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ABSTRACT
Linear sketching algorithms have been widely used for pro-
cessing large-scale distributed and streaming datasets. Their
popularity is largely due to the fact that linear sketches can
be naturally composed in the distributed model and be effi-
ciently updated in the streaming model. The errors of linear
sketches are typically expressed in terms of the sum of co-
ordinates of the input vector excluding those largest ones,
or, the mass on the tail of the vector. Thus, the precondi-
tion for these algorithms to perform well is that the mass
on the tail is small, which is, however, not always the case
– in many real-world datasets the coordinates of the input
vector have a bias, which will generate a large mass on the
tail.

In this paper we propose linear sketches that are bias-
aware. We rigorously prove that they achieve strictly better
error guarantees than the corresponding existing sketches,
and demonstrate their practicality and superiority via an
extensive experimental evaluation on both real and synthetic
datasets.

1. INTRODUCTION
Linear sketches, such as the notable Count-Sketch [6] and

Count-Median [12], are powerful tools for processing mas-
sive, distributed, and real-time datasets. Let vecotr x =
(x1, . . . , xn)T be the input data where xi stands for the fre-
quency of element i. Linear sketching algorithms typically
consist of two phases: (1) Sketching phase. We apply a linear
sketching matrix Φ ∈ Rr×n (r � n) on x, getting a sketch-
ing vector Φx whose dimension is much smaller than x. (2)
Recovery phase. We use Φx to recover useful information
about the input vector x, such as the median coordinate,
the number of non-zero coordinates (distinct elements), etc.

We start by explaining why linear sketches are useful in
handling distributed and streaming data. In the distributed
computation model, we have t data vectors x1, . . . ,xt dis-
tributed at t sites, which connect to a central coordinator.
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The goal is for the coordinator to learn the global data vec-
tor x =

∑
i∈[t] x

i communication efficiently. Note that the

naive solution that each site sending xi to the coordinator
is communication expensive if the dimension of x is large.
By linearity we have Φx = Φx1 + . . . + Φxt. Thus each
site can simply send the local sketching vector Φxi to the
coordinator, and then the coordinator sums up these local
sketching vectors to obtain the global sketching vector Φx,
from which it reconstructs x using the recovery procedure.
The total communication will be the product of t and the
dimension of Φx, which is much smaller than the dimension
of input vector x.

In the streaming model [1], where items arrive one by one
in the online fashion, a new incoming item i ∈ [n] corre-
sponds to updating the input vector x ← x + ei where ei
is an all-0 vector except the i-th coordinate being 1. Again
due to linearity, we can easily update the linear sketch as
Φx ← Φx + Φei. The space usage of the streaming algo-
rithm is simply the dimension of the sketch Φx, which is
again much smaller than the dimension of x.

We consider in this paper the basic problem that in the
recovery phase, we want to best reconstruct the input vector
x using the sketching vector Φx. More precisely, our goal
is to design a sketching matrix Φ and a recovery procedure
R(·) with the following properties.

• Accuracy. x̂ = R(Φx) is close to the original vector x
under certain distance measurement.

• Compactness. The size of the sketch (equivalently, r,
the number of rows of Φ) is small;

• Efficiency. We can compute Φx and x̂ = R(Φx) time-
efficiently.

This basic problem has many applications in massive data
processing. Once a good approximation to x is obtained,
we can answer a number of statistical queries on the in-
put frequency vector such as point query, frequent elements,
range query, etc. These queries have numerous real-world
applications, including Internet data analytics [11], search
engines [25], data stream mining [10], streaming and dis-
tributed query processing [8, 9, 29], etc.

In this paper we focus on point query, which we believe
is the most basic operation: given an index i ∈ [n], return
xi (the i-th coordinate of the input vector x). Naturally, we
would like to minimize the maximum (average) coordinate-
wise difference between the recovered vector x̂ = R(Φx)
and the original vector x, that is, to minimize ‖x− x̂‖∞
( 1
n
‖x− x̂‖1).



Linear Sketches. Before stating our results, we would like
to add some background on linear sketches. For a general
vector x ∈ Rn, it is impossible to recover x exactly from
the sketching vector Φx of a much smaller dimension. How-
ever, in many cases we are able to recover x up to some
small errors. One such error guarantee, called the `∞/`p-
guarantee, is that for any x ∈ Rn, letting x̂ = R(Φx), the
coordinate-wise error of the recovery is bounded by

‖x̂− x‖∞ = O(k−1/p) · Errkp(x), (1)

where k is a tradeoff parameter between the sketch size and
the accuracy guarantee, and

Errkp(x) = min
k-sparse x′

∥∥x− x′
∥∥
p
,

where we say a vector is k-sparse if it contains at most k non-
zero coordinates. In other words, Errkp(x) is the `p-norm of
the vector containing all coordinates of x except zero-ing
out the k coordinates with the largest absolute values. We
often call the k largest coordinates the head of x and the
rest (n − k) ones the tail of x. Note that if x is k-sparse,
then we are able to recover it exactly since Errkp(x) = 0.

We typically consider p = 1 or p = 2, since for p > 2
there exists strong lower bound: the sketch size has to be
at least Ω(n1−2/p). 1 The error guarantee in Equality (1)
for p = 1 and p = 2 can be achieved with high probability
by the classical Count-Median algorithm [12] and Count-
Sketch algorithm [6] respectively; we will illustrate these two
algorithms in details in Section 3.

It is folklore that `∞/`1 and `∞/`2 guarantees can be
converted into `1/`1 and `2/`2 guarantees respectively (see,
for example, Section II of [19]). More precisely, for p ∈ {1, 2}
we can derive from Inequality (1) that

‖x̂− x‖p = O(1) · Errkp(x), (2)

which gives a more intuitive approximation guarantee on the
whole vector instead of individual coordinates.

Bias-Aware Sketches. The question we try to address in
this paper is:

What if the coordinates in the input vector x have
a non-trivial bias?

Let us consider an example. Let k = 2, n = 10, and

x = (3, 100, 101,500, 102, 98, 97, 100, 99, 103). (3)

We have Errk1(x) = 700, Errk2(x) =
√

69428 ≈ 263.49, which
are fairly large. It is easy to see that these large errors are
due to the fact that most coordinates of x are close to 100
(intuitively, the bias), which results in a heavy tail. It would
be desirable if we can remove this bias first and then perform
the sketching and recovery.

In this paper we propose bias-aware sketches that achieve
the following performance guarantee. Let β(n) be the n-
dimensional vector with β at each coordinate. For p ∈ {1, 2},
our sketches can recover an x̂ such that

‖x̂− x‖∞ = O(k−1/p) ·minβ Errkp(x− β(n)). (4)

And we define the bias of the input data vector x to be

β∗ = arg min
β

Errkp(x− β(n)). (5)

1The proof can be done using the n1/p-party set-disjointness
hard instance similar to that for p-th frequency moments [4].

Clearly, the right hand side (RHS) of Inequality (4) is no
more than the RHS of Inequality (1) (equal when the best
bias β is 0). In the case when all except at most k co-
ordinates of x are close to a non-zero β, our error bound
will be much better than that in (1). For the example

mentioned earlier, we have minβ Errk1(x − β(10)) = 12 and

minβ Errk2(x− β(10)) =
√

28 ≈ 5.29 (arg minβ = 100; in this
example the bias happens to be the same for both p = 1 and
p = 2), which are significantly smaller than those given by
Count-Median and Count-Sketch.

