001. Approximate String Joins in a Database

(Almost) for Free. In VLDB. 491-500.

Yu Jiang, Guoliang Li, Jianhua Feng, and Wen-Syan Li. 2014. String Similarity

Joins: An Experimental Evaluation. PVLDB 7, 8 (2014), 625-636.

Chen Li, Jiaheng Lu, and Yiming Lu. 2008. Efficient Merging and Filtering

Algorithms for Approximate String Searches. In ICDE. 257-266.

Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. 2011. PASS-JOIN: A

Partition-based Method for Similarity Joins. PVLDB 5, 3 (2011), 253-264.

[9] Jianbin Qin, Wei Wang, Yifei Lu, Chuan Xiao, and Xuemin Lin. 2011. Efficient

exact edit similarity query processing with the asymmetric signature scheme. In

SIGMOD. 1033-1044.

Richard J Roberts, Mauricio O Carneiro, and Michael C Schatz. 2013. The advan-

tages of SMRT sequencing. Genome biology 14, 6 (2013), 405.

[11] Esko Ukkonen. 1985. Algorithms for Approximate String Matching. Information

and Control 64, 1-3 (1985), 100-118.

Sebastian Wandelt, Dong Deng, Stefan Gerdjikov, Shashwat Mishra, Petar Mi-

tankin, Manish Patil, Enrico Siragusa, Alexander Tiskin, Wei Wang, Jiaying Wang,

and Ulf Leser. 2014. State-of-the-art in string similarity search and join. SIGMOD

Record 43, 1 (2014), 64-76.

G

7

[8

[10

[12

200 o~ passloin 800 [—s—passJoin 1000 —e—PassJoin
—=—=QChunk —=—QChunk —=—QChunk
150 -——VChunk 600 ——VChunk 800 —=—VChunk
—_ ——EmbedJoin —_ ——EmbedJoin — ——EmbedJoin
£ |——MinJoin £ ——MinJoin £ 600 ——MinJoin
2100 2 400 e
[[= 400
50 [200 200
% q
El Y 08 19 6%98.5% { A o a 0
o . ¢ 0 Btit A A A 0 09.3% _99.3% {
5 10 15 20 25 10 20 30 40 50 50 75 100 125 150
Threshold (K) Threshold (K) Threshold (K)
UNIREF TREC GEN50kS

Figure 6: A comparison on running time, varying K. The percentages on plots stand for accuracy of EmbedJoin.

80 1 —e—passJoin [—e—PassJoin 1000 —e—PassJoin
—=-QChunk 250 |—=—QChunk —=—QChunk
60 - ——VChunk 200 ——VChunk 8001 /' ——vChunk
- ——EmbedJoin — ——EmbedJoin = ——EmbedJoin
;407+MinJoin = 150 ——MinJoin o 600 —#=MinJoin
£ £
= = 100 1 i= 400
20// 50 | 200
OMM 0%557 00 % 6.1% 956% 01222 ; 5% ——09.4%99.3%
1 2 3 4 0.5 1 15 2 1 2 3 4 5
Number of Strings x10° Number of Strings »10° Number of Strings »10*
UNIREF (K = 20) TREC (K = 40) GEN50KS (K = 100)

Figure 7: A comparison on running time, varying n. The percentages on plots

stand for accuracy of EmbedJoin.

109 " e 10° " “ioi 10° " o
—e—PassJoin —e—PassJoin —e—PassJoin
—==QChunk —=—=QChunk ——EmbedJoin
—+—VChunk —+—VChunk —4—MinJoin
) . 99.4%
104+ ——EmbedJoin 104 ——EmbedJoin 104 99.89
) ——MinJoin O ——MinJoin g4 , =z
7%
g g oI g
= = IS
107
100 : 100 o : 100 :
1%R% 4% 8% 12% 16% 20% 1%% 4% 8% 12% 16% 20% 1%% 4% 8% 12% 16% 20%
Threshold (of String Length) Threshold (of String Length) Threshold (of String Length)
GEN20kS GEN20kM GEN20KkL

Figure 8: Scalability of different algorithms, varying N. The percentages on plots are accuracies of EmbedJoin.

