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Abstract

We offer a survey of recent results on covariance estimation for heavy-

tailed distributions. By unifying ideas scattered in the literature, we

propose user-friendly methods that facilitate practical implementation.

Specifically, we introduce element-wise and spectrum-wise truncation

operators, as well as their M -estimator counterparts, to robustify the

sample covariance matrix. Different from the classical notion of ro-

bustness that is characterized by the breakdown property, we focus

on the tail robustness which is evidenced by the connection between

nonasymptotic deviation and confidence level. The key observation is

that the estimators needs to adapt to the sample size, dimensional-

ity of the data and the noise level to achieve optimal tradeoff between

bias and robustness. Furthermore, to facilitate their practical use, we

propose data-driven procedures that automatically calibrate the tuning

parameters. We demonstrate their applications to a series of struc-

tured models in high dimensions, including the bandable and low-rank

covariance matrices and sparse precision matrices. Numerical studies

lend strong support to the proposed methods.

Keywords: Covariance estimation, heavy-tailed data, M -estimation, nonasymp-

totics, tail robustness, truncation.

1 Introduction

Covariance matrices are important in multivariate statistics. The estimation of co-

variance matrices, therefore, serves as a building block for many important statistical
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methods, including principal component analysis, discriminant analysis, clustering

analysis and regression analysis, among many others. Recently, the problem of

estimation of structured large covariance matrices, such as bandable, sparse and

low-rank matrices, has attracted ever-growing attention in statistics and machine

learning (Bickel and Levina, 2008a,b; Cai, Ren and Zhou, 2016; Fan, Liao and Liu,

2016). This problem has many applications, ranging from functional magnetic res-

onance imaging (fMRI), analysis of gene expression arrays to risk management and

portfolio allocation.

Theoretical properties of large covariance estimators discussed in the litera-

ture often hinge heavily on the Gaussian or sub-Gaussian1 assumptions (Vershynin,

2012). See, for example, Theorem 1 of Bickel and Levina (2008a). Such an assump-

tion is typically very restrictive in practice. For example, a recent fMRI study by

Eklund et al. (2016) reported that most of the common software packages, such

as SPM and FSL, for fMRI analysis can result in inflated false-positive rates up

to 70% under 5% nominal levels, and questioned a number of fMRI studies among

approximately 40,000 studies according to PubMed. Their results suggested that

The principal cause of the invalid cluster inferences is spatial autocorre-

lation functions that do not follow the assumed Gaussian shape.

Eklund et al. (2016) plotted the empirical versus theoretical spatial autocorrelation

functions for several datasets. The empirical autocorrelation functions have much

heavier tails compared to their theoretical counterparts under the commonly used

assumption of a Gaussian random field, which causes the failure of fMRI inferences

(Eklund et al., 2016). Similar phenomenon has also been discovered in genomic

studies (Liu et al., 2003; Purdom and Holmes, 2005) and in quantitative finance

(Cont, 2001). It is therefore imperative to develop robust inferential procedures

that are less sensitive to the distributional assumptions.

We are interested in constructing estimators that admit tight nonasymptotic

deviation guarantees under weak moment assumptions. Heavy-tailed distribution is

a viable model for data contaminated by outliers that are typically encountered in

applications. Due to heavy tailedness, the probability that some observations are

sampled far away from the “true” parameter of the population is non-negligible.

We refer to these outlying data points as stochastic outliers. A procedure that

is robust against such outliers, evidenced by its better finite-sample performance

than a non-robust method, is called a tail-robust procedure. In this paper, by

unifying ideas scattered in the literature, we provide a unified framework for con-

structing user-friendly tail-robust covariance estimators. Specifically, we propose

element-wise and spectrum-wise truncation operators, as well as their M -estimator

counterparts, with adaptively chosen robustification parameters. Theoretically, we

establish nonasymptotic deviation bounds and demonstrate that the robustification

parameters should adapt to the sample size, dimensionality and noise level for op-

timal tradeoff between bias and robustness. Our goal is to obtain estimators that

1A random variable Z is said to have sub-Gaussian tails if there exists constants c1 and c2 such

that P(|Z − EZ| > t) ≤ c1 exp(−c2t2) for all t ≥ 0.
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are computationally efficient and easily implementable in practice. To this end, we

propose data-driven schemes to calibrate the tuning parameters, making our pro-

posal user-friendly. Finally, we discuss applications to several structured models in

high dimensions, including bandable matrices, low-rank covariance matrices as well

as sparse precision matrices. In the supplementary material, we further consider

robust covariance estimation and inference under factor models, which might be of

independent interest.

Our definition of robustness is different from the conventional perspective under

Huber’s ε-contamination model (Huber, 1964), where the focus has been on develop-

ing robust procedures with a high breakdown point. The breakdown point (Hampel,

1971) of an estimator is defined (informally) as the largest proportion of outliers in

the data for which the estimator remains stable. Since the seminal work of Tukey

(1975), a number of depth-based robust procedures have been developed; see, for

example, the papers by Liu (1990), Zuo and Serfling (2000), Mizera (2002) and

Salibian-Barrera and Zamar (2002), among others. Another line of work focuses

on robust and resistant M -estimators, including the least median of squares and

least trimmed squares (Rousseeuw, 1984), the S-estimator (Rousseeuw and Yohai,

1984) and the MM-estimator (Yohai, 1987). We refer to Portnoy and He (2000) for

a literature review on classical robust statistics, and to Chen, Gao and Ren (2018)

for recent developments on nonasymptotic analysis under contamination models.

The rest of the paper is organized as follows. We start with a motivating example

in Section 2, which reveals the downsides of the sample covariance matrix. In Section

3, we introduce two types of generic robust covariance estimators and establish their

deviation bounds under different norms of interest. The finite-sample performance

of the proposed estimators, both element-wise and spectrum-wise, depends on a

careful tuning of the robustification parameter, which should adapt to the noise level

for bias-robustness tradeoff. We also discuss the median-of-means estimator, which

is virtually tuning-free at the cost of slightly stronger assumptions. For practical

implementation, in Section 4 we propose a data-driven scheme to choose the key

tuning parameters. Section 5 presents various applications to estimating structured

covariance and precision matrices. Numerical studies are provided in Section 6. We

close this paper with a discussion in Section 7.

1.1 Overview of the previous work

In the past several decades, there has been a surge of work on robust covariance

estimation in the absence of normality. Examples include the Minimum Covariance

Determinant (MCD) estimator, the Minimum Volume Ellipsoid (MVE) estimator,

Maronna’s (Maronna, 1976) and Tyler’s (Tyler, 1987) M -estimators of multivariate

scatter matrices. We refer to Hubert, Rousseeuw and Van Aelst (2008) for a compre-

hensive review. Asymptotic properties of these methods have been established for

the family of elliptically symmetric distributions; see, for example, Davies (1992),

Butler, Davies and Jhun (1993) and Zhang, Cheng and Singer (2016), among others.

However, the aforementioned estimators either rely on parametric assumptions, or
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impose a shape constraint on the sampling distribution. Under a general setting

where neither of these assumptions are made, robust covariance estimation remains

a challenging problem.

The work of Catoni (2012) triggered a growing interest in developing tail-robust

estimators, which are characterized by tight nonasymptotic deviation analysis, rather

than mean squared errors. The current state-of-the-art methods for covariance es-

timation with heavy-tailed data include those of Catoni (2016), Minsker (2018),

Minsker and Wei (2018), Avella-Medina et al. (2018), Mendelson and Zhivotovskiy

(2018). From a spectrum-wise perspective, Catoni (2016) constructed a robust es-

timator of the Gram and covariance matrices of a random vector X ∈ Rd via

estimating the quadratic forms E〈u,X〉2 uniformly over the unit sphere in Rd, and

proved error bounds under the operator norm. More recently, Mendelson and Zhiv-

otovskiy (2018) proposed a different robust covariance estimator that admits tight

deviation bounds under the finite kurtosis condition. Both constructions, however,

involve brute-force search over every direction in a d-dimensional ε-net, and thus

are computationally intractable. From an element-wise perspective, Avella-Medina

et al. (2018) combined robust estimates of the first and second moments to obtain

variance estimators. In practice, three potential drawbacks of this approach are:

(i) the accumulated error consists of those from estimating the first and second

moments, which may be significant; (ii) the diagonal variance estimators are not

necessarily positive and therefore additional adjustments are required; and (iii) us-

ing the cross-validation to calibrate a total number of O(d2) tuning parameters is

computationally expensive.

Building on the ideas of Minsker (2018) and Avella-Medina et al. (2018), we pro-

pose user-friendly tail-robust covariance estimators that enjoy desirable finite-sample

deviation bounds under weak moment conditions. The constructed estimators only

involve simple truncation techniques and are computationally friendly. Through a

novel data-driven tuning scheme, we are able to efficiently compute these robust

estimators for large-scale problems in practice. These two points distinguish our

work from the literature on the topic. The proposed robust procedures serve as

building blocks for estimating large structured covariance and precision matrices,

and we illustrate their broad applicability in a series of problems.