Same as Inequality (2), for p ∈ {1, 2} we can derive from
(4) that

‖x̂− x‖p = O(1) ·minβ Errkp(x− β(n)). (6)

Remark 1 Compared with the single bias β, one may want
to allow multiple bias values. For example, for the data vec-
tor y = (200, 100, 50, 50, 50, 50, 100, 100, 100, 10), one may
want to use two bias values β1 = 50 and β2 = 100, with
200 and 10 being the outliers. Unfortunately, this cannot
be done if we want to obtain an o(n) (sublinear) size sketch
where n is the dimension of the input vector, simply because
when we have at least two bias values, in the recovery pro-
cedure for each of the n coordinates of input vector we need
the information of which bias value has been deducted from
that coordinate, which costs at least 1 bit.

Our Contributions. In this paper we have made the fol-
lowing contributions.

1. We have given a rigorously formalization of the bias-
aware sketches, which strictly generalizes standard lin-
ear sketches in the error guarantees.

2. We have proposed bias-aware sketches with rigorous
`∞/`1 and `∞/`2 error guarantees. We have also shown
how to implement our sketches in the streaming model
for fast real-time query.

3. We have implemented our algorithms and verified their
effectiveness on both synthetic and real-world datasets.
We note that our algorithms significantly outperform
the existing algorithms in terms of accuracy for point
query.

2. RELATED WORK
The history of data sketch/summary can be traced back to

Morris’ approximate counter [26] and Flajolet and Martin’s
probabilistic counting algorithm [18]. Subsequently, stream-
ing algorithms were extensively investigated since the semi-
nal paper [1] by Alon et al. Among them Count-Sketch [6]
and Count-Min/Count-Median [12] were found particularly
useful in many applications from data analytics and min-
ing to query processing and optimizations. A number of
variants of the Count-Min algorithm have also been pro-
posed, such as Count-Min with conservative update [17, 21]
and Count-Min-Log with conservative update [28], but these
sketches are not linear and thus cannot be directly used in
the distributed setting. Another closely related algorithm is
the Counter-braids [24]. The intent of Counter-braids is to
be more bit-efficient than methods which simply use coun-
ters. It requires a larger amount of space to execute; and its
encoding/decoding procedures are recursive, layer by layer,
and thus it cannot answer point query without decoding the



whole input vector x. Finally, we would like to emphasize
that all of the algorithms mentioned above cannot handle
data bias.

Deng et al. [14] attempted to remove the bias in the Count-
Min algorithm. In the high level, at the time of recovering a
coordinate mapped to a hash bucket (see CM-matrix in Def-
inition 1), their algorithm averages the coordinates mapped
into all other hash buckets to obtain an estimate of the bias
presented in the considered bucket. It turns out that such
an estimation is too rough to be useful – their analysis shows
that their algorithm can only achieve comparable recovery
quality as Count-Sketch.

Yan et al. [30] formulated the bias recovery problem in
the context of distributed outlier detection. We briefly de-
scribe how BOMP works. To sketch a vector x ∈ Rn,
BOMP first computes y = Φx where Φ = [φ1, . . . , φn] ∈
Rt×n, where each entry of Φ is independently sampled from
the Gaussian distribution N (0, 1/t). In the recovery phase
BOMP prepends a new column 1√

n

∑n
i=1 φi to Φ to get Φ′ =

[ 1√
n

∑n
i=1 φi,Φ], and then runs OMP (Orthogonal Matching

Pursuit) on y and Φ′ in k + 1 iterations to recover x̃ as
an approximation of x. However, their discussion only fo-
cused on the biased k-sparse vectors where all coordinates
of x are equal to some unknown value β except at most
k “outliers”, and did not give a solid theoretical analysis.
Moreover, OMP is very time expensive, and cannot answer
point query without decoding the whole vector x.

Our work is closely related to the area of compressive sens-
ing. In fact, our linear sketching and recovery algorithms can
be seen as natural extensions of the standard compressive
sensing sparse recovery algorithms [5, 15, 13]. In the stan-
dard sparse recovery setting the bias of the vector is assumed
to be 0, which does work well for a number of problems
in signal processing but its power is somewhat limited for
massive data processing where coordinates in vectors may
have non-zero biases. We note that the idea of debiasing
can be viewed as a special case of the incoherent dictionary
learning [16, 20] – one can add an all-1 vector (normalized
by 1/

√
n) upon the n standard basis vectors. However, as

far as we are concerned, the existing recovery algorithms
in incoherent dictionary learning use either linear program-
ming or OMP, which, again, are very time-inefficient on large
datasets and do not work for point query.

3. PRELIMINARIES
We summarize the main notations in this paper in Table 1.

A quick scan of the table may be useful since some of the
notations are not standard (e.g., a vector minus a scalar
value: x− β).

We would like to introduce two classical linear sketches
Count-Median and Count-Sketch, which will be used as com-
ponents in our algorithms.

Count-Median. The Count-Median algorithm [12] is a lin-
ear sketch for achieving `∞/`1-guarantee. We first introduce
the Count-Median matrix.

Definition 1 (CM-matrix) Let h : [n] → [s] be a hash
function. A CM-matrix Π(h) ∈ {0, 1}s×n is defined as

Π(h)i,j =

{
1 h(j) = i
0 h(j) 6= i.

Table 1: List of notations

[n] [n] = {1, 2, . . . , n}
Pr the probability of
(x)i or xi for x ∈ Rn, both (x)i and xi represent

the i-th coordinate of x

‖x‖p ‖x‖p = (
∑
i |xi|

p)
1
p for x = (x1, . . . , xn);

when p =∞, ‖x‖∞ = maxi |xi|
k-sparse x ∈ Rn is k-sparse if x has at most k

non-zero coordinates
Sm(x) set of vectors in Rm obtained by choosing

m (≤ n) coordinates from x ∈ Rn

Errkp(x) Errkp(x) = mink-sparse x′ ‖x− x′‖p
x− β for x ∈ Rn, β ∈ R,

x− β = (x1 − β, . . . , xn − β)
mean(x) for x ∈ Rn, mean(x) = 1

n

∑n
i=1 xi

median(x) x ∈ Rn, median(x) = xn+1
2

for odd n,

median(x) = (xn
2

+ xn
2
+1)/2 for even n

argminβ f(β) argminβ f(β) = {α | f(α) = minβ f(β)}
σ2(x) variance of x ∈ Rn;

σ2(x) = 1
n

∑n
i=1(xi −mean(x))2

σ2(Y ) variance of a random variable Y ;
σ2(Y ) = E

[
(Y −E[Y ])2

]
Π CM-Matrix. See Definition 1
Ψ CS-Matrix. See Definition 2
Υ Sampling matrix. See Definition 3

For a vector x ∈ Rn, the following theorem shows that we
can recover each coordinate of x with a bounded error from
Θ(log n) random sketching vectors Π(h)x.