108 — P p 108 " : 10° ' ;
assJoin —e—PassJoin ——EmbedJoin
~=~QChunk ——EmbedJoin
——VChunk ——MinJoin
104 ¢ ——EmbedJoin
= ——MinJoin = =
g g g
E 95.2% E E
10° 10° o°
1R% 4% 8% 12% 16% 20% 1R% 4% 8% 12% 16% 20% 1R% 4% 8% 12% 16% 20%
Threshold (of String Length) Threshold (of String Length) Threshold (of String Length)
GEN20kS GEN8OkS GEN320kS

Figure 9: Scalability of different algorithms, varying n. The percentages on plots are accuracies of EmbedJoin.

[13] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2010. Trie-Join: Efficient Trie- [16] Chuan Xiao, Wei Wang, and Xuemin Lin. 2008. Ed-Join: an efficient algorithm
based String Similarity Joins with Edit-Distance Constraints. PVLDB 3, 1 (2010), for similarity joins with edit distance constraints. PVLDB 1, 1 (2008), 933-944.
1219-1230. [17] Haoyu Zhang and Qin Zhang. 2017. EmbedJoin: Efficient Edit Similarity Joins

[14] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix via Embeddings. KDD (2017), 585-594.
filtering?: an adaptive framework for similarity join and search. In SIGMOD.

85-96.

[15] Wei Wang, Jianbin Qin, Chuan Xiao, Xuemin Lin, and Heng Tao Shen. 2013.
VChunkJoin: An Efficient Algorithm for Edit Similarity Joins. IEEE Trans. Knowl.
Data Eng. 25, 8 (2013), 1916-1929.

A MISSING PROOFS

A.1 Proof of Lemma 2.1

Proof': Consider the array A[1.. |s|—g+1] constructed in Algorithm 2;
h[i] is the hash value of the i-th g-gram of s. Let w = |s| —q+ 1 —2r.
Fori = 1,...,w, define a random variable X; whose value is 1 if
hli + r] is the smallest coordinate in the window hli..i + 2r], and 0
otherwise. Let X = };¢[,,] Xi, which is the total number of anchors
generated by Algorithm 2. We now analyze the random variable X.

We start by computing its expectation. Recall that we have set

r to be LM;;Z-—:;_TJ at Line 2 of Algorithm 2. For simplicity we

ignore the floor operation whose effect is negligible to the analysis.

EX] = Y EXi]=) PrX;=1]= ZrV:—l =T. (1)

i€[w] i€[w]
We next compute the variance.

Z Var[X;] + Z Cov[X;, X;]

ie[w] i#j

Z Var[X;] + % Z Z Cov[X;, X;]. (2

ie[w] i j#i

Var[X] =

We compute the two terms of (2) separately. For the first term,

Dvalx] = D (BXH - BIX)?)

i€[w] i€[w]
1 1
= wX|——-——
(2r+1 (2r+1)2)
w
< . 3
To2r+1 ®)
For the second term of (2), by the definition of the covariance,
COV[Xj,Xj] = E[X,'Xj] - E[X,]E[Xj]
= E[X:X;] !
- T e+

We analyze E[X;X;] in three cases.

Case L. |i — j| > 2r + 1. It is easy to see that in this case X; and X
are independent, since their corresponding windows Al[i..i + 2r]
and h[j..j + 2r] are disjoint. We thus have E[X;X;] = E[X;]E[X;],
and consequently Cov[X;, X;] = 0.

Case IL |i — j| < r. In this case, h[i + r] is inside the window
hlj..j+2r], and symmetrically h[j+r] is inside the window h[i..i+2r].
Thus if X; = 1 then we must have X; = 0, and if X; = 1 then
we must have X; = 0. Therefore E[X;X;] = 0, and consequently

COV[Xi,Xj] = —m.