1.2 Notation

We adopt the following notation throughout the paper. For any 0 ≤ r, s ≤ ∞ and a

d×d matrix A = (Ak`)1≤k,`≤d, we define the max norm ‖A‖max = max1≤k,`≤d |Ak`|,
the Frobenius norm ‖A‖F = (

∑
1≤k,`≤dA

2
k`)

1/2 and the operator norm

‖A‖r,s = sup
u=(u1,...,ud)ᵀ:‖u‖r=1

‖Au‖s,

where ‖u‖rr =
∑d

k=1 |uk|r for r ∈ (0,∞), ‖u‖0 =
∑d

k=1 I(|uk| 6= 0) and ‖u‖∞ =

max1≤k≤d |uk|. In particular, it holds ‖A‖1,1 = max1≤`≤d
∑d

k=1 |Ak`| and ‖A‖∞,∞ =

max1≤k≤d
∑d

`=1 |Ak`|. Moreover, we write ‖A‖2 := ‖A‖2,2 for the spectral norm and
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use r(A) = tr(A)/‖A‖2 to denote the effective rank of a nonnegative definite ma-

trix A, where tr(A) =
∑d

k=1Akk is the trace of A. When A is symmetric, it is

well known that ‖A‖2 = max1≤k≤d |λk(A)| where λ1(A) ≥ λ2(A) . . . ≥ λd(A) are

the eigenvalues of A. For any matrix A ∈ Rd×d and an index set J ⊆ {1, . . . , d}2,
we use Jc to denote the complement of J , and AJ to denote the submatrix of A

with entries indexed by J . For a real-valued random variable X, let kurt(X) be the

kurtosis of X, defined as kurt(X) = E(X−µ)4/σ4, where µ = EX and σ2 = var(X).

2 Motivating example: a challenge of heavy-tailedness

Suppose that we observe a sample of independent and identically distributed (i.i.d.)

copies X1, . . . ,Xn of a random vector X = (X1, . . . , Xd)
ᵀ ∈ Rd with mean µ and

covariance matrix Σ = (σk`)1≤k,`≤d. To assess the difficulty of mean and covariance

estimation for heavy-tailed distributions, we first provide a lower bound for the

deviation of the empirical mean under the `∞-norm in Rd.

Proposition 2.1. For any σ > 0 and 0 < δ < (2e)−1, there exists a distribution

in Rd with mean µ and covariance matrix σ2Id such that the empirical mean X̄ =

(1/n)
∑n

i=1Xi of i.i.d. observations X1, . . . ,Xn from this distribution satisfies, with

probability at least δ,

‖X̄ − µ‖∞ ≥ σ
√

d

nδ

(
1− 2eδ

n

)(n−1)/2
. (2.1)

The above proposition is a multivariate extension of Proposition 6.2 of Catoni

(2012). It provides a lower bound under the `∞-norm for estimating a mean vec-

tor via the empirical mean. On the other hand, combining the union bound with

Chebyshev’s inequality, we obtain that with probability at least 1 − δ,

‖X̄ − µ‖∞ ≤ σ
√

d

nδ
.

Together, this upper bound and inequality (2.1) show that the worst case deviations

of the empirical means grow polynomially in 1/δ under the `∞-norm in the presence

of heavy-tailed distributions. As we will see later, a more robust estimator can

achieve an exponential-type deviation bound under weak moment conditions.

To demonstrate the practical implications of Proposition 2.1, we perform a

toy numerical study on covariance matrix estimation. Let X1, . . . ,Xn be i.i.d.

copies of X = (X1, . . . , Xd) ∈ Rd, where Xk’s are independent and have centered

Gamma(3, 1) distribution so that µ = 0 and Σ = 3Id. We compare the performance

of three methods: the sample covariance matrix, the element-wise truncated covari-

ance matrix and the spectrum-wise truncated covariance matrix. The latter two

are tail-robust covariance estimators that will be introduced in Sections 3.1 and 3.2

respectively. We report the estimation errors under the max norm. We take n = 200

and let d increase from 50 to 500 with a step size of 50. The results are based on 50

simulations. Figure 1 displays the average (line) and the spread (dots) of estimation
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S a m pl e c o v ari a n c e
S p e ctr u m − wi s e tr u n c at e d
El e m e nt − wi s e tr u n c at e d

Fi g ur e 1: Pl ot s of e sti m ati o n err or u n d er m a x n or m v er s u s di m e n si o n.

err or s f or e a c h m et h o d a s t h e di m e n si o n i n cr e a s e s. We s e e t h at t h e s a m pl e c o v ari-

a n c e e sti m at or h a s n ot o nl y t h e l ar g e st a v er a g e err or b ut al s o t h e hi g h e st v ari a bilit y

i n all t h e s etti n g s. T hi s e x a m pl e d e m o n str at e s t h at t h e s a m pl e c o v ari a n c e m atri x

s u ff er s fr o m p o or fi nit e- s a m pl e p erf or m a n c e w h e n d at a ar e h e a v y-t ail e d.

3 T ail- r o b u s t c o v a ri a n c e e s ti m a ti o n

3. 1 El e m e n t- wi s e t r u n c a t e d e s ti m a t o r

We c o n si d er t h e s a m e s etti n g a s i n t h e pr e vi o u s s e cti o n. F or m e a n e sti m ati o n, t h e

s u b o pti m alit y of d e vi ati o n s of ¯X = ( ¯X 1 , . . . , ¯X d ) u n d er ∞ - n or m i s d u e t o t h e f a ct

t h at t h e t ail pr o b a bilit y of | ¯X k − µ k | d e c a y s o nl y p ol y n o mi all y. A si m pl e y et n at ur al

i d e a f or i m pr o v e m e nt i s t o tr u n c at e t h e d at a t o eli mi n at e o utli er s i ntr o d u c e d b y

h e a v y-t ail e d n oi s e s, s o t h at e a c h e ntr y of t h e r e s ulti n g e sti m at or h a s s u b- G a u s si a n

t ail s. T o i m pl e m e nt t hi s i d e a, w e i ntr o d u c e t h e f oll o wi n g tr u n c ati o n o p er at or, w hi c h

i s cl o s el y r el at e d t o t h e H u b er l o s s.

D e fi ni ti o n 3. 1 ( Tr u n c ati o n o p e r at or) . L et ψ τ (·) b e a tr u n c ati o n o p er at or gi v e n b y

ψ τ (u ) = ( |u | ∧ τ ) si g n( u ), u ∈ R , ( 3. 1)

w h er e t h e tr u n c ati o n p ar a m et er τ > 0 i s al s o r ef err e d t o a s t h e r o b u sti fi c ati o n

p a r a m et e r t h at tr a d e s o ff bi a s f or r o b u st n e s s.

A s a n ill u str ati o n, w e a s s u m e t h at µ = 0 w h e n c e Σ = E (X X ). We a p pl y

t h e tr u n c ati o n o p er at or a b o v e t o e a c h e ntr y of X i X i , a n d t h e n t a k e t h e a v er a g e t o

o bt ai n

σ T
0 , k =

1

n

n

i= 1

ψ τ k
(X i k X i ), 1 ≤ k, ≤ d,
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where τk` > 0 are robustification parameters. When the mean vector µ is unspeci-

fied, a straightforward approach is to first estimate the mean vector using existing

robust methods (Minsker, 2015; Lugosi and Mendelson, 2019), and then to employ

σ̂T0,k` as robust estimates of the second moments. Estimating the first and second

moments separately will unavoidably introduce additional tuning parameters, which

increases both statistical variability and computational complexity. In what follows,

we propose to use the pairwise difference approach, which is free of mean estimation.

To the best of our knowledge, the difference-based techniques can be traced back

to Rice (1984) and Hall, Kay and Titterington (1990) in the context of bandwidth

selection and variance estimation for nonparametric regression.

Let N := n(n− 1)/2 and define the paired data

{Y1,Y2, . . . ,YN} = {X1 −X2,X1 −X3, . . . ,Xn−1 −Xn}, (3.2)

which are identically distributed from a random vector Y with mean 0 and covari-

ance matrix cov(Y ) = 2Σ. It is easy to check that the sample covariance matrix,

Σ̂sam = (1/n)
∑n

i=1(Xi− X̄)(Xi− X̄)ᵀ with X̄ = (1/n)
∑n

i=1Xi, can be expressed

as a U-statistic

Σ̂sam =
1

N

N∑
i=1

YiY
ᵀ
i /2.

Following the argument from the last section, we apply the truncation operator

ψτ to YiY
ᵀ
i /2 entry-wise, and then take the average to obtain

σ̂T1,k` =
1

N

N∑
i=1

ψτk`(YikYi`/2), 1 ≤ k, ` ≤ d.

Concatenating these estimators, we define the element-wise truncated covariance

matrix estimator via

Σ̂T1 = Σ̂T1 (Γ) = (σ̂T1,k`)1≤k,`≤d, (3.3)

where Γ = (τk`)1≤k,`≤d is a symmetric matrix of parameters. Σ̂T1 can be viewed

as a truncated version of the sample covariance matrix Σ̂sam. We assume that

n ≥ 2, d ≥ 1 and define m = bn/2c, the largest integer not exceeding n/2. Moreover,

let V = (vk`)1≤k,`≤d be a symmetric d× d matrix such that

v2k` = E(Y1kY1`/2)2 = E{(X1k −X2k)(X1` −X2`)}2/4.