Theorem 1 ([12]) Set s = Θ(k/α) for an α ∈ (0, 1) and
d = Θ(log n). Let h1, . . . , hd : [n] → [s] be d independent
random hash functions, and let Π(h1), . . . ,Π(hd) be the cor-
responding CM-matrices. Let x̂ = (x̂1, . . . , x̂n) be a vector
such that

x̂j = median
i∈[d]

{(
Π(hi)x

)
hi(j)

}
.

We have Pr
[
‖x̂− x‖∞ ≤ α/k · Errk1(x)

]
≥ 1− 1/n.

Count-Sketch. The Count-Sketch algorithm [6] is a linear
sketch for achieving `∞/`2-guarantee. It is similar to Count-
Median; the main difference is that it introduces random
signs in the sketching matrix.

Definition 2 (CS-Matrix) Let h : [n] → [s] be a hash
function, and r : [n] → {−1, 1} be a random sign function.
A CS-matrix Ψ(h, r) ∈ {0, 1}s×n is defined as

Ψ(h, r)i,j =

{
r(j) h(j) = i
0 h(j) 6= i.

Similarly, for a vector x ∈ Rn, we can recover each coor-
dinate of x with a bounded error from Θ(log n) sketching
vectors Ψ(h, r)x.

Theorem 2 ([6]) Set s = Θ(k/α) for an α ∈ (0, 1) and d =
Θ(log n). Let h1, . . . , hd : [n]→ [s] be d independent random
hash functions, let r1, . . . , rd : [n] → {−1, 1} be d indepen-
dent random sign functions, and let Ψ(h1, r1), . . . ,Ψ(hd, rd)



be the corresponding CS-matrices. Let x̂ = (x̂1, . . . , x̂n) be a
vector such that

x̂j = median
i∈[d]

{
ri(j) ·

(
Ψ(hi, ri)x

)
hi(j)

}
.

We have Pr
[
‖x̂− x‖∞ ≤ α/

√
k · Errk2(x)

]
≥ 1− 1/n.

We will use the following sampling matrix.

Definition 3 (Sampling Matrix) Let Υ ∈ {0, 1}t×n be a
0/1 matrix by independently setting for each of the t rows
exactly one random coordinate to be 1.

4. BIAS-AWARE SKETCHES
In this section we propose two efficient bias-aware sketches

achieving `∞/`1-guarantee and `∞/`2-guarantee respectively.

4.1 Warm Up
The core of our algorithms is to estimate the bias of the

input data. Before presenting our algorithms, we first dis-
cuss a few natural approaches that do not work, and then
illustrate high level ideas of our algorithms.

Using mean as the bias. The first idea is to use the
mean of the input vector x. However, this cannot lead to
any theoretical error guarantee. Consider the vector x =
(∞,∞, 50, 50, 50, 50, 50, 50, 50) where∞ denotes a very large
number, and k is set to be 2. The mean of the coordinates
of x is ∞, but the best bias value is β = 50 which leads to
a tail error 0 (RHS of (4)). Nevertheless, using the mean as
the bias may work well in datasets where there are not many
extreme values. We will show in our experiments (Section 5)
that this is indeed the case for some real-world datasets.

Searching the bias in a post-processing step. Another
idea is to search the best bias value β in a post-processing
step after performing the existing sketching algorithms such
as Count-Sketch and Count-Median, and then subtract it
from the original sketch for the recovery. More precisely,
we can binary search the best β by computing the RHS of
(4) a logarithmic number of times and then picking the best

β value that minimize the error Errkp(x − β(n)). This idea
looks attractive since we can just reuse the existing sketching
algorithms. However, such a post-processing does not fit the
streaming setting where we want to answer queries in real-
time. Indeed, in the streaming model we have to redo the
binary search of β for queries coming in different time steps
in the streaming process, which makes the individual point
query very slow.

Our approaches. In this paper we propose two simple, yet
efficient, algorithms to achieve the error guarantee in (4), for
p = 1 and p = 2 respectively. Our algorithms do not need a
post-processing step and can thus answer real-time queries
in the streaming model. For p = 1, we compute by sampling
an approximate median (denoted by med) of coordinates in
x, and use it as the bias. Using the stability of median we
can show that med is also an approximate median of the
vector x∗ obtained from x by dropping the k “outliers”. For
p = 2, the idea is still to use the mean. However, as we have
discussed previously, directly using the mean of all items will
not give the desired theoretical guarantee, since the mean
can be “contaminated” by the outliers (extreme values). We
thus choose to employ a Count-Median sketch and use the

Algorithm 1: `1-Sketch(x)

Input: x = (x1, . . . , xn) ∈ Rn
Output: sketch of x and a set S ⊆ {x1, . . . , xn}
/* assume s = csk for a constant cs ≥ 4;

d = Θ(log n); h1, . . . , hd : [n]→ [s] are common

knowledge */

1 generate a sampling matrix Υ ∈ {0, 1}20 logn×n

2 ∀i ∈ [d], yi ← Π(hi)x
3 S ← Υx

4 return S, {y1, . . . ,yd}

mean of the “middle” buckets in the Count-Median sketch
as the bias. Both algorithms are conceptually very simple,
but the complete analysis turns out to be quite non-trivial.
The next two subsections detail our algorithms.

4.2 Recovery with `∞/`1-Guarantee
In this section we give a bias-aware sketch with `∞/`1-

guarantee. That is, we try to design a sketching matrix
Φ ∈ Rt×n (t � n) such that from Φx we can recover an x̂
satisfying ‖x̂− x‖∞ = O(1/k) ·minβ Errk1(x− β).

4.2.1 Algorithms
We use `1-S/R (`1-Sketch/Recover) to denote our algo-

rithm. Its sketching and recovery procedures are described
in Algorithm 1 and Algorithm 2 respectively. For simplic-
ity we assume that the two algorithms can jointly sample
hash functions h1, . . . , hd for free (i.e., without any costs).
Indeed, we can simply choose 2-wise independent hash func-
tions g, hi, ri(i ∈ [d]), each of which can be stored in O(1)
space. This will not affect any of our mathematical analysis
since we will only need to use the second moment of ran-
dom variables. Thus the total extra space to store random
hash functions can be bounded by O(d) = O(log n), and is
negligible compared with the sketch size O(k log n). In the
distributed model we can ask the coordinator to generate
these hash functions and then send to all sites, and in the
streaming model we can precompute them at the beginning
and store them in the memory.

In the sketching phase of `1-S/R, we simply use sampling
to estimate the best β that minimizes Errk1(x − β). More
precisely, we sample Θ(log n) coordinates from x and take

the median (denoted by β̂), which we will show is good for
the `∞/`1-guarantee. The final (implicit) sketching matrix
Φ is a vertical concatenation of d = Θ(log n) independent
CM-matrix Π(hi)’s and the sampling matrix Υ.

In the recovery phase, we use Count-Median to recover ẑ
as an approximation to the de-biased vector x − β̂; conse-
quently ẑ + β̂ will be a good approximation to x.

The following theorem summarizes the performance of `1-
S/R. One can compare it with Theorem 1 for Count-Median.

Theorem 3 There exists a bias-aware sketching scheme such
that for any x ∈ Rn, it computes the sketch Φx, and then
recovers an x̂ as an approximation to x from Φx satisfying
the following.