CaseIIL. r < |i — j| < 2r + 1. The analysis for this case is a bit more
complicated. Consider two windows W; = h[i..i + 2r] and W; =
h[j..j+2r] which overlap. We divide their union into three areas; see
Figure 10 for an illustration. Area 2 denotes the intersection of the
two windows, and Area 1 and Area 3 denote the coordinates that
are only in W; and W; respectively. It is easy to see that the number
of coordinates in Area 1 and Area 3 are equal; let @ (r < @ < 2r+1)
denote this number.

We write
E[X;X;] Pr[X;

= Pr[X;

1,X; = 1]
1| X; =1]-Pr[X; = 1]

‘ Area 1 Area 2

Figure 10: Ilustration of windows W;, W; when r < |i—j| <
2r + 1. Black square represents the central coordinate of the
window. The squares in same column correspond to same
coordinate in the array A[]; we duplicate them for the illus-
tration purpose.

1
a1
We thus only need to analyze Pr[X; = 1| X; = 1]. Define a random
variable Y such that Y = 1 if the central coordinate of W; (i.e.,
hli + r]) is smaller than all coordinates in Area 3. We have

Pr[Xj =1|X;=1]
= Pr[Xj=l|Xi=l,Y=l]~Pr[Y=l|Xi=l]+
PriXj=1]X; =1,Y=0]-Pr[Y =0 X; =1]. (4)
Note that (X; = 1)A(Y = 1) implies that the central coordinate of
W; is smaller than all coordinates in Wj, which, however, does not

give any information about the relationship between all coordinates
in W;. We thus have

= Pr[Xj=l|X,-=1]

1

T2r+1° ©)
On the other hand, (X; = 1) A (Y = 0) implies that the central
coordinate of W; is smaller than all coordinates in Area 2, and is
larger than some coordinate in Area 3. We thus know that the
minimum coordinate of W; must lie in Area 3. Therefore X; = 1
if and only if the central coordinate of Wj is larger than all other
coordinates in Area 3. We get

Pr[Xj=1|Xl~=1,Y=O]=1/a. 6)

Pr(X; =1|X; =1,Y =1] =Pr[X; = 1]

Plugging in (5) and (6) to (4), we have
PI‘[XJ' =1|X;=1]

1
Pr[Y=1|X;=1]+—=-Pr[Y =0 X; =1]
a

2r+1
1 1
< == .
a r+1
Consequently we have
Cov[X;, Xi] < ! ! ! < !
ov[X;, Xj] < . - .
P or+1 r+1 (r+1)?2 o (2r+1)2
Summing up, we have
= —m, li-jl<r
Cov[X;, Xj]{ < m, r<li—jl<2r+1 (7)
=0. li—jl>2r+1
Plugging (3) and (7) to (2), we get
w 1 1 1
Var[X] < +—-w-2r- -
2r+1 2 2r+1)% (2r+1)>2
= w = T (8)

2r+1

5 [~e—PassJoin 25 (—o—PpassJoin 20 [——passJoin
@, " QChunk o QChunk — |=*=QChunk
© # ——VChunk © 20[——vchunk © 15 /——VChunk
o |——EmbedJoin @ ——EmbedJoin o ——EmbedJoin
& 3 ——MinJoj & 15 [——Mindoin & |——MinJoin
E E 10}
5 5o 3
£ £ E 5
21 S 5 @
= s 5 , = L
0 ‘ 0 : ‘ 0 : :
5 10 15 20 25 10 20 30 40 50 50 75 100 125 150
Threshold (K) Threshold (K) Threshold (K)
UNIREF TREC GEN50kS
Figure 11: A comparison on memory usage, varying K.
4 ==passIom - 107 i~
assJoin —e—PassJoin —e—PassJoin
—~ |==—QChunk —~ QChunk _ —=—QChunk
o))
@ 3 ——VChunk © 15 ——vChunk @ 8—vChunk
o |——EmbedJoin o) ——EmbedJaj o) ——EmbedJoin
53 - 53 °=FM,/Q'D——°———‘ o 6t e
§ 2 [Mindol § 10 inJoin § ——MinJoi
f fa 2 4f
S S 5]
£ £ 5} £ :
2 [0} d ol ——
= = s = :
0 0.,—’—0--/”",‘-<
1 2 3 4 0.5 1 15 2 1 2 3 4 5