Theorem 3.1. For any 0 < δ < 1, the estimator Σ̂T1 = Σ̂T1 (Γ) defined in (3.3) with

Γ =
√
m/(2 log d+ log δ−1) V (3.4)

satisfies

P

(
‖Σ̂T1 −Σ‖max ≥ 2‖V‖max

√
2 log d+ log δ−1

m

)
≤ 2δ. (3.5)

7



Theorem 3.1 indicates that, with properly calibrated parameter matrix Γ, the

resulting covariance matrix estimator achieves element-wise tail robustness against

heavy-tailed distributions: provided the fourth moments are bounded, each entry

of Σ̂T1 concentrates tightly around its mean so that the maximum error scales as√
log(d)/n +

√
log(δ−1)/n. Element-wise, we are able to accurately estimate Σ at

high confidence levels under the constraint that log(d)/n is small. Implicitly, the

dimension d = d(n) is regarded as a function of n, and we shall use array asymptotics

“n, d→∞” to characterize large sample behaviors. The finite sample performance,

on the other hand, is characterized via nonasymptotic probabilistic bounds with

explicit dependence on n and d.

Remark 1. It is worth mentioning that the estimator given in (3.3) and (3.4) is

not a genuine sub-Gaussian estimator, in a sense that it depends on the confidence

level 1 − δ at which one aims to control the error. More precisely, following the

terminology used by Devroye et al. (2016), it is called a δ-dependent sub-Gaussian

estimator (under the max norm). Estimators of a similar type include those of

Catoni (2012), Minsker (2015), Brownlees, Joly and Lugosi (2015), Hsu and Sabato

(2016), Minsker (2018) and Avella-Medina et al. (2018), among others. For univari-

ate mean estimation, Devroye et al. (2016) proposed multiple-δ mean estimators that

satisfy exponential-type concentration bounds uniformly over δ ∈ [δmin, 1). The idea

is to combine a sequence of δ-dependent estimators in a way very similar to Lepski’s

method (Lepski, 1990).

Remark 2. Since the element-wise truncated estimator is obtained by treating each

covariance σk` separately as a univariate parameter, the problem is equivalent to

estimation of a large vector given by the concatenation of the columns of Σ. These

type of results are particularly useful for proving upper bounds for sparse covariance

and precision estimators in high dimensions; see Section 5. Integrated with `∞-type

perturbation bounds, it can also be applied to principle component analysis and

factor analysis for heavy-tailed data (Fan et al., 2018). However, when dealing with

large covariance matrices with bandable or low-rank structure, controlling the es-

timation error under spectral norm is arguably more relevant. A natural idea is

then to truncate the spectrum of the sample covariance matrix instead of its en-

tries, which leads to the spectrum-wise truncated estimator defined in the following

section.

3.2 Spectrum-wise truncated estimator

In this section, we propose and study a covariance estimator that is tail-robust in the

spectral norm. To this end, we directly apply the truncation operator to matrices

in their spectrum domain. We need the following standard definition of a matrix

functional.

Definition 3.2 (Matrix functional). Given a real-valued function f defined on R
and a symmetric A ∈ RK×K with eigenvalue decomposition A = UΛUᵀ such

8



that Λ = diag(λ1, . . . , λK), f(A) is defined as f(A) = Uf(Λ)Uᵀ, where f(Λ) =

diag(f(λ1), . . . , f(λK)).

Following the same rational as in the previous section, we propose a spectrum-

wise truncated covariance estimator based on the pairwise difference approach:

Σ̂T2 = Σ̂T2 (τ) =
1

N

N∑
i=1

ψτ (YiY
ᵀ
i /2), (3.6)

where Yi are given in (3.2). Note that YiY
ᵀ
i /2 is a rank-one matrix with eigenvalue

‖Yi‖22/2 and the corresponding eigenvector Yi/‖Yi‖2. By Definition 3.2, Σ̂T2 can be

rewritten as

1

N

N∑
i=1

ψτ

(
1

2
‖Yi‖22

)
YiY

ᵀ
i

‖Yi‖22

=
1(
n
2

) ∑
1≤i<j≤n

ψτ

(
1

2
‖Xi −Xj‖22

)
(Xi −Xj)(Xi −Xj)

ᵀ

‖Xi −Xj‖22
.

This alternative expression renders the computation almost effortless. The follow-

ing theorem provides an exponential-type concentration inequality for Σ̂T2 under

operator norm, which is a useful complement to the Remark 8 of Minsker (2018).

Similarly to Theorem 3.1, our next result shows that Σ̂T2 achieves exponential-type

concentration in the operator norm for heavy-tailed data with finite operator-wise

fourth moment, meaning that

v2 =
1

4
‖E{(X1 −X2)(X1 −X2)

ᵀ}2‖2 (3.7)

is finite.

Theorem 3.2. For any 0 < δ < 1, the estimator Σ̂T2 = Σ̂T2 (τ) with

τ = v

√
m

log(2d) + log δ−1
(3.8)

satisfies, with probability at least 1 − δ,

‖Σ̂T2 −Σ‖2 ≤ 2v

√
log(2d) + log δ−1

m
. (3.9)

To better understand this result, note that v2 can be written as

1

2
‖E{(X − µ)(X − µ)ᵀ}2 + tr(Σ)Σ + 2Σ2‖2,

which is well-defined if the fourth moments E(X4
k) are finite. Let

K = sup
u∈Rd

kurt(uᵀX)

be the maximal kurtosis of the one-dimensional projections of X. Then

v2 ≤ ‖Σ‖2{(K + 1)tr(Σ)/2 + ‖Σ‖2}.

The following result is a direct consequence of Theorem 3.2: Σ̂T2 admits exponential-

type concentration for data with finite kurtoses.
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Corollary 3.1. Assume that K = supu∈Rd kurt(uᵀX) is finite. Then, for any

0 < δ < 1, the estimator Σ̂T2 = Σ̂T2 (τ) defined in Theorem 3.2 satisfies

‖Σ̂T2 −Σ‖2 . K1/2‖Σ‖2

√
r(Σ)(log d+ log δ−1)

n
(3.10)

with probability at least 1 − δ.

Remark 3. An estimator proposed by Mendelson and Zhivotovskiy (2018) achieves

a more refined deviation bound, namely, with ‖Σ‖2
√

r(Σ)(log d+ log δ−1) in (3.10)

improved to ‖Σ‖2
√

r(Σ) log r(Σ) + ‖Σ‖2
√

log δ−1; in particular, the deviations

are controlled by the spectral norm ‖Σ‖2 instead of the (possibly much larger)

trace tr(Σ). Estimators admitting such deviations guarantees are often called

“sub-Gaussian” as they achieve performance similar to the sample covariance ob-

tained from data with multivariate normal distributions. Unfortunately, the afore-

mentioned estimator is computationally intractable. The question of computa-

tional tractability was subsequently resolved by Hopkins (2018) and Cherapanam-

jeri, Flammarion and Bartlett (2019). The former showed that a polynomial-time

algorithm achieves statistically optimal rate under the `2-norm, and the latter pro-

posed an estimator that has a significantly faster runtime and has sub-Gaussian

error bounds; in particular, these results apply to covariance estimation in Frobe-

nius norm. Yet it remains an open problem to design a polynomial-time algorithm

capable of efficiently computing the estimator proposed by Mendelson and Zhivo-

tovskiy (2018) that achieves near-optimal deviation in the spectral norm.

3.3 An M-estimation viewpoint

In this section, we discuss alternative tail-robust covariance estimators from an M -

estimation perspective, and study both the element-wise and spectrum-wise trun-

cated estimators. The connection with truncated covariance estimators is discussed

at the end of this section. To proceed, we revisit the definition of Huber loss.

Definition 3.3 (Huber loss). The Huber loss `τ (·) (Huber, 1964) is defined as

`τ (u) =

{
u2/2, if |u| ≤ τ,
τ |u| − τ2/2, if |u| > τ,

(3.11)

where τ > 0 is a robustification parameter similar to that in Definition 3.1.

Compared with the squared error loss, large values of u are down-weighted in

the Huber loss, yielding robustness. Generally speaking, minimizing Huber’s loss

produces a biased estimator of the mean, and parameter τ can be chosen to control

the bias. In other words, τ quantifies the tradeoff between bias and robustness. As

observed by Sun, Zhou and Fan (2018), in order to achieve an optimal tradeoff, τ

should adapt to the sample size, dimension and the noise level of the problem.

Starting with the element-wise method, we define the entry-wise estimators

σ̂H1,k` = argmin
θ∈R

N∑
i=1

`τk`(YikYi`/2− θ), 1 ≤ k, ` ≤ d, (3.12)
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where τk` are robustification parameters satisfying τk` = τ`k. When k = `, even

though the minimization is over R, it turns out the solution σ̂H1,kk is still positive

almost surely and therefore provides a reasonable estimator of σH1,kk. To see this,

for each 1 ≤ k ≤ d, define θ0k = min1≤i≤N Y
2
ik/2 and note that for any τ > 0 and

θ ≤ θ0k,
N∑
i=1

`τ (Y 2
ik/2− θ) ≥

N∑
i=1

`τ (Y 2
ik/2− θ0k).

It implies that σ̂H1,kk ≥ θ0k, which is strictly positive as long as there are no tied

observations. Again, concatenating these marginal estimators, we obtain a Huber-

type M -estimator

Σ̂H1 = Σ̂H1 (Γ) = (σ̂H1,k`)1≤k,`≤d, (3.13)

where Γ = (τk`)1≤k,`≤d. The following main result of this section indicates that

Σ̂H1 achieves tight concentration under the max norm for data with finite fourth

moments.