Pr[‖x̂− x‖∞ ≤ C1/k ·min
β

Errk1(x− β)] ≥ 1− C2/n, (7)

where C1, C2 > 0 are two universal constants. The sketch
can be constructed in time O(n log n); the sketch size is



Algorithm 2: `1-Recover(S, {y1, . . . ,yd}})
Input: S: a set of randomly sampled coordinates of x;

{yi = Π(hi)x | i ∈ [d]}
Output: x̂ as an approximation of x
/* assume s = csk for a constant cs ≥ 4;

d = Θ(log n); h1, . . . , hd : [n]→ [s] are common

knowledge */

1 β̂ ← median of coordinates in S

2 ∀i ∈ [d], πi ← coordinate-wise sum of columns of Π(hi)

3 ∀i ∈ [d], ỹi ← yi − β̂πi
/* Run Count-Median recovery */

4 ∀j ∈ [n], ẑj ← mediani∈[d]

{(
ỹi
)
hi(j)

}
5 x̂← ẑ + β̂
6 return x̂

bounded by O(k log n); the recovery can be done in time
O(n log n).

As mentioned in the introduction, we can convert `∞/`1
guarantee to `1/`1 guarantee.

Corollary 1 The x̂ recovered in Theorem 3 also guarantees
that with probability 1−O(1/n), we have

‖x̂− x‖1 = O(1) ·min
β

Errk1(x− β).

4.2.2 Analysis

Correctness. Due to the space constraints, some proofs
will be omitted and they can be found in the full version of
this paper [7].

Let β̄ be any β that minimizes the `1-norm error Errk1(x−
β). Let x∗ be the vector obtained by dropping the k coordi-
nates from x that deviate the most from β̄. We first show:

Lemma 1 Given x ∈ Rn, pick any β̄ ∈ argminβ Errk1(x −
β). Let x∗ ∈ Sn−k(x) be the vector obtained by dropping the
k coordinates that deviate the most from β̄, we must have

‖x∗ − β̄‖1 = ‖x∗ −median(x∗)‖1. (8)

Proof. For convenience we assume that (n − k) is odd,
and then ‖x∗ − β‖1 reaches the minimum only when β =
median(x∗). It is easy to verify that our lemma also holds
when (n− k) is even. Under this assumption, we only need
to show β̄ = median(x∗).

We prove by contradiction. Suppose β̄ 6= median(x∗),
then

Errk1(x−median(x∗)) ≤ ‖x∗−median(x∗)‖1 < Errk1(x− β̄),

contradicting the definition of β̄.

Lemma 1 gives a more intuitive understanding of the best
β that minimizes Errk1(x − β), and it connects to the idea
that the median of coordinates works. But we are not quite
there yet since in (8) we need the exact median of a vector
x∗ that we do not know before figuring out β̄. To handle
this we need the followings two lemmas.

The first lemma says that a value that is close (but not
necessary equal) to the median of coordinates of x∗ can be
used to approximate the best β̄.

Lemma 2 Given a vector x ∈ Rm with its coordinates sorted
non-decreasingly: x1 ≤ x2 ≤ . . . ≤ xm, for any j such that
m
4
< j < 3m

4
, we have∑
i∈[m]

|xi − xj | ≤ 2 ·min
β

∑
i∈[m]

|xi − β|.

The second lemma says that the median of O(log n) ran-
domly sampled coordinates of x is close to the median of
coordinates of the unknown vector x∗.

Lemma 3 Given a vector x ∈ Rn with its coordinates sorted
non-decreasingly: x1 ≤ x2 ≤ . . . ≤ xn, if we randomly sam-
ple with replacement t = 20 log n coordinates from x, then
with probability at least 1− 1/n the median of the t samples
falls into the range [xn/2−n/6, xn/2+n/6].

Now we are ready to prove the theorem.

Proof. (of Theorem 3) W.l.o.g. we assume the coordi-
nates of x are sorted as x1 ≤ x2 ≤ . . . ≤ xn. To simplify
the discussion, we assume t at Line 3 of Algorithm 1 is odd.
The even case can be verified similarly.

Let β̂ be the median of the t samples in S (Line 1 in
Algorithm 2). Let α ∈ argminβ Errk1(x − β). Let x∗ be the
vector obtained by dropping the k coordinates from x that
deviate the most from α.

By Lemma 3, β̂ ∈ [xn/2−n/6, xn/2+n/6] holds with proba-
bility 1−1/n. Note that we can assume that k = O(n/ log n)
(otherwise the sketch can just be x itself which has size
O(k log n)). We thus have

Pr
[
(x∗) (n−k)

4

≤ β̂ ≤ (x∗) 3(n−k)
4

]
> 1− 1

n
. (9)

Applying Lemma 2 to x∗ (with m = n−k), with probability
at least (1− 1/n) it holds that

Errk1(x− β̂) ≤ ‖x∗ − β̂‖1
≤ 2 ·min

β
‖x∗ − β‖1 (by (9) and Lemma 2)

= 2 · ‖x∗ −median(x∗)‖1
= 2 · ‖x∗ − α‖1 (by Lemma 1)

= 2 ·min
β

Errk1(x− β), (10)

where the last equality holds due to the definitions of α and
x∗. By Theorem 1 (property of Count-Median) and Line 4
of Algorithm 2 we have

Pr

[
‖ẑ− (x− β̂)‖∞ = O

(
1

k

)
· Errk1(x− β̂)

]
≥ 1− 1

n
.

Since at Line 5 we set x̂ = ẑ + β̂, we have

Pr

[
‖x̂− x)‖∞ = O

(
1

k

)
· Errk1(x− β̂)

]
≥ 1− 1

n
. (11)

Inequality (7) of Theorem 3 follows from (10) and (11).

Complexities. Since CM-matrix only has one non-zero
entry in each column, using sparse matrix representation
we can compute Π(hi)x (i ∈ [d]) in O(n) time. Thus the
sketching phase can be done in time O(nd) = O(n log n).

The sketch size is O(k log n) since each Ψ(hi)x (i ∈ [d])
has size O(k).

In the recovery phase, the dominating cost is the com-
putation of coordinates in ẑ, for each of which we need
O(d) = O(log n) time. Thus the total cost is O(n log n).