Number of Strings

UNIREF (K = 20)

x10%

Number of Strings

TREC (K = 40)

%105 Number of Strings

GEN50kS (K = 100)

x10*

Figure 12: A comparison on memory usage, varying n.

By (1), (8), and the Chebyshev’s inequality, we have that for any
constant ¢ > 0,

Pr(|X — T| > VcT] < 1/e.

A.2 Proof of Lemma 2.2

Proof: Since ED(s,t) < K, we have |t| € [|s| — K, |s| + K], and
s and t must share a common substring of length at least L =
(Is| = K)/(K + 1) in the optimal alignment.

Let y be such a common substring. Let rs = Llslg%—:iqj, and
letn = % When running Algorithm 2 on s, by an almost

identical argument as that for the proof of Lemma 2.1, we have that
the number of anchors X on y satisfies

Pr(|X —n| > ven] < 1/c.)
For T = 120K and |s| = w(Kgq), we have
_ L-g+1-2r
o= 2rg +1
[s| - K T+1
—g+1-2r| ———

K+1 Is| —q+2

> 115 (10)

Plugging (10) to (9), we have with probability at least (1 — 1/100) =

0.99 that
X > 1n—4/100n > 4, (11)

which means that with probability 0.99 there are at least four an-
chors on y.

Let ay, az, as, a4 be four anchors on y when processing s using
Algorithm 2. Let r; = L“I;?—:;_TJ Since ED(s,t) < Kand T =

120K, it holds that |r; — rs| < 1. In the case thatr; = rs =1, ay

and a3 must also be anchors when processing t using Algorithm 2,
since an anchor is fully determined by a neighborhood of size r.

For the case when |r; — rg| = 1, wl.o.g., assume that rs = r and
rt = r + 1. Now the probability that ay is still an anchor when
processing t, given the fact that ay is an anchor when processing
s,is at least 1 — 1/(r + 1). Same argument holds for a3. Thus with
probability 0.99—-2/(r+1) > 0.98 (note thatr = rs = [ISIESZ-—:;_TJ =
(1) given |s| = w(gK) and T = 120K), a2 and a3 are also anchors
when processing t.

Finally, observe that once s and ¢ share two adjacent anchors a

and a3, they must share at least one common partition. O

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 Comparisons on Memory Usage with the
State-of-the-Art

Figure 11 and Figure 12 present the memory usage of different algo-
rithms on UNIREF, TREC and GEN50kS when varying edit threshold
K and the number of input strings n. While the difference on the
memory usage is not as large as running time, MinJoin still per-
forms the best among all algorithms. The performance of PassJoin
is clearly worse than others on TREC and GEN50kS.

	Abstract
	1 Introduction
	2 A String Partition Scheme Using Local Hash Minima
	2.1 The Algorithm
	2.2 The Analysis

	3 The MinJoin Algorithm
	4 Experiments
	4.1 Setup of Experiments
	4.2 Experiments for MinJoin
	4.3 A Comparison with MinHash
	4.4 A Comparison with the State-of-the-Art

	5 Conclusion
	References
	A Missing Proofs
	A.1 Proof of Lemma 2.1
	A.2 Proof of Lemma 2.2

	B Additional Experimental Results
	B.1 Comparisons on Memory Usage with the State-of-the-Art