Theorem 3.3. Let V = (vk`)1≤k,`≤d be a symmetric matrix with entries

v2k` = var((X1k −X2k)(X1` −X2`)/2). (3.14)

For any 0 < δ < 1, the covariance estimator Σ̂H1 given in (3.13) with

Γ =

√
m

2 log d+ log δ−1
V (3.15)

satisfies

P

(
‖Σ̂H1 −Σ‖max ≥ 4‖V‖max

√
2 log d+ log δ−1

m

)
≤ 2δ (3.16)

as long as m ≥ 8 log(d2δ−1).

The M -estimator counterpart of the spectrum-truncated covariance estimator

was first proposed by Minsker (2018) using a different robust loss function, and

extended by Minsker and Wei (2018) to more general framework of U -statistics. In

line with the previous element-wise M -estimator, we restrict our attention to the

Huber loss and consider

Σ̂H2 ∈ argmin
M∈Rd×d:M=Mᵀ

tr

{
1

N

N∑
i=1

`τ (YiY
ᵀ
i /2−M)

}
, (3.17)

which is a natural robust variant of the sample covariance matrix

Σ̂sam = argmin
M∈Rd×d:M=Mᵀ

tr

{
1

N

N∑
i=1

(YiY
ᵀ
i /2−M)2

}
.

Define the d× d matrix S0 = E{(X1 −X2)(X1 −X2)
ᵀ/2−Σ}2 that satisfies

S0 =
E{(X − µ)(X − µ)ᵀ}2 + tr(Σ)Σ

2
.

The following result is modified from Corollary 4.1 of Minsker and Wei (2018).
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Theorem 3.4. Assume that there exists some K > 0 such that supu∈Rd kurt(uᵀX) ≤
K. Then for any 0 < δ < 1 and v ≥ ‖S0‖1/22 , the M -estimator Σ̂H2 with τ =

v
√
m/(2 log d+ 2 log δ−1) satisfies

‖Σ̂H2 −Σ‖2 ≤ C1v

√
log d+ log δ−1

m
(3.18)

with probability at least 1 − 5δ as long as n ≥ C2K · r(Σ)(log d + log δ−1), where

C1, C2 > 0 are absolute constants.

To solve the convex optimization problem (3.17), Minsker and Wei (2018) pro-

pose the following gradient descent algorithm: starting with an initial estimator

Σ̂(0), at iteration t = 1, 2, . . ., compute

Σ̂(t) = Σ̂(t−1) − 1

N

N∑
i=1

ψτ

(
YiY

ᵀ
i /2− Σ̂(t−1)

)
,

where ψτ is given in (3.1). From this point of view, the truncated estimator Σ̂T2
given in (3.6) can be viewed as the first step of the gradient descent iteration for

solving optimization problem (3.17) initiated at Σ̂(0) = 0. This procedure enjoys

a nice contraction property, as demonstrated by Lemma 3.2 of Minsker and Wei

(2018). However, since the difference matrix YiY
ᵀ
i /2− Σ̂(t−1) for each t is no longer

rank-one, we need to perform a singular value decomposition to compute the matrix

ψτ (YiY
ᵀ
i /2− Σ̂(t−1)) for i = 1, . . . , N .

We end this section with a discussion of the similarities and differences be-

tween M-estimators and estimators defined via truncation. Both types of estima-

tors achieve tail robustness through a bias-robustness tradeoff, either element-wise

or spectrum-wise. However (informally speaking), M -estimators truncate symmetri-

cally around the true expectation as shown in (3.12) and (3.17), while the truncation-

based estimators truncate around zero as in (3.3) and (3.6). Due to smaller bias,

M -estimators are expected to outperform the simple truncation estimators. How-

ever, since the optimal choice of the robustification parameter is often much larger

than the population moments in magnitude, either element-wise or spectrum-wise,

the difference between truncation estimators and M -estimators becomes insignif-

icant when the sample size n is large. Therefore, we advocate using the simple

truncated estimator primarily due to its simplicity and computational efficiency.

3.4 Median-of-means estimator

Truncation-based approaches described in the previous sections require knowledge

of robustification parameters τk`. Adaptation and tuning of these parameters will be

discussed in Section 4 below. Here, we suggest another method that does not need

any tuning but requires stronger assumptions, namely, existence of moments of order

six. This method is based on the median-of-means (MOM) technique (Nemirovsky

and Yudin, 1983; Devroye et al., 2016; Minsker and Strawn, 2017). To this end,

assume that the index set {1, . . . , n} is partitioned into k disjoint groups G1, . . . , Gk
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(partitioning scheme is assumed to be independent of X1, . . . ,Xn) such that the

cardinalities |Gj | satisfy
∣∣|Gj | − n

k

∣∣ ≤ 1 for j = 1, . . . , k. For each j = 1, . . . , k, let

X̄Gj = (1/|Gj |)
∑

i∈Gj
Xi and

Σ̂(j) =
1

|Gj |
∑
i∈Gj

(Xi − X̄Gj )(Xi − X̄Gj )
ᵀ

be the sample covariance evaluated over the data in group j. Then, for all 1 ≤
`,m ≤ d, the MOM estimator of σ`m is defined via

σ̂MOM
`m = median

{
σ̂
(1)
`m, . . . , σ̂

(k)
`m

}
,

where σ̂
(j)
`m is the entry in the `-th row and m-th column of Σ̂(j). This leads to

Σ̂MOM =
(
σ̂MOM
`m

)
1≤`,m≤d .

Let ∆2
`m = Var((X` − EX`)(Xm − EXm)) for 1 ≤ `,m ≤ d. The following result

provides a deviation bound for the MOM estimator Σ̂MOM under the max norm.

Theorem 3.5. Assume that min`,m ∆2
`m ≥ c` > 0 and max1≤k≤d E|Xk − EXk|6 ≤

cu <∞. Then, there exists C0 > 0 depending only on (c`, cu) such that

P

(
‖Σ̂MOM −Σ‖max ≥ 3 max

`,m
∆`m

{√
log(d+ 1) + log δ−1

n
+ C0

k

n

})
≤ 2δ (3.19)

for all δ satisfying
√
{log(d+ 1) + log δ−1}/k + C0

√
k/n ≤ 0.33.

Remark 4.

1. The only user-defined parameter in the definition of Σ̂MOM is the number of

subgroups k. The bound above shows that, provided k �
√
n (say, one could

set k =
√
n

logn), the term C0
k
n in (3.19) is of smaller order, and we obtain an

estimator that admits tight deviation bounds for a wide range of δ. In this

sense, estimator Σ̂MOM is essentially a multiple-δ estimator (Devroye et al.,

2016); see Remark 1.

2. Application of the MOM construction to large covariance estimation prob-

lems has been explored by Avella-Medina et al. (2018). However, the results

obtained therein are insufficient to conclude that MOM estimators are truly

“tuning-free”. Under a bounded fourth moment assumption, Avella-Medina

et al. (2018) derived a deviation bound (under max norm) for the element-

wise median-of-means estimator with the number of partitions depending on

a prespecified confidence level parameter. See Proposition 5 therein.

4 Automatic tuning of robustification parameters

For all the proposed tail-robust estimators besides the median-of-means, the robus-

tification parameter needs to adapt properly to the sample size, dimensionality and
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noise level in order to achieve optimal tradeoff between bias and robustness in finite

samples. An intuitive yet computationally expensive idea is to use cross-validation.

Another approach is based on Lepski’s method (Lepski and Spokoiny, 1997); this ap-

proach yields adaptive estimators with provable guarantees (Minsker, 2018; Minsker

and Wei, 2018), however, it is also not computationally efficient. In this section, we

propose tuning-free approaches for constructing both truncated and M -estimators

that have low computational costs. Our nonasymptotic analysis provides useful

guidance on the choice of key tuning parameters.

4.1 Adaptive truncated estimator

In this section we introduce a data-driven procedure that automatically tunes the ro-

bustification parameters in the element-wise truncated covariance estimator. Practi-

cally, each individual parameter can be tuned by cross-validation from a grid search.

This, however, will incur extensive computational cost even when the dimension d

is moderately large. Instead, we propose a data-driven procedure that automat-

ically calibrates the d(d + 1)/2 parameters. This procedure is motivated by the

theoretical properties established in Theorem 3.1. To avoid notational clutter, we

fix 1 ≤ k ≤ ` ≤ d and define {Z1 . . . , ZN} = {Y1kY1`/2, . . . , YNkYN`/2} such that

σk` = EZ1. Then σ̂T1,k` can be written as (1/N )
∑N

i=1 ψτk`(Zi). In view of (3.4), an

“ideal” choice of τk` is

τk` = vk`

√
m

2 log d+ t
with v2k` = EZ2

1 , (4.1)

where t = log δ−1 ≥ 1 is prespecified to control the confidence level and will be dis-

cussed later. A naive estimator of v2k` is the empirical second moment (1/N )
∑N

i=1 Z
2
i ,

which tends to overestimate the true value when data have high kurtosis. Intuitively,

a well-chosen τk` makes (1/N)
∑N

i=1 ψτk`(Zi) a good estimator of EZ1, and mean-

while, we expect the empirical truncated second moment (1/N)
∑N

i=1 ψ
2
τk`

(Zi) =

(1/N)
∑N

i=1(Z
2
i ∧ τ2k`) to be a reasonable estimate of EZ2

1 as well. Plugging this

empirical truncated second moment into (4.1) yields

1

N

N∑
i=1

(Z2
i ∧ τ2)
τ2

=
2 log d+ t

m
, τ > 0. (4.2)

We then solve the above equation to obtain τ̂k`, a data-driven choice of τk`. By

Proposition 3 in Wang et al. (2018), equation (4.2) has a unique solution as long as

2 log d + t < (m/N)
∑N

i=1 I{Zi 6= 0}. We characterize the theoretical properties of

this tuning method in a companion paper (Wang et al., 2018).