Algorithm 3: `2-Sketch(x)

Input: x ∈ Rn
Output: the sketch of x
/* assume s = csk for a constant cs ≥ 4;

d = Θ(log n); g, h1, . . . , hd : [n]→ [s];
r1, . . . , rd : [n]→ {−1, 1} are common knowledge

*/

1 w← Π(g)x

2 ∀i ∈ [d], yi ← Ψ(hi, ri)x

3 return w, {y1, . . . ,yd}

Algorithm 4: `2-Recover(w, {y1, . . . ,yd})
Input: w = Π(g)x; {yi = Ψ(hi, ri)x | i ∈ [d]}
Output: x̂ as an approximation of x
/* assume s = csk for a constant cs ≥ 4;

d = Θ(log n); g, h1, . . . , hd : [n]→ [s];
r1, . . . , rd : [n]→ {−1, 1} are common knowledge

*/

1 π ← coordinate-wise sum of columns of Π(g)
2 w.l.o.g. assume w1/π1 ≤ . . . ≤ ws/πs; set

β̂ =
∑s/2+k−1

i=s/2−k wi
/∑s/2+k−1

i=s/2−k πi

3 ∀i ∈ [d], ψi ← coordinate-wise sum of columns of

Ψ(hi, ri)

4 ∀i ∈ [d], ỹi ← yi − β̂ψi
/* Run the Count-Sketch recovery */

5 ∀j ∈ [n], ẑj ← mediani∈[d]

{
ri(j) ·

(
ỹi
)
hi(j)

}
6 x̂← ẑ + β̂
7 return x̂

4.3 Recovery with `∞/`2-Guarantee
In this section we give a bias-aware sketch with `∞/`2-

guarantee. That is, we try to design a sketching matrix
Φ ∈ Rt×n (t � n) such that from Φx we can recover an x̂

satisfying ‖x̂− x‖∞ = O(1/
√
k) ·minβ Errk2(x− β).

4.3.1 Algorithms
We use `2-S/R (`2-Sketch/Recover) to denote our algo-

rithm. Its sketching and recovery procedures are described
in Algorithm 3 and Algorithm 4 respectively.

We again assume that the sketching algorithm and the re-
covery algorithm can jointly sample (1) independent random
hash functions g, h1, . . . , hd : [n] → [s] and (2) independent
random signed functions r1, . . . , rd : [n] → {−1, 1} without
any costs.

In our algorithms we first use the CM-matrix to obtain a
good approximation β̂ of the β that minimizes Errk2(x− β),
and then use the Count-Sketch algorithm to recover ẑ as
an approximation to the de-biased vector x − β̂; and con-
sequently ẑ + β̂ will be a good approximation to x. The
final (implicit) sketching matrix Φ ∈ Rs(d+1)×n in Algo-
rithm 3 is a vertical concatenation of a CM-matrix Π(g)
and d = Θ(log n) independent CS-matrices Ψ(hi, ri)’s.

In Algorithm 4, to approximate the best β we first sum
up all the columns of Π(g), giving a vector π = (π1, . . . , πs)
(Line 1). Let w = Π(g)x ∈ Rs. W.l.o.g. assume that

w1/π1 ≤ . . . ≤ ws/πs. We estimate β by

β̂ =
∑s/2+k−1

i=s/2−k wi
/∑s/2+k−1

i=s/2−k πi .

The intuition of this estimation is the following. First note
that wi/πi (i ∈ [s]) is the average of coordinates of x that are
hashed into the i-th coordinate(bucket) of sketching vector
Π(g)x. In the case that there is no “outlier” coordinate of x
that is hashed into the i-th bucket of Π(g)x, then wi/πi (i ∈
[s]) should be close to the best bias β. Since there are at
most k outliers, if we choose s ≥ 4k then most of these s
buckets in Π(g) will not be “contaminated” by outliers.

The next idea is to sort the buckets according to the av-
erage of coordinates of x hashed into it (i.e., wi/πi), and
then choose the 2k buckets around the median and take the
average of coordinates hashed into those buckets (Line 2).
We can show that the average of coordinates of x that are
hashed into these 2k “median” buckets is a good estimation
of the best β. Note that there could still be outliers hashed
into the median 2k buckets, but we are able to prove that
such outliers will not affect the estimation of β by much.
After getting an estimate of β we de-bias the sketching vec-
tor y (Line 3 and 4) for the next step recovery (Line 5 and
6).

The following theorem summarizes the performance of `2-
S/R. One can compare it with Theorem 2 for Count-Sketch.

Theorem 4 There exists a bias-aware sketching scheme such
that for any x ∈ Rn, it computes Φx, and then recovers an x̂
as an approximation to x from Φx satisfying the following:

Pr[‖x̂−x‖∞ ≤ C1/
√
k ·min

β
Errk2(x−β)] ≥ 1−C2/n, (12)

where C1, C2 > 0 are two universal constants. The sketch
can be constructed in time O(n log n); the sketch size is
bounded by O(k log n); the recovery can be done in time
O(n log n).

As mentioned in the introduction, we can convert `∞/`2
guarantee to `2/`2 guarantee.

Corollary 2 The x̂ recovered in Theorem 4 also guarantees
that with probability 1−O(1/n), we have

‖x̂− x‖2 = O(1) ·min
β

Errk2(x− β).

4.3.2 Analysis

Correctness. Again due to the space constraints, some
proofs will be omitted and they can be found in the full
version of this paper [7].

Similar to the `1 case, we first replace the somewhat ob-
scure expression minβ Errk2(x−β) in Theorem 4 with another
one which is more convenient to use.

Lemma 4 For any x ∈ Rn and k < n, let x∗ be a vector in
Sn−k(x) that has the minimum variance. It holds that(

min
β

Errk2(x− β)

)2

= (n− k)σ2(x∗)

= ‖x∗ −mean(x∗)‖22. (13)

Furthermore, x∗ is equivalent to the vector obtained by drop-
ping the k coordinates from x that deviate the most from
mean(x∗).



Proof. First, by the definition of x∗ we have

(n− k)σ2(x∗) = min
x′∈Sn−k(x)

‖x′ −mean(x′)‖22.

By the definition of Errk2(·), we have

min
β

Errk2(x− β) ≥ min
x′∈Sn−k(x)

min
β
‖x′ − β‖

= min
x′∈Sn−k(x)

‖x′ −mean(x′)‖2.

Thus to prove (13), it suffices to show that

min
β

Errk2(x− β) ≤ min
x′∈Sn−k(x)

‖x′ −mean(x′)‖2.

Since the order of the coordinates in x do not matter,
w.l.o.g. we assume x∗ = (x1, . . . , xn−k). Let γ = mean(x∗),
and write xi = γ + ∆i, or equivalently, ∆i = xi − γ. Note
that if

min
i∈[n]\[n−k]

|∆i| ≥ max
i∈[n−k]

|∆i|, (14)

then we are done because

min
β

Errk2(x− β)2 ≤ Errk2(x− γ)2

=
∑

i∈[n−k]

∆2
i = ‖x∗ − γ‖22. (15)

Now we assume (14) is false. Again w.l.o.g., we assume
|∆1| = max

i∈[n−k]
|∆i| and |∆n| = min

i∈[n]\[n−k]
|∆i|, then |∆1| >

|∆n|. Let x′ = (x2, x3, . . . , xn−k−1, xn−k, xn) ∈ Sn−k, that
is, x′ is obtained by dropping xi from x∗ and then appending
xn, we have

‖x′ −mean(x′)‖22 ≤ ‖x′ −mean(x∗)‖22
= ‖x′ − γ‖22 (by definition of γ)

= ∆2
n +

n−k∑
i=2

∆2
i (by definition of ∆i)

< ∆2
1 +

n−k∑
i=2

∆2
i

= ‖x∗ −mean(x∗)‖2,

which contradicts the definition of x∗. Hence (14) holds,
and consequently (13) holds.

On the other hand, (14) also implies that xn−k+1, . . . , xn
are the k coordinates of x that deviate the most from γ =
mean(x∗).

We then show (using Lemma 4) that a good approxima-
tion of mean(x∗) is also a good approximation of the best
β.

Lemma 5 For any x ∈ Rn and k < n, let x∗ be a vector
in Sn−k(x) that has the minimum variance. For any α such
that |mean(x∗)− α|2 ≤ C · σ2(x∗) for any constant C > 0,
we have

Errk2(x− α)2 = O

(
min
β

Errk2(x− β)2
)
.

Proof. W.l.o.g. we again assume x∗ = (x1, . . . , xn−k).

Define f(b) , ‖x∗ − b‖22. Let γ = mean(x∗). By Lemma 4
we have

f(γ) = (n−k)σ2(x∗) = ‖x∗−γ‖22 = min
β

Errk2(x−β)2. (16)

Write α = γ + ∆ and thus ∆2 ≤ Cσ2(x∗),

Errk2(x− α)2 ≤ ‖x∗ − α‖22
= f(α) = f(γ + ∆)

=
∑

i∈[n−k]

((xi − γ)−∆)2

= (n− k)∆2 +

n−k∑
i=1

(xi − γ)2 − 2∆

n−k∑
i=1

(xi − γ)

≤ (n− k) · Cσ2(x∗) + ‖x∗ − γ‖22 + 0

= O

(
min
β

Errk2(x− β)2
)
. (by (16))

We are done.

The next lemma is crucial. It shows that the approxima-
tion β̂ obtained in the recovery algorithm (Algorithm 4) is
a good approximation of mean(x∗).

Lemma 6 Let β̂ be given at Line 2 of Algorithm 4. If s =
csk for a sufficiently large constant cs ≥ 4, it holds that

Pr

[(
β̂ −mean(x∗)

)2
= O

(
σ2(x∗)

)]
= 1−O

(
1

n

)
for any x∗ in Sn−k(x) that has the minimum variance.

Before proving Lemma 6, we need a bound on the differ-
ence between the average of all coordinates of a vector and
the average of a subset of coordinates.

Lemma 7 Let x = {x1, . . . , xm} ∈ Rm be a vector. Let
S be a subset of x’s coordinates of size |S| = Θ(m). Let
µ = 1

m

∑
i∈[m] xi, and µ′ = 1

|S|
∑
i∈S xi. Then we have∣∣µ′ − µ∣∣2 = O
(
σ2(x)

)
.

Now we prove Lemma 6.

Proof. (of Lemma 6) Fix any x∗ = (xi1 , . . . , xin−k ) in
Sn−k(x) that has the minimum variance. Let O be the set
of the top-k indices i in x that maximize |xi −mean(x∗)|.
By Lemma 4 we have that x∗ can be obtained from x by
dropping coordinates indexed by O.

We call an index i ∈ [s] in the sketching vector w = Π(g)x
contaminated if there is at least one o ∈ O such that g(o) = i.
W.l.o.g., we assume w1/π1 ≤ . . . ≤ ws/πs where π is defined
at Line 1 of Algorithm 4. Let

I = {i | s/2− k ≤ i < s/2 + k}

be the 2k “median” indices of w, and

Ī = {i | i < s/2− k ∨ i ≥ s/2 + k}

be the rest of indices in w. Since |O| = k and s ≥ 4k, there
are at most k coordinates in I that are contaminated, and
at least k coordinates in Ī that are not contaminated.



The approximation to the bias β at Line 2 of Algorithm 4
can be written as

β̂ =

∑
i∈I wi∑
i∈I πi

. (17)

Let O′ = I∩g(O) be the indices in I that are contaminated,
and let J be an arbitrary subset of Ī with size |O′|. Define

γ1 = min
J

∑
i∈I∪J\O′ wi∑
i∈I∪J\O′ πi

and γ2 = max
J

∑
i∈I∪J\O′ wi∑
i∈I∪J\O′ πi

.

(18)

It is easy to see that γ1 ≤ β̂ ≤ γ2: since s ≥ 4k, one can
always find a subset J ⊆ Ī of size |O′| such that for any
j ∈ J, o ∈ O′ we have wj/πj ≥ wo/πo, and replacing O′

with J only increases the RHS of (17); On the other hand
one can also find a subset J ⊆ Ī of size |O′| such that for
any j ∈ J, o ∈ O′ we have wj/πj ≤ wo/πo, and replacing O′

with J only decreases the RHS of (17).
We now show that both γ1 and γ2 deviate at most O(σ(x∗))

from mean(x∗), and consequently β̂, which is sandwiched
by γ1 and γ2, deviates from mean(x∗) by at most O(σ(x∗)).
Consider the set G = g−1(I ∪J\O′). First, by definitions of
I, J and O′ we have G ⊆ {i1, . . . , in−k}; and thus {xj | j ∈
G} are coordinates in x∗. Second, since |I ∪ J\O′| = Θ(k)
and g is a random mapping from [n] to [s], by a Cheby-
shev inequality we have |G| = Θ(n) with probability at least
1−O(1/n).2 For any J ⊆ Ī of size |O′|, let

γJ =
1

|G|
∑
j∈G

xj =

∑
i∈I∪J\O′ wi∑
i∈I∪J\O′ πi

.

By Lemma 7, we have

|γJ −mean(x∗)| = O(σ(x∗)). (19)

Since Inequality (19) applies to any J ⊆ Ī of size |O′|, we
have |γ −mean(x∗)| = O(σ(x∗)) for any γ ∈ {γ1, γ2}.

Finally we prove Theorem 4 using Lemma 5 and 6; we
show that the obtained β̂ is a good approximation of the
best β that minimizes Errk2(x− β).

Proof. (of Theorem 4) Let x∗ be a vector in Sn−k(x)
that has the minimum variance. At Line 4-5 in Algorithm
4 the Count-Sketch recovery algorithm is used to compute
ẑ as an approximation to x− β̂. By Theorem 2 we have

Pr

[
‖ẑ− (x− β̂)‖∞ = O

(
1√
k

)
· Errk2(x− β̂)

]
≥ 1− 1

n
.

Since at Line 6 we set x̂ = ẑ + β̂, it holds that

Pr

[
‖x̂− x‖∞ = O

(
1√
k

)
· Errk2(x− β̂)

]
≥ 1− 1

n
. (20)

By Lemma 6,

Pr
[
|β̂ −mean x∗| = O (σ(x∗))

]
= 1−O

(
1

n

)
.

2More precisely, define for each i ∈ [n] a random variable
Yi, which is 1 if g(i) ∈ I ∪ J\O′ and 0 otherwise. Since
|I ∪ J\O′| = Θ(k) and s = Θ(k), we have E[Yi] = Θ(1), and
Var[Yi] ≤ E[Y 2

i ] = O(1). Next note that |G| =
∑
i∈[n] Yi.

We thus can apply a Chebyshev inequality on Yi’s and con-
clude that |G| = Θ(n) with probability 1−O(1/n).

Plugging it to Lemma 5 we have with probability at least
(1−O(1/n)) that

Errk2(x− β̂) = O

(
min
β

Errk2(x− β)

)
. (21)

Inequality (12) in Theorem 4 follows from (20) and (21).