Regarding the choice of t = log δ−1: on the one hand, as it controls the confidence

level according to (3.5), we should let t = tn be sufficiently large so that the estimator

is concentrated around the true value with high probability. On the other hand, t

also appears in the deviation bound that corresponds to the width of the confidence

interval, so it should not grow too fast as a function of n. In practice, we recommend

using t = log n (or equivalently, δ = n−1), a typical slowly varying function of n.
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To implement the spectrum-wise truncated covariance estimator in practice, note

that there is only one tuning parameter whose theoretically optimal scale is

1

2
‖E{(X1 −X2)(X1 −X2)

ᵀ}2‖1/22

√
m

log(2d) + t
.

Motivated by the data-driven tuning scheme for the element-wise estimator, we

choose τ by (approximately) solving the equation∥∥∥∥ 1

τ2N

N∑
i=1

(
‖Yi‖22

2

∧
τ

)2YiY
ᵀ
i

‖Yi‖22

∥∥∥∥
2

=
log(2d) + t

m
,

where as before we take t = log n.

4.2 Adaptive Huber-type M-estimator

To construct a data-driven approach for automatically tuning the adaptive Huber

estimator, we follow the same rationale from the previous subsection. Since the op-

timal τk` now depends on var(Z1) instead of the second moment EZ2
1 , it is therefore

conservative to directly apply the above data-driven method in this case. Instead,

we propose to estimate τk` and σk` simultaneously by solving the following system

of equations

f1(θ, τ) =
1

N

N∑
i=1

{(Zi − θ)2 ∧ τ2}
τ2

− 2 log d+ t

n
= 0, (4.3a)

f2(θ, τ) =
N∑
i=1

ψτ (Zi − θ) = 0, (4.3b)

for θ ∈ R and τ > 0. Via a similar argument, it can be shown that the equation

f1(θ, ·) = 0 has a unique solution as long as 2 log d+ t < (n/N)
∑N

i=1 I{Zi 6= θ}; for

any τ > 0, the equation f2(·, τ) = 0 also has a unique solution. Starting with an

initial estimate θ(0) = (1/N)
∑N

i=1 Zi, which is the sample variance estimator of σk`,

we iteratively solve f1(θ
(s−1), τ (s)) = 0 and f2(θ

(s), τ (s)) = 0 for s = 1, 2, . . . until

convergence. The resultant estimator, denoted by σ̂H3,k` with slight abuse of notation,

is then referred to as the adaptive Huber estimator of σk`. We then obtain the data-

adaptive Huber covariance matrix estimator as Σ̂H3 = (σ̂H3,k`)1≤k,`≤d. Algorithm 1

presents the summary of this data-driven approach.

5 Applications to structured matrix estimation

The robustness properties of the element-wise and spectrum-wise truncation estima-

tors are demonstrated in Theorems 3.1 and 3.2. In particular, the exponential-type

concentration bounds are essential for establishing reasonable estimators for high-

dimensional structured covariance and precision matrices. In this section, we apply

the proposed generic robust methods to the estimation of bandable and low-rank

covariance matrices as well as sparse precision matrix.
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Algorithm 1 Data-Adaptive Huber Covariance Matrix Estimation

Input Data vectors Xi ∈ Rd (i = 1, . . . , n), tolerance level ε and maximum iteration

Smax.

Output Data-adaptive Huber covariance matrix estimator Σ̂H3 = (σ̂H3,k`)1≤k,`≤d.

1: Compute pairwise differences Y1 = X1−X2,Y2 = X1−X3, . . . , YN = Xn−1−
Xn, where N = n(n− 1)/2.

2: for1 ≤ k ≤ ` ≤ d do

3: θ(0) = (2N)−1
∑N

i=1 YikYi`.

4: for s = 1, . . . Smax do

5: τ (s) ← solution of f1(θ
(s−1), ·) = 0.

6: θ(s) ← solution of f2(·, τ (s)) = 0.

7: if |θ(s) − θ(s−1)| < ε break

8: stop σ̂H3,`k = σ̂H3,k` = θ(Smax).

9: stop

10: return Σ̂H3 = (σ̂H3,k`)1≤k,`≤d.
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5.1 Bandable covariance matrix estimation

Motivated by applications to climate studies and spectroscopy in which the index

set of variables X = (X1, . . . , Xd)
ᵀ admits a natural order, one can expect that a

large “distance” |k − `| implies near-independence. We characterize this feature by

the following class of bandable covariance matrices considered by Bickel and Levina

(2008a) and by Cai, Zhang and Zhou (2010):

Fα(M0,M) =

{
Σ =(σk`)1≤k,`≤d ∈ Rd×d : λ1(Σ) ≤M0,

max
1≤`≤d

∑
k:|k−`|>m

|σk`| ≤
M

mα
for all m

}
. (5.1)

Here M0,M are regarded as universal constants and the parameter α specifies the

decay rate of σk` to zero as `→∞ for each row.

When X follows sub-Gaussian distribution, Cai, Zhang and Zhou (2010) pro-

posed a minimax-optimal estimator over Fα (M0,M) under the spectral norm. Specif-

ically, they proposed a tapering estimator Σ̂tap
m = (σ̂k` · ω|k−`|), where the positive

integer m ≤ d specifies the bandwidth, ωq = 1, 2 − 2q/m, 0, when q ≤ m/2,

m/2 < q ≤ m, q > m, respectively. Σ̂sam = (σ̂k`)1≤k,`≤d denotes the sample

covariance. With the optimal choice of bandwidth m � min{n1/(2α+1), d}, Cai,

Zhang and Zhou (2010) showed that Σ̂tap
m achieves the minimax rate of convergence

{
√

log(d)/n+ n−α/(2α+1)} ∧
√
d/n under the spectral norm.

To obtain a root-n consistent covariance estimator, we expect the coordinates of

X to have at least finite fourth moments. Under this condition, it is unclear whether

the optimal rate can be achieved over Fα (M0,M) without imposing additional

distributional assumptions, such as the elliptical symmetry (Mitra and Zhang, 2014;

Chen, Gao and Ren, 2018). Estimators that naively use the sample covariance will

inherit its sensitivity to outliers. Recall the definition of Σ̂T2 in (3.6); a simple idea

is to replace the sample covariance by a spectrum-wise truncated estimator Σ̂T2 in

the first step, to which the tapering procedure can be applied. However, such an

estimator is not optimal: indeed, the analysis of a tapering estimator requires each

small principal submatrix of the initial estimator to be highly concentrated around

the population object. Suppose that we truncate the `2-norm of the entire vector

Yi at a level τ scaling with tr(Σ). For each subset J ⊆ {1, . . . , d}, let YiJ be the

subvector of Yi indexed by J . Then the corresponding principal submatrix

1

N

N∑
i=1

ψτ

(
1

2
‖Yi‖22

)
YiJY

ᵀ
iJ

‖Yi‖22

is not an ideal robust estimator of ΣJJ because the “optimal” τ in this case should

scale with tr(ΣJJ) rather than tr(Σ). This explains why directly applying the

tapering procedure to Σ̂T2 is not ideal.

In what follows, we propose an optimal robust covariance estimator based on the

spectrum-wise truncation technique introduced in Section 3.2. First we introduce

some notation. Let Z
(p,q)
i = (Yi,p, Yi,p+1, . . . , Yi,p+q−1)

ᵀ be a subvector of Yi given
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Figure 2: Motivation of our estimator of bandable covariance matrices

in (3.2). Accordingly, define the truncated estimator of the principal submatrix of

Σ as

Σ̂
(p,q),T
2 = Σ̂

(p,q),T
2 (τ) =

1

N

N∑
i=1

ψτ (Z
(p,q)
i Z

(p,q)ᵀ
i /2), (5.2)

where τ is as in (3.8) with d replaced by q and v = ‖E{Z(p,q)
1 Z

(p,q)ᵀ
1 }2‖2/4. Moreover,

we define an operator that embeds a small matrix into a large zero matrix: for a

q × q matrix A = (ak`)1≤k,`≤q, define the d× d matrix Ed
p(A) = (bk`)1≤k,`≤d, where

p indicates the location and

bk` =

{
ak−p+1,`−p+1 if p ≤ k, ` ≤ p+ q − 1,

0 otherwise.

Our final robust covariance estimator is then defined as

Σ̂q =

d(d−1)/qe∑
j=−1

Ed
jq+1(Σ̂

(jq+1,2q),T
2 )−

d(d−1)/qe∑
j=0

Ed
jq+1(Σ̂

(jq+1,q),T
2 ). (5.3)

The idea behind the construction above is that a bandable covariance matrix

in Fα (M0,M) can be approximately decomposed into several principal submatrices

of size 2q and q, as shown in Figure 2. Using spectrum-wise truncated estimators

Σ̂
(p,q),T
2 and Σ̂

(p,2q),T
2 to estimate the corresponding principal submatrices in this

decomposition leads to the proposed estimator Σ̂q.