Complexities. Since each CS-Matrix or CM-matrix only
has one non-zero entry in each column, using sparse matrix
representation we can compute Ψ(hi, ri)x (i ∈ [d]) or Π(g)x
in O(n) time. Thus the sketching phase can be done in time
O(nd) = O(n log n).

The sketch size is O(k log n), simply because Π(g)x and
each Ψ(hi, ri)x (i ∈ [d]) has size O(k).

In the recovery phase, the dominating cost is the com-
putation of coordinates in ẑ, for each of which we need
O(d) = O(log n) time. Thus the total cost is O(n log n).

4.4 Streaming Implementations
Finally we discuss how to maintain the bias (estimation) β

at any time step in the streaming setting. This is useful since
we would like to answer individual point queries efficiently
without decoding the whole vector x; to this end we need
to first maintain β efficiently.

For `1-S/R, we can easily maintain a good approximation
of β with O(log log n) time per update: we can simply keep
the Θ(log n) sampled coordinates sorted during the stream-
ing process, and use their median as an approximation of β
at any time step.

For `2-S/R, the recovery procedure in Algorithm 4 takes
the average of items in the middle 2k of the s sorted buck-
ets w1/π1 ≤ . . . ≤ ws/πs. This can again be done in
O(log s) = O(log k + log log n) time per update using a bal-
anced binary search tree. An alternative implementation is
to use biased heap which has the same update/query com-
plexity but works faster in practice. Biased heap is described
in Algorithm 5 of the full version of this paper [7]. The whole
streaming implementation can also be found in Algorithm 6
of [7].

5. EXPERIMENTS
In this section we give our experimental studies.

5.1 The Setup
Reference Algorithms. We compare `1-S/R and `2-S/R
with Count-Sketch (CS) algorithm and Count-Median Sketch
(CM) algorithm, as well as non-linear sketches Count-Min
with conservative update (CM-CU) [17, 21] and Count-Min-
Log with conservative update (CML-CU) [28]. For CML-CU,
we set the base to be 1.00025.

We would like to mention that the Count-Min algorithm,
which was proposed in the same paper [12] as Count-Median,
is very similar to Count-Median; they share the same sketch-
ing matrix. In fact, Count-Median can be thought as a gen-
eralization of Count-Min [12]. On the other hand, CM-CU
is an improvement upon Count-Min and has strictly better
performance. We thus do not compare our algorithms with
Count-Min in our experiments.

Finally, we also compare `1-S/R and `2-S/R with two sim-
ple algorithms that just use the mean of all coordinates in x
as the bias (denoted by `1-mean and `2-mean respectively).
Due to the space constraints we leave this part to the full



version [7]. As mentioned earlier, using the mean of all the
coordinates as the bias cannot give us any theoretical guar-
antees – for example, it will perform badly on datasets where
the top-k largest coordinates are significantly larger than all
the rest coordinates. However, this simple heuristic does
work well on some real-world datasets. Thus they may be
interesting to practitioners.

Datasets. We compare the algorithms using a set of real
and synthetic datasets.

• Gaussian. Each entry of x is independently sampled
from the Gaussian distribution N (b, σ2) where b is the
bias. In our experiments, we fix n = 500, 000, 000,
σ = 15 and vary the value of b.

• WorldCup [2]. This dataset consists of all the requests
made to all resources of the 1998 World Cup Web
site between April 30, 1998 to July 26, 1998. We
picked all the requests made to all resources on May
14, 1998. We construct x from those requests where
each coordinate is the number of requests made in a
particular second. The dimension of x is therefore
24 × 3600 = 86, 400. There are about 3, 200, 000 re-
quests.

• Wiki [23]. This dataset contains pageviews to the
English-language Wikipedia from March 16, 2015 to
April 25, 2015. The number of pageviews of each sec-
ond is recorded. We model the data as a vector x
of length about 3, 500, 000 (we added up mobile views
and desktop views if they have the same timestamp).
There are about 13, 000, 000, 000 pageviews.

• Higgs [3]. The dataset was produced by Monte Carlo
simulations. There are 28 kinematic properties mea-
sured by the particle detectors in the accelerator. We
model the fourth feature as x of size 11, 000, 000. The
vector is non-negative.

• Meme [22]. This dataset includes memes from the meme-
tracker.org. We model the vector x as the lengths of
memes. Each coordinate of x can be thought as the
number of words of a specific meme. The dimension
of x is 210,999,824.

• Hudong [27]. There are “related to” links between ar-
ticles of the Chinese online encyclopaedia Hudong.3

This dataset contains about 2,452,715 articles, and
18,854,882 edges. Each edge (a, b) indicates that in
article a, there is a “related to” link pointing to arti-
cle b. Such links can be added or removed by users.
We consider edges as a data stream, arriving in the
order of editing time. Let x be the out-degree of those
articles, and xi is the number of “related to” links in
article i. This dataset will be used to test our algo-
rithms in the streaming model where we dynamically
maintain a sketch for x.

Measurements. We measure the effectiveness of the tested
algorithms by the tradeoffs between sketch size and the re-
covery quality. We also compare the running time of these
algorithms in the streaming setting.

3http://www.hudong.com/

For `1-S/R and `2-S/R, we use d = 9 copies of CS/CM-
matrices of dimensions s × n (see Algorithm 1 and Algo-
rithm 3). Theoretically we only need O(log n) extra words
for `1-S/R to estimate the bias, but in our implementation
we use s (typically much larger than log n) extra words for
both `1-S/R and `2-S/R, which makes it easier to compare
the accuracies of `1-S/R and `2-S/R. Moreover, it also al-
lows us to get more accurate and stable bias estimation for
`1-S/R. For CM, CS, CM-CU and CML-CU, we set d = 10 so
that all algorithms use 10s words. We will then vary s to
get multiple sketch-size versus accuracy tradeoffs.

For point query we use the following two measurements:
(1) average error 1

n
‖x− x̂‖1, and (2) max error ‖x− x̂‖∞.

Recall that x̂ is the approximation of x given by the recovery
scheme.

Computation Environments. All algorithms were imple-
mented in C++. All experiments were run in a server with
32GB RAM and an Intel Xeon E5-2650 v2 8-core processor;
the operating system is Red Hat Enterprise Linux 6.7.

5.2 Accuracy for Point Query
Gaussian dataset with n = 500, 000, 000. Figure 1a and

Figure 1b show the average and maximum errors of `1-
S/R, `2-S/R, CM, CS, CM-CU and CML-CU respectively on
Gaussian dataset with n = 500 million, σ = 15 and b = 100.

First note that `1-S/R and `2-S/R have similar average/
maximum errors when we increase s. An explanation for
this phenomenon is that in `2-S/R we use random signs
+1,−1 to reduce/cancel the noise (contributed by collid-
ing coordinates) in each hashing bucket, while in `1-S/R
we do not. But in Gaussian the “perturbation” of each
xi around the bias is symmetric, and thus both algorithms
achieve good cancellations. When s is small, the error of
`2-S/R is slightly smaller than that of `1-S/R, this might
because `1-S/R can not estimate the bias accurately. On
the other hand, both `1-S/R and `2-S/R outperform other
algorithms significantly. As a comparison, the errors of `1-
S/R and `2-S/R are less than 1/5 of CS, 1/20 of CML-CU,
1/50 of CM-CU and 1/200 of CM.

In Figure 1c and Figure 1d, we increase the value of b to
500. As we can observe from those figures that the average
and maximum errors of `1-S/R and `2-S/R are not affected
by the value of b, which can be fully predicted from our
theoretical results. On the contrary, the errors of CM, CS,
CM-CU and CML-CU increase significantly when we increase
b.

Wiki dataset. Figure 2 shows the accuracies of different
algorithms on Wiki. We have observed that when varying
the sketch size, `2-S/R always achieves the best recovery
quality. For example, when sketch size is s = 20, 000, the
average error of `2-S/R is smaller than 1/10 of the average
errors of other algorithms. For average error, `1-S/R and CS
perform similarly but the maximum error of CS is typically
2+ times larger than that of `1-S/R. The performance of
CM, CM-CU and CML-CU are much worse than `1-S/R and
`2-S/R.

WorldCup dataset. Figure 3 shows the accuracies of differ-
ent algorithms on WorldCup. While `2-S/R still achieves the
smallest average error, CS and `1-S/R follow closely. Again
CM, CM-CU and CML-CU perform significantly worse than
others. For maximum error, CS, CM-CU, CML-CU `1-S/R
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Figure 1: Gaussian dataset; n = 500, 000, 000 and σ = 15. Some curves for CM, CM-CU, CML-CU cannot be presented since
the errors are too large

(a) Average error (b) Maximum error

Figure 2: Wiki dataset; n = 3, 513, 600. The curve for CM
cannot be presented since the errors are too large

(a) Average error (b) Maximum error

Figure 3: WorldCup dataset; n = 86, 400

(a) Average error (b) Maximum error

Figure 4: Higgs dataset; n = 11, 000, 000.

(a) Average error (b) Maximum error

Figure 5: Meme dataset; n = 210, 999, 824. Some curves for
CM and CML-CU cannot be presented since the errors are
too large

and `2-S/R have similar errors; CM gives significantly (typ-
ically 4+ times) larger errors than other algorithms.

Higgs dataset. Figure 4 shows the accuracies of different
algorithms on Higgs. It can be observed that for average
error, `2-S/R again achieves the smallest error. The average
error of CS is typically larger than that of `2-S/R and is
much smaller than that of other algorithms. For maximum
error, CML-CU has similar accuracy as `2-S/R for large s.
The maximum errors of all other algorithms are larger than
that of `2-S/R. CM again has the worst performance.

Meme dataset. Figure 5 shows the accuracies of differ-
ent algorithms on Meme. We can again observe that `2-S/R
achieves the best recovery quality. The errors of CS are
about 30% larger than that of `2-S/R. Both `2-S/R and CS
outperform other algorithms significantly.

5.3 Effects of Sketch Depth
To see how the sketch depth d affects the accuracy of

the sketch, we conduct experiments as follows: we fix the
sketch size s and vary the sketch depth d. We only present
the results for Higgs and similar results can be observed in
other datasets.

It can be observed from Figure 7 that for all algorithms
we tested, increasing d will improve the accuracy. One can
also observe that CML-CU is more sensitive to the value of
d than other algorithms. In terms of accuracy, `2-S/R still
outperforms other algorithms and for the maximum error,
CML-CU follows closely when d is large.
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Figure 6: Hudong dataset; n = 2, 232, 285, there are 18, 854, 882 updates in total

(a) Average error (b) Maximum error

Figure 7: Higgs dataset for fixed s; n = 11, 000, 000. We
fix s = 50000 and vary d. The depth d here is for `1-S/R
and `2-S/R; for CS, CM, CM-CU and CML-CU, the depth is
d+ 1.

5.4 Distributed and Streaming Implementa-
tions

As mentioned in the introduction, it is straightforward to
implement our bias-aware sketches in the distributed model
by making use of the linearity. Moreover, their performance
in the distributed model can be fully predicted by the cen-
tralized counterparts – the total communication will just be
the number of sites times the size of the sketch, and the time
costs at the sites and the coordinator will be equal to the
sketching time and recovery time respectively.4 Therefore,
our experiments in the centralized model can also speak for
that in the distributed model.

We implemented our bias-aware sketches in the streaming
model. We refer readers to Algorithm 5 and 6 in the full
version [7] for the details. We have run our algorithms on
the streaming dataset Hudong where edges are added in the
streaming fashion. We update the sketch at each step, and
recover the entire x̂ after feeding in the whole dataset. To
measure the running time, we first process the whole data
stream and calculate the average update time. We then
recover the whole vector and calculate the average query
time.

4Regarding the random hash functions, the coordinator can
simply generate g, h1, . . . , hd : [n] → [s]; r1, . . . , rd : [n] →
{−1, 1} at the beginning and send to each site, which only
incurs an extra of O(log n) communication on each channel
and is thus negligible.

Accuracy for Point Query. Figure 6a and Figure 6b
show that the recovery errors of CS are 2+ times larger
than that of `2-S/R. The others algorithms have even larger
errors. In both Figures the results of CML-CU and CM-CU
are very close and their curves overlap with each other. The
performance of `1-S/R is also quite similar to CML-CU and
CM-CU.

Update/Recover Running Time. It can be seen from
Figure 6c and Figure 6d that all of the six tested algorithms
have similar processing time per update and per point query.
The time cost per update of `1-S/R is about 50% more than
CM, and that of `2-S/R is within a factor of 2 of CS. We
thus conclude that the additional components (such as the
Bias-Heap) used in `1-S/R and `2-S/R only generate small
overheads.

5.5 Summary of Experimental Results
We now summarize our experimental results. We have ob-

served that in terms of recovery quality, `1-S/R strictly out-
performs CM, and `2-S/R strictly outperforms CS. In general
`2-S/R is much better than `1-S/R, especially when the noise
around the bias is not symmetric. Note that this is similar
to the phenomenon that the error of CS is almost always
smaller than that of CM in practise, and is consistent to the
theoretical fact that if n � k, and the tail coordinates of
y = x − β(n) follows some long tail distribution, than the
error 1

k
Errk1(y) is much larger than 1√

k
Errk2(y).

In almost all datasets we have tested, `2-S/R outperforms
CML-CU and CM-CU, the latter two are considered as im-
proved versions of the Count-Min sketch.

The sketch depth d also affects the accuracy of a sketch.
Larger d leads to better performance. It is also observed
that some algorithms (e.g. CML-CU) are more sensitive to
d than others.

As for running time (update/query), the differences be-
tween `1-S/R, `2-S/R, CS, CM, CM-CU and CML-CU are not
significant. The overhead introduced by the components
used to estimate the bias is fairly low in both `1-S/R and
`2-S/R.

6. CONCLUSION
In this paper we formulated the bias-aware sketching and

recovery problem, and proposed two algorithms that strictly
generalize the widely used Count-Sketch and Count-Median
algorithms. Our bias-aware sketches, due to their linearity,
can be easily implemented in the streaming and distributed



computation models. We have also verified their effective-
ness experimentally, and showed the advantages of our bias-
aware sketches over Count-Sketch, Count-Median and the
improved versions of Count-Min in both synthetic and real-
world datasets.
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