This construction is different from the literature where the banding or tapering

procedure is directly applied to an initial estimator, say the sample covariance matrix

(Bickel and Levina, 2008a; Cai, Zhang and Zhou, 2010). It is worth mentioning

that a similar robust estimator can be constructed following the idea of Cai, Zhang

and Zhou (2010), which differs from our proposal. Computationally, our estimator

evaluates as many as O(d/q) matrices of size q × q (or 2q × 2q), while the method

developed by Cai, Zhang and Zhou (2010) computes as many as O(d) such matrices.

The following result shows that the estimator defined in (5.3) achieves near-

optimal rate of convergence under the spectral norm as long as X has uniformly

bounded fourth moments. The proof is deferred to the supplementary material.

Theorem 5.1. Assume that Σ ∈ Fα (M0,M) and supu∈Sd−1 kurt(uᵀX) ≤ M1 for

some constant M1 > 0. For any c0 > 0, take δ = (nc0d)−1 in the definition of
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τ for constructing principal submatrix estimators Σ̂
(p,q),T
2 in (5.2). Then, with a

bandwidth q � {n/ log(nd)}1/(2α+1) ∧ d, the estimator Σ̂q defined in (5.3) is such

that with probability at least 1 − 2n−c0 ,

‖Σ̂q −Σ‖2 ≤ C min

{(
log(nd)

n

)α/(2α+1)

,

√
d · log(nd)

n

}
,

where C > 0 is a constant depending only on M,M0,M1, c0.

According to the minimax lower bounds established by Cai, Zhang and Zhou

(2010), up to a logarithmic term our robust estimator achieves the optimal rate

of convergence that is enjoyed by the tapering estimator when the data are sub-

Gaussian. The logarithmic term is not easy to remove: for instance, one cannot

improve the rate of convergence by replacing each principal submatrix estimator in

(5.2) with the theoretically more refined but computationally intractable estimator

proposed by Mendelson and Zhivotovskiy (2018) (see Remark 3).

Remark 5. To achieve the near-optimal convergence rate shown in Theorem 5.1,

the ideal choice of the bandwidth q depends on the knowledge of α. A fully data-

driven and adaptive estimator can be obtained by selecting the optimal bandwidth

via Lepski’s method (Lepski and Spokoiny, 1997). We refer to Liu and Ren (2018)

for constructing a similar adaptive estimator for a precision matrix with bandable

Cholesky factor.

5.2 Low-rank covariance matrix estimation

In this section, we consider a structured model where Σ = cov(X) is approximately

low-rank. Using the trace-norm as a convex relaxation of the rank, our estimator is

the solution to the following trace-norm penalized optimization program:

Σ̂T2,γ ∈ argmin
A∈Sd

{
1

2
‖A− Σ̂T2 ‖2F + γ‖A‖tr

}
, (5.4)

where Sd denotes the set of d × d positive semi-definite matrices, γ > 0 is a reg-

ularization parameter and Σ̂T2 , defined in (3.6), serves as a pilot estimator. This

trace-penalized method was first proposed by Lounici (2014) with the initial es-

timator taken to be the sample covariance matrix, and later studied by Minsker

(2018) using a different initial estimator. In fact, given the initial estimator Σ̂T2 , the

estimator given in (5.4) has the following closed-form expression (Lounici, 2014):

Σ̂T2,γ =

d∑
k=1

max{λk(Σ̂T2 )− γ, 0}vk(Σ̂T2 )vk(Σ̂
T
2 )ᵀ, (5.5)

where λ1(Σ̂
T
2 ) ≥ · · · ≥ λd(Σ̂T2 ) are the eigenvalues of Σ̂T2 in an non-increasing order

and v1(Σ̂
T
2 ), . . . , vd(Σ̂

T
2 ) are the associated orthonormal eigenvectors. The following

theorem provides a deviation bound for Σ̂T2,γ under the Frobenius norm. The proof

follows directly from Theorem 3.2 and Theorem 1 of Lounici (2014), and therefore

is omitted.
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Theorem 5.2. For any t > 0 and v > 0 satisfying (3.7), let

τ = v

√
m

log(2d) + t
and γ ≥ 2v

√
log(2d) + t

m
.

Then with probability at least 1 − e−t, the trace-penalized estimator Σ̂T2,γ satisfies

‖Σ̂T2,γ −Σ‖2F ≤ inf
A∈Sd

[
‖Σ−A‖2F + min{4γ‖A‖tr, 3γ2rank(A)}

]
and ‖Σ̂T2,γ −Σ‖2 ≤ 2γ.

In particular, if rank(Σ) ≤ r0, then with probability at least 1 − e−t,

‖Σ̂T2,γ −Σ‖2F ≤ min{4‖Σ‖2γ, 3γ2}r0. (5.6)

5.3 Sparse precision matrix estimation

Our third example is related to sparse precision matrix estimation in high dimen-

sions. Recently, Avella-Medina et al. (2018) showed that minimax optimality is

achievable within a larger class of distributions if the sample covariance matrix is

replaced by a robust pilot estimator, and also provided a unified theory for covari-

ance and precision matrix estimation based on general pilot estimators. Specifically,

Avella-Medina et al. (2018) robustifed the CLIME estimator (Cai, Liu and Luo,

2011) using three different pilot estimators: adaptive Huber, median-of-means and

rank-based estimators. Based on the element-wise truncation procedure and the

difference of trace (D-trace) loss proposed by Zhang and Zou (2014), we further con-

sider a robust method for estimating the precision matrix Θ∗ = Σ−1 under sparsity,

which represents a useful complement to the methods developed by Avella-Medina

et al. (2018).

The advantage of using the D-trace loss is that it automatically gives rise to a

symmetric solution. Specifically, using the element-wise truncated estimator Σ̂T1 =

Σ̂T1 (Γ) in (3.3) as an initial estimate of Σ, we propose to solve

Θ̂ ∈ argmin
Θ∈Rd×d

{
1

2

〈
Θ2, Σ̂T1

〉
− tr(Θ)︸ ︷︷ ︸

L(Θ)

+λ‖Θ‖`1
}
. (5.7)

where ‖Θ‖`1 =
∑

k 6=` |Θk`| for Θ = (Θk`)1≤k,`≤d. For simplicity, we write L(Θ) =

〈Θ2, Σ̂T1 〉− tr(Θ). Zhang and Zou (2014) imposed a positive definiteness constraint

on Θ, and proposed an alternating direction method of multipliers (ADMM) al-

gorithm to solve the constrained D-trace loss minimization. However, with the

positive definiteness constraint, the ADMM algorithm at each iteration computes

the singular value decomposition of a d×d matrix, and therefore is computationally

intensive for large-scale data. In (5.7), we impose no constraint on Θ primarily for

computational simplicity.

Before presenting the main theorem, we need to introduce an assumption on the

restricted eigenvalue of the Hessian matrix of L. First, note that the Hessian of L
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can be written as

HΓ =
1

2
(I⊗ Σ̂T1 + Σ̂T1 ⊗ I),

where Γ is the tuning parameter matrix in (3.3). For matrices A,B ∈ Rd2×d2 , we

define 〈A,A〉B = vec(A)ᵀ B vec(A), where vec(A) designates the d2-dimensional

vector concatenating the columns of A. Let S = supp(Θ∗) ⊆ {1, . . . , d}2, the

support set of Θ∗.

Definition 5.1. (Restricted Eigenvalue for Matrices) For any ξ > 0 and m ≥ 1, we

define the maximal and minimal restricted eigenvalues of the Hessian matrix HΓ as

κ−(Γ, ξ,m) = inf
W

{
〈W,W〉HΓ

‖W‖2F
: W ∈ Rd×d,W 6= 0, ∃J such that S ⊆ J,

|J | ≤ m, ‖WJc‖`1 ≤ ξ‖WJ‖`1
}

;

κ+(Γ, ξ,m) = sup
W

{
〈W,W〉HΓ

‖W‖2F
: W ∈ Rd×d,W 6= 0, ∃J such that S ⊆ J,

|J | ≤ m, ‖WJc‖`1 ≤ ξ‖WJ‖`1
}
.

Condition 5.1. (Restricted Eigenvalue Condition) We say restricted eigenvalue

condition with (Γ, 3, k) holds if 0 < κ− = κ−(Γ, 3, k) ≤ κ+(Γ, 3, k) = κ+ <∞.

Condition 5.1 is a form of the localized restricted eigenvalue condition (Fan et al.,

2018). Moreover, we assume that the true precision matrix Θ∗ lies in the following

class of matrices:

U(s,M) =

{
Ω ∈ Rd×d : Ω = Ωᵀ,Ω � 0, ‖Ω‖1 ≤M,

∑
k,`

I(Ωk` 6= 0) ≤ s
}
.

A similar class of precision matrices has been studied in the literature; see, for

example, Zhang and Zou (2014), Cai, Ren and Zhou (2016) and Sun et al. (2018).

Recall the definition of V in Theorem 3.1. We are ready to present the main result,

with the proof deferred to the supplementary material.

Theorem 5.3. Assume that Θ∗ = Σ−1 ∈ U(s,M). Let Γ ∈ Rd×d be as in Theorem

3.1 and let λ satisfy

λ = 4C‖V‖max

√
2 log d+ log δ−1

bn/2c
for some C ≥M.

Assume Condition 5.1 is fulfilled with k = s and Γ specified above. Then with

probability at least 1− 2δ, we have

‖Θ̂−Θ∗‖F ≤ 6Cκ−1− ‖V‖max s
1/2

√
2 log d+ log δ−1

bn/2c
.

Remark 6. The nonasymptotic probabilistic bound in Theorem 5.3 is established

under the assumption that Condition 5.1 holds. It can be shown that Condition 5.1

is satisfied with high probability as long as the coordinates of X have bounded

fourth moments. The proof is based on an argument similar to that in the proof of

Lemma 4 in the work of Sun, Zhou and Fan (2018), and thus is omitted here.
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6 Numerical study

In this section, we assess the numerical performance of proposed tail-robust co-

variance estimators. We consider the element-wise truncated covariance estimator

Σ̂T1 defined in (3.3), the spectrum-wise truncated covariance estimator Σ̂T2 defined

in (3.6), the Huber-type M -estimator Σ̂H1 given in (3.13) and the adaptive Huber

M -estimator Σ̂H3 in Section 4.2.

Throughout this section, we let {τk`}1≤k,`≤d = τ for Σ̂H1 . To compute Σ̂T2 and

Σ̂H1 , the robustification parameter τ is selected by five-fold cross-validation. The ro-

bustification parameters {τk`}1≤k,`≤d for Σ̂T1 are tuned by solving the equation (4.2),

and thus is an adaptive elementwise-truncated estimator. To implement the adap-

tive Huber M -estimator Σ̂H3 , we calibrate {τk`}1≤k,`≤d and estimate {σk`}1≤k,`≤d
simultaneously by solving the equation system (4.3) as described in Algorithm 1.

We first generate a data matrix Y ∈ Rn×d with rows being i.i.d. vectors from a

distribution with mean 0 and covariance matrix Id. We then rescaled the data and

set X = YΣ1/2 as the final data matrix, where Σ ∈ Rd×d is a structured covariance

matrix. We consider four distribution models outlined below:

(1) (Normal model). The rows of Y are i.i.d. generated from the standard normal

distribution.

(2) (Student’s t model). Y = Z/
√

3, where the entries of Z are i.i.d. with Stu-

dent’s distribution with 3 degrees of freedom.

(3) (Pareto model). Y = 4Z/3, where the entries of Z are i.i.d. with Pareto

distribution with shape parameter 3 and scale parameter 1.

(4) (Log-normal model). Y = exp{0.5 + Z}/(e3 − e2), where the entries of Z are

i.i.d. with standard normal distribution.

The covariance matrix Σ has one of the following three structures:

(a) (Diagonal structure). Σ = Id;

(b) (Equal correlation structure). σk` = 1 for k = ` and σk` = 0.5 when k 6= `;

(c) (Power decay structure). σk` = 1 for k = ` and σk` = 0.5|k−`| when k 6= `.

In each setting, we choose (n, d) as (50, 100), (50, 200) and (100, 200), and simu-

late 200 replications for each scenario. The performance is assessed by the relative

mean error (RME) under spectral, max or Frobenius norm:

RME =

∑200
i=1 ‖Σ̂i −Σ‖2,max,F∑200
i=1 ‖Σ̃i −Σ‖2,max,F

,

where Σ̂i is the estimate of Σ in the ith simulation using one of the four robust

methods and Σ̃i denotes the sample covariance estimate that serves as a benchmark.

The smaller the RME is, the more improvement the robust method achieves.

22



Tables 1–3 summarize the simulation results, which indicate that all the robust

estimators outperform the sample covariance matrix by a visible margin when data

are generated from a heavy-tailed or an asymmetric distribution. On the other

hand, the proposed estimators perform almost as good as the sample covariance

matrix when the data follows a normal distribution, indicating high efficiency in

this case. The performance of the four robust estimators are comparable in all sce-

narios: the spectrum-wise truncated covariance estimator Σ̂T2 has the smallest RME

under spectral norm, while the other three estimators perform better under max

and Frobenius norms. This outcome is inline with our intuition discussed in Sec-

tion 3. Furthermore, the computationally efficient adaptive Huber M -estimator Σ̂H3
performs comparably as the Huber-type M -estimator Σ̂H1 where the robustification

parameters are chosen by cross-validation.

Table 1: RME under diagonal structure.

n = 50, p = 100

Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F

Σ̂H
1 0.97 0.95 0.98 0.37 0.39 0.65 0.27 0.21 0.47 0.27 0.21 0.51

Σ̂H
3 0.97 0.90 0.96 0.37 0.36 0.59 0.29 0.24 0.45 0.24 0.19 0.49

Σ̂T
1 0.97 0.91 0.96 0.40 0.38 0.62 0.27 0.23 0.42 0.25 0.18 0.50

Σ̂T
2 0.96 0.99 0.98 0.34 0.41 0.67 0.26 0.25 0.44 0.25 0.26 0.56

n = 50, p = 200

Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F

Σ̂H
1 0.98 0.95 0.98 0.32 0.29 0.60 0.29 0.23 0.41 0.24 0.20 0.43

Σ̂H
3 0.98 0.96 0.97 0.31 0.26 0.54 0.27 0.20 0.42 0.24 0.19 0.38

Σ̂T
1 0.97 0.95 0.96 0.33 0.29 0.63 0.26 0.19 0.39 0.23 0.18 0.42

Σ̂T
2 0.95 0.98 0.95 0.31 0.33 0.65 0.24 0.26 0.48 0.22 0.23 0.48

n = 100, p = 200

Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F

Σ̂H
1 0.99 0.98 0.99 0.40 0.47 0.58 0.46 0.49 0.51 0.32 0.20 0.47

Σ̂H
3 0.95 0.99 0.98 0.39 0.47 0.59 0.45 0.45 0.48 0.28 0.21 0.49

Σ̂T
1 0.97 0.94 0.97 0.38 0.45 0.57 0.46 0.49 0.51 0.26 0.27 0.47

Σ̂T
2 0.94 1.01 0.95 0.33 0.51 0.64 0.42 0.53 0.61 0.28 0.27 0.58

Mean relative errors of the the four robust estimators Σ̂H
1 , Σ̂H

3 , Σ̂T
1 and Σ̂T

2 over

200 replications when the true covariance matrix has a diagonal structure. 2, max

and F denote the spectral, max and Frobenius norms, respectively.

7 Discussion

In this paper, we surveyed and unified selected recent results on covariance estima-

tion for heavy-tailed distributions. More specifically, we proposed element-wise and
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Table 2: RME under equal correlation structure.

n = 50, p = 100

Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F

Σ̂H
1 0.97 0.94 0.97 0.68 0.12 0.68 0.68 0.23 0.59 0.58 0.27 0.46

Σ̂H
3 0.96 0.95 0.96 0.69 0.15 0.64 0.62 0.21 0.59 0.52 0.27 0.44

Σ̂T
1 0.97 0.96 0.97 0.67 0.14 0.67 0.64 0.22 0.57 0.59 0.28 0.47

Σ̂T
2 0.95 0.99 1.02 0.56 0.26 0.71 0.62 0.27 0.60 0.50 0.33 0.51

n = 50, p = 200

Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F

Σ̂H
1 0.97 0.94 0.98 0.77 0.21 0.76 0.67 0.34 0.50 0.69 0.23 0.67

Σ̂H
3 1.00 0.97 0.98 0.77 0.22 0.73 0.63 0.31 0.50 0.70 0.23 0.68

Σ̂T
1 0.99 0.97 0.96 0.78 0.24 0.71 0.63 0.33 0.46 0.70 0.23 0.68

Σ̂T
2 0.95 0.98 1.00 0.74 0.35 0.80 0.61 0.34 0.51 0.66 0.31 0.72

n = 100, p = 200

Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F

Σ̂H
1 1.00 0.96 0.99 0.79 0.23 0.78 0.63 0.46 0.57 0.53 0.21 0.47

Σ̂H
3 0.98 0.98 0.97 0.79 0.24 0.79 0.69 0.48 0.58 0.57 0.22 0.48

Σ̂T
1 1.00 1.00 0.99 0.78 0.21 0.77 0.65 0.45 0.57 0.55 0.23 0.50

Σ̂T
2 0.97 1.02 1.03 0.73 0.32 0.83 0.62 0.54 0.61 0.50 0.29 0.55

Table 3: RME under power decay structure.

n = 50, p = 100

Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F

Σ̂H
1 0.98 0.95 0.98 0.58 0.30 0.71 0.48 0.29 0.57 0.69 0.39 0.79

Σ̂H
3 0.95 0.95 0.93 0.58 0.28 0.72 0.48 0.26 0.58 0.70 0.39 0.78

Σ̂T
1 0.97 0.98 0.96 0.59 0.30 0.71 0.49 0.26 0.57 0.72 0.39 0.77

Σ̂T
2 0.98 0.98 0.99 0.52 0.33 0.77 0.47 0.31 0.60 0.66 0.45 0.81

n = 50, p = 200

Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F

Σ̂H
1 0.98 0.95 0.97 0.58 0.30 0.71 0.48 0.29 0.57 0.69 0.39 0.79

Σ̂H
3 0.96 0.93 0.95 0.56 0.29 0.66 0.49 0.26 0.55 0.72 0.38 0.77

Σ̂T
1 0.98 0.97 0.97 0.59 0.27 0.71 0.48 0.26 0.58 0.70 0.36 0.80

Σ̂T
2 0.98 0.98 1.01 0.54 0.24 0.76 0.41 0.31 0.60 0.68 0.42 0.82

n = 100, p = 200

Normal t3 Pareto Log-normal

2 max F 2 max F 2 max F 2 max F

Σ̂H
1 0.99 0.98 1.00 0.45 0.25 0.66 0.42 0.31 0.54 0.48 0.35 0.62

Σ̂H
3 0.98 0.98 0.99 0.47 0.26 0.68 0.41 0.30 0.53 0.47 0.34 0.61

Σ̂T
1 1.00 0.99 1.00 0.50 0.30 0.68 0.41 0.34 0.56 0.49 0.38 0.64

Σ̂T
2 0.99 1.04 1.01 0.41 0.31 0.70 0.40 0.39 0.59 0.43 0.43 0.69
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spectrum-wise truncation techniques to robustify the sample covariance matrix. The

robustness, referred to as the tail robustness, is demonstrated by finite-sample devi-

ation analysis in the presence of heavy-tailed data: the proposed estimators achieve

exponential-type deviation bounds under mild moment conditions. We emphasize

that the tail robustness is different from the classical notion of robustness that is

often characterized by the breakdown point (Hampel, 1971). Nevertheless, it does

not provide any information on the convergence properties of an estimator, such as

consistency and efficiency. Tail robustness is a concept that combines robustness,

consistency, and finite-sample error bounds.

We discussed three types of procedures in Section 3: truncation-based meth-

ods, their M -estimation counterparts and the median-of-means method. Truncated

estimators have closed-form expressions and therefore are easy to implement in prac-

tice. The corresponding M -estimators achieve comparable sub-Gaussian-type error

bounds, which are of the order
√

log(d/δ)/n under the max norm and of order√
r(Σ) log(d/δ)/n under the spectral norm, but with sharper moment-dependent

constants. Computationally, M -estimators can be efficiently evaluated via gradient

descent method or iteratively reweighted least squares algorithm. Both truncated

and M -estimators involve robustification parameters that need to be calibrated to

fit the noise level of the problem. Adaptation and tuning of these parameters are

discussed in Section 4. The MOM estimator proposed in Section 3.4 is tuning-free

because the number of blocks depends neither on noise level nor on confidence level.

Following the terminology proposed by Devroye et al. (2016), truncation-based es-

timators are δ-dependent estimators as they depend on the confidence level 1− δ at

which one aims to control, while the MOM estimator achieves sub-Gaussian error

bounds simultaneously at all confidence levels in a certain range but requires slightly

stronger assumptions, namely, the existence of sixth moments instead of fourth.

Three examples discussed in Section 5 illustrate that both element-wise and

spectrum-wise truncated covariance estimators can serve as building blocks for a

variety of estimation problems in high dimensions. A natural question is whether

one can construct a single robust estimator that achieves exponentially fast con-

centration both element-wise and spectrum-wise, that is, satisfies the results in

Theorems 3.1 and 3.2 simultaneously. Here we discuss a theoretical solution to this

question. In fact, one can arbitrarily pick one element, denoted as Σ̂T , from the

collection of matrices

H =

{
S ∈ Rd×d : S = Sᵀ, ‖Σ̂T2 − S‖2 ≤ 2v

√
log(2d) + log δ−1

m

and ‖Σ̂T1 − S‖max ≤ 2‖V‖max

√
2 log d+ log δ−1

m

}
.

Due to Theorems 3.1 and 3.2, with probability at least 1−3δ, the set H is non-empty

since it contains the true covariance matrix Σ. Therefore, it follows from the the
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triangle inequality that the inequalities

‖Σ̂T −Σ‖2 ≤ 4v

√
log(2d) + log δ−1

m
,

and ‖Σ̂T −Σ‖max ≤ 4‖V‖max

√
2 log d+ log δ−1

m
.

hold simultaneously with probability at least 1 − 3δ.
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Catoni, O. (2016). PAC-Bayesian bounds for the Gram matrix and least squares

regression with a random design. arXiv preprint arXiv:1603.05229.

Chen, M., Gao, C. and Ren, Z. (2018). Robust covariance and scatter matrix

estimation under Huber’s contamination model. Ann. Statist. 46 1932–1960.

Cherapanamjeri, Y., Flammarion, N. and Bartlett, P. L. (2019). Fast mean

estimation with sub-Gaussian rates. arXiv preprint arXiv:1902.01998.

26



Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical

issues. Quant. Finance 1 223–236.

Davies, L. (1992). The asymptotics of Rousseeuw’s minimum volume ellipsoid es-

timator. Ann. Statist. 20 1828–1843.

Devroye, L., Lerasle, M., Lugosi, G. and Oliveira, R. I. (2016). Sub-

Gaussian mean estimators. Ann. Statist. 44 2695–2725.

Eklund, A., Nichols, T. E. and Knutsson, H. (2016). Cluster failure: why

fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl.

Acad. Sci. USA 113 7900–7905.

Fan, J., Li, Q. and Wang, Y. (2017). Estimation of high dimensional mean re-

gression in the absence of symmetry and light tail assumptions. J. R. Stat. Soc.

Ser. B. Stat. Methodol. 79 247–265.

Fan, J., Liao, Y. and Liu, H. (2016). An overview of the estimation of large

covariance and precision matrices. Econom. J. 19 C1–C32.

Fan, J., Liu, H., Sun, Q. and Zhang, T. (2018). I-LAMM for sparse learning:

Simultaneous control of algorithmic complexity and statistical error. Ann. Statist.

46 818–841.

Fan, J., Sun, Q., Zhou, W.-X. and Zhu, Z. (2018). Principal component analysis

for big data. Wiley StatsRef: Statistics Reference Online. To appear.

Hall, P., Kay, J.W. and Titterington, D.M. (1990). Asymptotically optimal

difference-based estimation of variance in nonparametric regression. Biometrika

77 521–528.

Hampel, F.R. (1971). A general qualitative definition of robustness. Ann. Math.

Statist. 42 1887–1896.

Hopkins, S. B. (2018). Mean estimation with sub-Gaussian rates in polynomial

time. arXiv preprint arXiv:1809.07425.

Hsu, D. and Sabato, S. (2016). Loss minimization and parameter estimation with

heavy tails. J. Mach. Learn. Res. 17(18) 1–40.

Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math.

Statist. 35 73–101.

Huber, P. J. and Ronchetti, E.M. (2009). Robust Statistics. Wiley.

Hubert, M., Rousseeuw, P. J. and Van Aelst, S. (2008). High-breakdown

robust multivariate methods. Statist. Sci. 23 92–119.

Lepskii, O.V. (1990). A problem of adaptive estimation in Gaussian white noise.

Theory Probab. Appl. 35 454–466.

27



Lepski, O.V. and Spokoiny, V.G. (1997). Optimal pointwise adaptive methods

in nonparametric estimation. Ann. Statist. 25 2512–2546.

Liu, L., Hawkins, D.M., Ghosh, S. and Young, S. S. (2003). Robust singular

value decomposition analysis of microarray data. Proc. Natl. Acad. Sci. USA 100

13167–13172.

Liu, R.Y. (1990). On a notion of data depth based on random simplices. Ann.

Statist. 18 405–414.

Liu, Y. and Ren, Z. (2018). Minimax estimation of large precision matrices with

bandable Cholesky factor. arXiv preprint arxiv:1712.09483.

Lounici, K. (2014). High-dimensional covariance matrix estimation with missing

observations. Bernoulli 20 1029–1058.

Lugosi, G. and Mendelson, S. (2019). Sub-Gaussian estimators of the mean of

a random vector. Ann. Statist. 47 783–794.

Maronna, R.A. (1976). Robust M -estimators of multivariate location and scatter.

Ann. Statist. 4 51–67.

Mendelson, S. and Zhivotovskiy, N. (2018). Robust covariance estimation un-

der L4–L2 norm equivalence. arXiv preprint arXiv:1809.10462.

Minsker, S. (2015). Geometric median and robust estimation in Banach spaces.

Bernoulli 21 2308–2335.

Minsker, S. (2018). Sub-Gaussian estimators of the mean of a random matrix with

heavy-tailed entries. Ann. Statist. 46 2871–2903.

Minsker, S. and Strawn, N. (2017). Distributed statistical estimation and rates

of convergence in normal approximation. arXiv preprint arXiv:1704.02658.

Minsker, S. and Wei, X. (2018). Robust modifications of U-statistics and appli-

cations to covariance estimation problems. arXiv preprint arXiv:1801.05565.

Mitra, R. and Zhang, C.-H. (2014). Multivariate analysis of nonparametric esti-

mates of large correlation matrices. arXiv preprint arXiv:1403.6195.

Mizera, I. (2002). On depth and deep points: A calculus. Ann. Statist. 30 1681–

1736.

Nemirovsky, A. S. and Yudin, D.B. (1983). Problem Complexity and Method

Efficiency in Optimization. Wiley, New York.

Portnoy, S. and He, X. (2000). A robust journey in the new millennium. J.

Amer. Statist. Assoc. 95 1331–1335.

Purdom, E. and Holmes, S. P. (2005). Error distribution for gene expression

data. Statist. Appl. Genet. Mol. Biol. 4 16.

28



Rice, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12

1215–1230.

Rousseeuw, P. J. (1984). Least median of squares regression. J. Amer. Statist.

Assoc. 79 871–880.

Rousseeuw, P. and Yohai, V. (1984). Robust regression by means of S-estimators.

In Robust and Nonlinear Time Series Analysis (J. Franke, W. Härdle and D.
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